Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Mini-Review Article

Neuroendocrine Response to Psychosocial Stressors, Inflammation Mediators and Brain-periphery Pathways of Adaptation

Author(s): Lionella Palego, Gino Giannaccini and Laura Betti*

Volume 21, Issue 1, 2021

Published on: 14 December, 2020

Page: [2 - 19] Pages: 18

DOI: 10.2174/1871524920999201214231243

Price: $65

Open Access Journals Promotions 2
Abstract

Threats, challenging events, adverse experiences, predictable or unpredictable, namely stressors, characterize life, being unavoidable for humans. The hypothalamus-pituitary-adrenal axis (HPA) and the sympathetic nervous system (SNS) are well-known to underlie adaptation to psychosocial stress in the context of other interacting systems, signals and mediators. However, much more effort is necessary to elucidate these modulatory cues for a better understanding of how and why the "brain-body axis" acts for resilience or, on the contrary, cannot cope with stress from a biochemical and biological point of view. Indeed, failure to adapt increases the risk of developing and/or relapsing mental illnesses such as burnout, post-traumatic stress disorder (PTSD), and at least some types of depression, even favoring/worsening neurodegenerative and somatic comorbidities, especially in the elderly.

We will review here the current knowledge on this area, focusing on works presenting the main brain centers responsible for stressor interpretation and processing, together with those underscoring the physiology/biochemistry of endogenous stress responses. Autonomic and HPA patterns, inflammatory cascades and energy/redox metabolic arrays will be presented as allostasis promoters, leading towards adaptation to psychosocial stress and homeostasis, but also as possible vulnerability factors for allostatic overload and non-adaptive reactions. Besides, the existence of allostasis buffering systems will be treated. Finally, we will suggest promising lines of future research, particularly the use of animal and cell culture models together with human studies by means of high-throughput multi-omics technologies, which could entangle the biochemical signature of resilience or stress-related illness, a considerably helpful facet for improving patients’ treatment and monitoring.

Keywords: Stressors, psychosocial stressors, neuroendocrine axis, inflammatory/redox patterns, stress coping, resilience, stress-related illness.

Graphical Abstract
[1]
Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 2016; 16(1): 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[2]
Kunz E. Henri Laborit and the inhibition of action. Dialogues Clin Neurosci 2014; 16(1): 113-7.
[http://dx.doi.org/10.31887/DCNS.2014.16.1/ekunz] [PMID: 24733976]
[3]
Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 2011; 7(11): e1002355.
[http://dx.doi.org/10.1371/journal.pgen.1002355] [PMID: 22072984]
[4]
Selye H. Stress without Distress Psychopathology of Human Adaptation. Boston, MA: Springer 1976.
[http://dx.doi.org/10.1007/978-1-4684-2238-2_9]
[5]
Sterling P, Eyer J. Allostasis: A new paradigm to explain arousal pathology Handbook of life stress, cognition and health. John Wiley & Sons 1988; pp. 629-49.
[6]
McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav 2003; 43(1): 2-15.
[http://dx.doi.org/10.1016/S0018-506X(02)00024-7] [PMID: 12614627]
[7]
Liu YZ, Wang YX, Jiang CL. Inflammation: The common pathway of stress-related diseases. Front Hum Neurosci 2017; 11: 316.
[http://dx.doi.org/10.3389/fnhum.2017.00316] [PMID: 28676747]
[8]
Rao R, Androulakis IP. Allostatic adaptation and personalized physiological trade-offs in the circadian regulation of the HPA axis: A mathematical modeling approach. Sci Rep 2019; 9(1): 11212.
[http://dx.doi.org/10.1038/s41598-019-47605-7] [PMID: 31371802]
[9]
Suri D, Vaidya VA. The adaptive and maladaptive continuum of stress responses - a hippocampal perspective. Rev Neurosci 2015; 26(4): 415-42.
[http://dx.doi.org/10.1515/revneuro-2014-0083] [PMID: 25915080]
[10]
de Girolamo G, Cerveri G, Clerici M, et al. Mental health in the coronavirus disease 2019 emergency-The Italian response. JAMA Psychiatry 2020; 77(9): 974-6.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.1276] [PMID: 32352480]
[11]
Cannon W. Organization for physiological homeostasis. Physiol Rev 1929; 9: 399-431.
[http://dx.doi.org/10.1152/physrev.1929.9.3.399]
[12]
Cooper SJ. From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite 2008; 51(3): 419-27.
[http://dx.doi.org/10.1016/j.appet.2008.06.005] [PMID: 18634840]
[13]
Sterling P. Allostasis: A model of predictive regulation. Physiol Behav 2012; 106(1): 5-15.
[http://dx.doi.org/10.1016/j.physbeh.2011.06.004] [PMID: 21684297]
[14]
Ramsay DS, Woods SC. Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev 2014; 121(2): 225-47.
[http://dx.doi.org/10.1037/a0035942] [PMID: 24730599]
[15]
Ramsey KM, Bass J. Circadian clocks in fuel harvesting and energy homeostasis. Cold Spring Harb Symp Quant Biol 2011; 76: 63-72.
[http://dx.doi.org/10.1101/sqb.2011.76.010546] [PMID: 21890641]
[16]
McEwen BS, Wingfield JC. What is in a name? Integrating homeostasis, allostasis and stress. Horm Behav 2010; 57(2): 105-11.
[http://dx.doi.org/10.1016/j.yhbeh.2009.09.011] [PMID: 19786032]
[17]
Tan SY, Yip A. Hans Selye (1907-1982): Founder of the stress theory. Singapore Med J 2018; 59(4): 170-1.
[http://dx.doi.org/10.11622/smedj.2018043] [PMID: 29748693]
[18]
McEwen BS. Neurobiological and systemic effects of chronic stress. Chronic Stress (Thousand Oaks) 2017; 1: 1-17.
[http://dx.doi.org/10.1177/2470547017692328] [PMID: 28856337]
[19]
Pfau ML, Russo SJ. peripheral and central mechanisms of stress resilience. Neurobiol Stress 2015; 1: 66-79.
[http://dx.doi.org/10.1016/j.ynstr.2014.09.004] [PMID: 25506605]
[20]
Karatsoreos IN, McEwen BS. Timing is everything: A collection on how clocks affect resilience in biological systems. F1000 Res 2014; 3: 273.
[http://dx.doi.org/10.12688/f1000research.5756.1] [PMID: 25580235]
[21]
Phan TX, Malkani RG. Sleep and circadian rhythm disruption and stress intersect in Alzheimer’s disease. Neurobiol Stress 2018; 10: 100133.
[http://dx.doi.org/10.1016/j.ynstr.2018.10.001] [PMID: 30937343]
[22]
Mohawk JA, Takahashi JS. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 2011; 34(7): 349-58.
[http://dx.doi.org/10.1016/j.tins.2011.05.003] [PMID: 21665298]
[23]
Cutolo M, Masi AT. Circadian rhythms and arthritis. Rheum Dis Clin North Am 2005; 31(1): 115-29. ix-x.
[http://dx.doi.org/10.1016/j.rdc.2004.09.005] [PMID: 15639059]
[24]
Tordjman S, Chokron S, Delorme R, et al. Melatonin: Pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 2017; 15(3): 434-43.
[http://dx.doi.org/10.2174/1570159X14666161228122115] [PMID: 28503116]
[25]
Betti L, Palego L, Demontis GC, Miraglia F, Giannaccini G. Hydroxyindole-O-methyltransferase (HIOMT) activity in the retina of melatonin-proficient mice. Heliyon 2019; 5(9): e02417.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02417] [PMID: 31687544]
[26]
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017; 18(3): 164-79.
[http://dx.doi.org/10.1038/nrg.2016.150] [PMID: 27990019]
[27]
Oster H, Challet E, Ott V, et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev 2017; 38(1): 3-45.
[http://dx.doi.org/10.1210/er.2015-1080] [PMID: 27749086]
[28]
Pfaff D, Ribeiro A, Matthews J, Kow LM. Concepts and mechanisms of generalized central nervous system arousal. Ann N Y Acad Sci 2008; 1129: 11-25.
[http://dx.doi.org/10.1196/annals.1417.019] [PMID: 18591465]
[29]
Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: Basic science and clinical implications. Curr Neuropharmacol 2008; 6(4): 367-78.
[http://dx.doi.org/10.2174/157015908787386050] [PMID: 19587857]
[30]
Kawamura H. Why the SCN influences the whole body: role of the hypothalamus and reticular activating system. Sleep Biol Rhythms 2009; 7: 224-5.
[http://dx.doi.org/10.1111/j.1479-8425.2009.00429.x]
[31]
Cameron HA, Schoenfeld TJ. Behavioral and structural adaptations to stress. Front Neuroendocrinol 2018; 49: 106-13.
[http://dx.doi.org/10.1016/j.yfrne.2018.02.002] [PMID: 29421158]
[32]
Lamb DH. On the distinction between physical and psychological stressors: Review of the evidence. Motiv Emot 1979; 3: 351-61.
[http://dx.doi.org/10.1007/BF00994160]
[33]
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front Behav Neurosci 2018; 12: 127.
[http://dx.doi.org/10.3389/fnbeh.2018.00127] [PMID: 30034327]
[34]
Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009; 10(6): 397-409.
[http://dx.doi.org/10.1038/nrn2647] [PMID: 19469025]
[35]
Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci 2009; 10(6): 459-66.
[http://dx.doi.org/10.1038/nrn2632] [PMID: 19339973]
[36]
Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci 2013; 14(9): 609-25.
[http://dx.doi.org/10.1038/nrn3381] [PMID: 23942470]
[37]
Heshmati M, Russo SJ. Anhedonia and the brain reward circuitry in depression. Curr Behav Neurosci Rep 2015; 2(3): 146-53.
[http://dx.doi.org/10.1007/s40473-015-0044-3] [PMID: 26525751]
[38]
Wood SK, Valentino RJ. The brain norepinephrine system, stress and cardiovascular vulnerability. Neurosci Biobehav Rev 2017; 74(Pt B): 393-400.
[http://dx.doi.org/10.1016/j.neubiorev.2016.04.018] [PMID: 27131968]
[39]
Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 2008; 583(2-3): 194-203.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.062] [PMID: 18255055]
[40]
Calogero AE, Gallucci WT, Chrousos GP, Gold PW. Catecholamine effects upon rat hypothalamic corticotropin-releasing hormone secretion in vitro. J Clin Invest 1988; 82(3): 839-46.
[http://dx.doi.org/10.1172/JCI113687] [PMID: 2901433]
[41]
Koolhaas JM, Bartolomucci A, Buwalda B, et al. Stress revisited: A critical evaluation of the stress concept. Neurosci Biobehav Rev 2011; 35(5): 1291-301.
[http://dx.doi.org/10.1016/j.neubiorev.2011.02.003] [PMID: 21316391]
[42]
Han KS, Kim L, Shim I. Stress and sleep disorder. Exp Neurobiol 2012; 21(4): 141-50.
[http://dx.doi.org/10.5607/en.2012.21.4.141] [PMID: 23319874]
[43]
Tank AW, Lee Wong D. Peripheral and central effects of circulating catecholamines. Compr Physiol 2015; 5(1): 1-15.
[PMID: 25589262]
[44]
McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ 2007; 71(4): 78.
[http://dx.doi.org/10.5688/aj710478] [PMID: 17786266]
[45]
Marik PE, Bellomo R. Stress hyperglycemia: An essential survival response! Crit Care 2013; 17: 5.
[http://dx.doi.org/10.1097/CCM.0b013e318283d124]
[46]
Shepherd PR, Kahn BB. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med 1999; 341(4): 248-57.
[http://dx.doi.org/10.1056/NEJM199907223410406] [PMID: 10413738]
[47]
Pacak K, Palkovits M, Yadid G, Kvetnansky R, Kopin IJ, Goldstein DS. Heterogeneous neurochemical responses to different stressors: A test of Selye’s doctrine of nonspecificity. Am J Physiol 1998; 275(4): R1247-55.
[PMID: 9756557]
[48]
Edwards SL, Anderson CR, Southwell BR, McAllen RM. Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience 1996; 70(3): 825-32.
[http://dx.doi.org/10.1016/S0306-4522(96)83019-3] [PMID: 9045092]
[49]
Joëls M, Hesen W, de Kloet ER. Long-term control of neuronal excitability by corticosteroid hormones. J Steroid Biochem Mol Biol 1995; 53(1-6): 315-23.
[http://dx.doi.org/10.1016/0960-0760(95)00069-C] [PMID: 7626473]
[50]
Lapiz-Bluhm MD. Impact of stress on prefrontal glutamatergic, monoaminergic and cannabinoid systems. Curr Top Behav Neurosci 2014; 18: 45-66.
[http://dx.doi.org/10.1007/7854_2014_331] [PMID: 25048388]
[51]
Teixeira RR, Díaz MM, Santos TV, et al. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives. PLoS One 2015; 10(3): e0119025.
[http://dx.doi.org/10.1371/journal.pone.0119025] [PMID: 25807003]
[52]
Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ. Learning under stress: how does it work? Trends Cogn Sci 2006; 10(4): 152-8.
[http://dx.doi.org/10.1016/j.tics.2006.02.002] [PMID: 16513410]
[53]
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000; 21(1): 55-89.
[PMID: 10696570]
[54]
Bauer AM, Quas JA, Boyce WT. Associations between physiological reactivity and children’s behavior: Advantages of a multisystem approach. J Dev Behav Pediatr 2002; 23(2): 102-13.
[http://dx.doi.org/10.1097/00004703-200204000-00007] [PMID: 11943973]
[55]
Amano M. Handbook of Hormones Comparative Endocrinology for Basic and Clinical Research. Academic Press: USA 2016; pp. 23-5.
[56]
Zhou JN, Fang H. Transcriptional regulation of corticotropin-releasing hormone gene in stress response. IBRO Rep 2018; 5: 137-46.
[http://dx.doi.org/10.1016/j.ibror.2018.08.003] [PMID: 30591954]
[57]
Jawahar MC, Murgatroyd C, Harrison EL, Baune BT. Epigenetic alterations following early postnatal stress: A review on novel aetiological mechanisms of common psychiatric disorders. Clin Epigenetics 2015; 7: 122.
[http://dx.doi.org/10.1186/s13148-015-0156-3] [PMID: 26583053]
[58]
de Kloet ER, Joëls M, Holsboer F. Stress and the brain: From adaptation to disease. Nat Rev Neurosci 2005; 6(6): 463-75.
[http://dx.doi.org/10.1038/nrn1683] [PMID: 15891777]
[59]
Neumann ID, Johnstone HA, Hatzinger M, et al. Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes. J Physiol 1998; 508(Pt 1): 289-300.
[http://dx.doi.org/10.1111/j.1469-7793.1998.289br.x] [PMID: 9490853]
[60]
Beurel E, Nemeroff CB. Interaction of stress, corticotropin-releasing factor, arginine vasopressin and behaviour. Curr Top Behav Neurosci 2014; 18: 67-80.
[http://dx.doi.org/10.1007/7854_2014_306] [PMID: 24659554]
[61]
Bartolomucci A. Social stress, immune functions and disease in rodents. Front Neuroendocrinol 2007; 28(1): 28-49.
[http://dx.doi.org/10.1016/j.yfrne.2007.02.001] [PMID: 17379284]
[62]
Webster Marketon JI, Glaser R. Stress hormones and immune function. Cell Immunol 2008; 252(1-2): 16-26.
[http://dx.doi.org/10.1016/j.cellimm.2007.09.006] [PMID: 18279846]
[63]
Herman JP, McKlveen JM, Ghosal S, et al. Regulation of the Hypothalamic-Pituitary-Adrenocortical stress response. Compr Physiol 2016; 6(2): 603-21.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[64]
Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM. Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 722-9.
[http://dx.doi.org/10.1016/j.pnpbp.2010.04.011] [PMID: 20406665]
[65]
Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci USA 2012; 109(16): 5995-9.
[http://dx.doi.org/10.1073/pnas.1118355109] [PMID: 22474371]
[66]
Raison CL, Lowry CA, Rook GA. Inflammation, sanitation, and consternation: Loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch Gen Psychiatry 2010; 67(12): 1211-24.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.161] [PMID: 21135322]
[67]
Guo H, Callaway JB, Ting JP. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21(7): 677-87.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[68]
Fleshner M, Frank M, Maier SF. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology 2017; 42(1): 36-45.
[http://dx.doi.org/10.1038/npp.2016.125] [PMID: 27412959]
[69]
Spiers JG, Chen HJ, Sernia C, Lavidis NA. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci 2015; 8: 456.
[http://dx.doi.org/10.3389/fnins.2014.00456] [PMID: 25646076]
[70]
Bartoli F, Burnstock G, Crocamo C, Carrà G. Purinergic signaling and related biomarkers in depression. Brain Sci 2020; 10(3): 160.
[http://dx.doi.org/10.3390/brainsci10030160] [PMID: 32178222]
[71]
Colaianna M, Schiavone S, Zotti M, et al. Neuroendocrine profile in a rat model of psychosocial stress: Relation to oxidative stress. Antioxid Redox Signal 2013; 18(12): 1385-99.
[http://dx.doi.org/10.1089/ars.2012.4569] [PMID: 23320850]
[72]
Resende R, Fernandes T, Pereira AC, et al. Mitochondria, endoplasmic reticulum and innate immune dysfunction in mood disorders: Do Mitochondria-Associated Membranes (MAMs) play a role? Biochim Biophys Acta Mol Basis Dis 2020; 1866(6): 165752.
[http://dx.doi.org/10.1016/j.bbadis.2020.165752] [PMID: 32119897]
[73]
Maslanik T, Mahaffey L, Tannura K, Beninson L, Greenwood BN, Fleshner M. The inflammasome and danger associated molecular patterns (DAMPs) are implicated in cytokine and chemokine responses following stressor exposure. Brain Behav Immun 2013; 28: 54-62.
[http://dx.doi.org/10.1016/j.bbi.2012.10.014] [PMID: 23103443]
[74]
Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci 2014; 15(2): 84-97.
[http://dx.doi.org/10.1038/nrn3638] [PMID: 24399084]
[75]
Iwata M, Ota KT, Li XY, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 Receptor. Biol Psychiatry 2016; 80(1): 12-22.
[http://dx.doi.org/10.1016/j.biopsych.2015.11.026] [PMID: 26831917]
[76]
Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464(7293): 1357-61.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[77]
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115(5): 1111-9.
[http://dx.doi.org/10.1172/JCI25102] [PMID: 15864338]
[78]
Marazziti D, Rutigliano G, Baroni S, Landi P, Dell’Osso L. The complex interaction among serotonin, insulin, leptin, and glycolipid metabolic parameters in human obesity. CNS Spectr 2020; 2020: 1-10.https://pubmed.ncbi.nlm.nih.gov/32921339/
[PMID: 32921339]
[79]
Palego L, Betti L, Rossi A, Giannaccini G. Tryptophan biochemistry: Structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids 2016; 2016: 8952520.
[http://dx.doi.org/10.1155/2016/8952520] [PMID: 26881063]
[80]
Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol Stress 2016; 4: 23-33.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.001] [PMID: 27981187]
[81]
Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017; 112(Pt B): 399-412.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.002]
[82]
Mazzoccoli G, Vendemiale G, La Viola M, et al. Circadian variations of cortisol, melatonin and lymphocyte subpopulations in geriatric age. Int J Immunopathol Pharmacol 2010; 23(1): 289-96.
[http://dx.doi.org/10.1177/039463201002300127] [PMID: 20378015]
[83]
Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM. Melatonin: Buffering the immune system. Int J Mol Sci 2013; 14(4): 8638-83.
[http://dx.doi.org/10.3390/ijms14048638] [PMID: 23609496]
[84]
Córdoba-Moreno MO, de Souza EDS, Quiles CL, et al. Rhythmic expression of the melatonergic biosynthetic pathway and its differential modulation in vitro by LPS and IL10 in bone marrow and spleen. Sci Rep 2020; 10(1): 4799.
[http://dx.doi.org/10.1038/s41598-020-61652-5] [PMID: 32179854]
[85]
Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015; 144(3): 365-73.
[http://dx.doi.org/10.1111/imm.12443] [PMID: 25580634]
[86]
Mommersteeg PMC, Heijnen CJ, Kavelaars A, van Doornen LJP. Immune and endocrine function in burnout syndrome. Psychosom Med 2006; 68(6): 879-86.
[http://dx.doi.org/10.1097/01.psy.0000239247.47581.0c] [PMID: 17079708]
[87]
Kim TD, Lee S, Yoon S. Inflammation in Post-Traumatic Stress Disorder (PTSD): A review of potential correlates of PTSD with a neurological perspective. Antioxidants 2020; 9(2): 107.
[http://dx.doi.org/10.3390/antiox9020107] [PMID: 31991875]
[88]
Kauer-Sant’Anna M, Kapczinski F, Vieta E. Epidemiology and management of anxiety in patients with bipolar disorder. CNS Drugs 2009; 23(11): 953-64.
[http://dx.doi.org/10.2165/11310850-000000000-00000] [PMID: 19845416]
[89]
Milaneschi Y, Lamers F, Peyrot WJ, et al. Polygenic dissection of major depression clinical heterogeneity. Mol Psychiatry 2016; 21(4): 516-22.
[http://dx.doi.org/10.1038/mp.2015.86] [PMID: 26122587]
[90]
Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 2016; 17(8): 497-511.
[http://dx.doi.org/10.1038/nrn.2016.69] [PMID: 27277867]
[91]
Lynch CJ, Gunning FM, Liston C. Causes and consequences of diagnostic heterogeneity in depression: Paths to discovering novel biological depression subtypes. 2020; 83(1): 83-94.
[http://dx.doi.org/10.1016/j.biopsych.2020.01.012]
[92]
Steffen A, Nübel J, Jacobi F, Bätzing J, Holstiege J. Mental and somatic comorbidity of depression: A comprehensive cross-sectional analysis of 202 diagnosis groups using German nationwide ambulatory claims data. BMC Psychiatry 2020; 20(1): 142.
[http://dx.doi.org/10.1186/s12888-020-02546-8] [PMID: 32228541]
[93]
Maes M, Kubera M, Obuchowiczwa E, Goehler L, Brzeszcz J. Depression’s multiple comorbidities explained by (neuro)inflam-matory and oxidative & nitrosative stress pathways. Neuroendocrinol Lett 2011; 32(1): 7-24.
[PMID: 21407167]
[94]
Irwin MR. Inflammation at the intersection of behavior and somatic symptoms. Psychiatr Clin North Am 2011; 34(3): 605-20.
[http://dx.doi.org/10.1016/j.psc.2011.05.005] [PMID: 21889682]
[95]
Kempuraj D, Selvakumar GP, Ahmed ME, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist 2020; 26(5-6): 402-14.
[http://dx.doi.org/10.1177/1073858420941476] [PMID: 32684080]
[96]
Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 2021; 17(1): 46-64.
[http://dx.doi.org/10.1038/s41581-020-00357-4] [PMID: 33077917]
[97]
Raony Í, de Figueiredo CS, Pandolfo P, Giestal-de-Araujo E, Oliveira-Silva Bomfim P, Savino W. Psycho-Neuroendocrine-Immune interactions in COVID-19: Potential impacts on mental health. Front Immunol 2020; 11: 1170.
[http://dx.doi.org/10.3389/fimmu.2020.01170] [PMID: 32574266]
[98]
Ozamiz-Etxebarria N, Dosil-Santamaria M, Picaza-Gorrochategui M, Idoiaga-Mondragon N. Stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain. Cad Saude Publica 2020; 36(4): e00054020.
[http://dx.doi.org/10.1590/0102-311x00054020] [PMID: 32374806]
[99]
Salari N, Hosseinian-Far A, Jalali R, et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Global Health 2020; 16(1): 57.
[http://dx.doi.org/10.1186/s12992-020-00589-w] [PMID: 32631403]
[100]
Guessoum SB, Lachal J, Radjack R, et al. Adolescent psychiatric disorders during the COVID-19 pandemic and lockdown. Psychiatry Res 2020; 291: 113264.
[http://dx.doi.org/10.1016/j.psychres.2020.113264] [PMID: 32622172]
[101]
Mehra A, Rani S, Sahoo S, et al. A crisis for elderly with mental disorders: Relapse of symptoms due to heightened anxiety due to COVID-19. Asian J Psychiatr 2020; 51: 102114.
[http://dx.doi.org/10.1016/j.ajp.2020.102114] [PMID: 32334406]
[102]
Zheng L, Miao M, Lim J, Li M, Nie S, Zhang X. Is lockdown bad for social anxiety in COVID-19 regions?: A national study in the SOR perspective. Int J Environ Res Public Health 2020; 17(12): 4561.
[http://dx.doi.org/10.3390/ijerph17124561] [PMID: 32599911]
[103]
Stein MB, Stein DJ. Social anxiety disorder. Lancet 2008; 371(9618): 1115-25.
[http://dx.doi.org/10.1016/S0140-6736(08)60488-2] [PMID: 18374843]
[104]
American Psychiatric Association (APA). Diagnostic and statistical manual of mental disorders. 5th ed. USA: Arlington 2013.
[105]
Kuckertz JM, Amir N. Cognitive biases in social anxiety disorderSocial anxiety: Clinical developmental, and social perspectives Hofmann SG. 3rd ed. New York: Academic Press 2014; pp. 483-510.
[http://dx.doi.org/10.1016/B978-0-12-394427-6.00016-9]
[106]
Lange WG, Allart E, Keijsers GPJ, Rinck M, Becker ES. A neutral face is not neutral even if you have not seen it: Social anxiety disorder and affective priming with facial expressions. Cogn Behav Ther 2012; 41(2): 108-18.
[http://dx.doi.org/10.1080/16506073.2012.666563] [PMID: 22428556]
[107]
Olivera-La Rosa A, Chuquichambi EG, Ingram GPD. Keep your (social) distance: Pathogen concerns and social perception in the time of COVID-19. Pers Individ Dif 2020; 166: 110200.
[http://dx.doi.org/10.1016/j.paid.2020.110200] [PMID: 32834278]
[108]
Xiong J, Lipsitz O, Nasri F, et al. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J Affect Disord 2020; 277: 55-64.
[http://dx.doi.org/10.1016/j.jad.2020.08.001] [PMID: 32799105]
[109]
Ghosal S, Sinha B, Majumder M, Misra A. Estimation of effects of nationwide lockdown for containing coronavirus infection on worsening of glycosylated haemoglobin and increase in diabetes-related complications: A simulation model using multivariate regression analysis. Diabetes Metab Syndr 2020; 14(4): 319-23.
[http://dx.doi.org/10.1016/j.dsx.2020.03.014] [PMID: 32298984]
[110]
Steardo L Jr, Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry 2020; 10(1): 261.
[http://dx.doi.org/10.1038/s41398-020-00949-5] [PMID: 32732883]
[111]
McEwen BS. A life-course, epigenetic perspective on resilience in brain and body. In: Stress Resilience, Molecular and Behavioral Aspects. Amsterdam: Academic Press, Elsevier Science B. V 2020; pp. 1-12.
[http://dx.doi.org/10.1016/B978-0-12-813983-7.00001-X]
[112]
Heinrichs M, von Dawans B, Domes G. Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol 2009; 30(4): 548-57.
[http://dx.doi.org/10.1016/j.yfrne.2009.05.005] [PMID: 19505497]
[113]
Masis-Calvo M, Schmidtner AK, de Moura Oliveira VE, Grossmann CP, de Jong TR, Neumann ID. Animal models of social stress: the dark side of social interactions. Stress 2018; 21(5): 417-32.
[http://dx.doi.org/10.1080/10253890.2018.1462327] [PMID: 29745275]
[114]
Engert V, Koester AM, Riepenhausen A, Singer T. Boosting recovery rather than buffering reactivity: Higher stress-induced oxytocin secretion is associated with increased cortisol reactivity and faster vagal recovery after acute psychosocial stress. Psychoneuroendocrinology 2016; 74: 111-20.
[http://dx.doi.org/10.1016/j.psyneuen.2016.08.029] [PMID: 27608360]
[115]
Meguro Y, Miyano K, Hirayama S, et al. Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. J Pharmacol Sci 2018; 137(1): 67-75.
[http://dx.doi.org/10.1016/j.jphs.2018.04.002] [PMID: 29716811]
[116]
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the neuropeptide Y system in stress-related psychiatric disorders. Neurobiol Stress 2015; 1: 33-43.
[http://dx.doi.org/10.1016/j.ynstr.2014.09.007] [PMID: 25506604]
[117]
Reichmann F, Holzer P, Neuropeptide Y. A stressful review. Neuropeptides 2016; 55: 99-109.
[http://dx.doi.org/10.1016/j.npep.2015.09.008] [PMID: 26441327]
[118]
Michaelson SD, Miranda Tapia AP, McKinty A, et al. Contribution of NPY Y5 receptors to the reversible structural remodeling of basolateral amygdala dendrites in male rats associated with NPY-mediated stress resilience. J Neurosci 2020; 40(16): 3231-49.
[http://dx.doi.org/10.1523/JNEUROSCI.2621-19.2020] [PMID: 32144180]
[119]
James WPT, Johnson RJ, Speakman JR, et al. Nutrition and its role in human evolution. J Intern Med 2019; 285(5): 533-49.
[http://dx.doi.org/10.1111/joim.12878] [PMID: 30772945]
[120]
Grafe LA, Bhatnagar S. Orexins and stress. Front Neuroendocrinol 2018; 51: 132-45.
[http://dx.doi.org/10.1016/j.yfrne.2018.06.003] [PMID: 29932958]
[121]
Taliaz D, Loya A, Gersner R, Haramati S, Chen A, Zangen A. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor. J Neurosci 2011; 31(12): 4475-83.
[http://dx.doi.org/10.1523/JNEUROSCI.5725-10.2011] [PMID: 21430148]
[122]
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 2018; 9: 44.
[http://dx.doi.org/10.3389/fpsyt.2018.00044] [PMID: 29593576]
[123]
Tetel MJ, de Vries GJ, Melcangi RC, Panzica G, O’Mahony SM. Steroids, stress and the gut microbiome-brain axis. J Neuroendocrinol 2018; 30(2): 10.
[http://dx.doi.org/10.1111/jne.12548] [PMID: 29024170]
[124]
Carpita B, Betti L, Palego L, et al. Plasma redox and inflammatory patterns during major depressive episodes: A cross-sectional investigation in elderly patients with mood disorders. CNS Spectr 2020; 2020: 1-11.
[http://dx.doi.org/10.1017/S1092852920001443] [PMID: 32423495]
[125]
Guilliams TG, Edwards L. Chronic stress and the HPA axis: Clinical assessment and therapeutic considerations. Point Institute of Nutraceutical Research 2010; 9: 1-12.
[126]
Pluchino N, Cubeddu A, Begliuomini S, et al. Daily variation of brain-derived neurotrophic factor and cortisol in women with normal menstrual cycles, undergoing oral contraception and in postmenopause. Hum Reprod 2009; 24(9): 2303-9.
[http://dx.doi.org/10.1093/humrep/dep119] [PMID: 19491202]
[127]
Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ. Neurobiology of resilience. Nat Neurosci 2012; 15(11): 1475-84.
[http://dx.doi.org/10.1038/nn.3234] [PMID: 23064380]
[128]
Cathomas F, Murrough JW, Nestler EJ, Han MH, Russo SJ. Neurobiology of resilience: Interface between mind and body. Biol Psychiatry 2019; 86(6): 410-20.
[http://dx.doi.org/10.1016/j.biopsych.2019.04.011] [PMID: 31178098]
[129]
Ganzel BL, Morris PA, Wethington E. Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychol Rev 2010; 117(1): 134-74.
[http://dx.doi.org/10.1037/a0017773] [PMID: 20063966]
[130]
Walker AJ, Kim Y, Price JB, et al. Stress, inflammation, and cellular vulnerability during early stages of affective disorders: biomarker strategies and opportunities for prevention and intervention. Front Psychiatry 2014; 5: 34.
[http://dx.doi.org/10.3389/fpsyt.2014.00034] [PMID: 24782789]
[131]
Shao W, Fan S, Lei Y, et al. Metabolomic identification of molecular changes associated with stress resilience in the chronic mild stress rat model of depression. Metabolomics 2013; 9: 433-43.
[http://dx.doi.org/10.1007/s11306-012-0460-2]
[132]
Shao WH, Chen JJ, Fan SH, et al. Combined metabolomics and proteomics analysis of major depression in an animal model: perturbed energy metabolism in the chronic mild stressed rat cerebellum. OMICS 2015; 19(7): 383-92.
[http://dx.doi.org/10.1089/omi.2014.0164] [PMID: 26134254]
[133]
Martins-de-Souza D. Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder. Dialogues Clin Neurosci 2014; 16(1): 63-73.
[http://dx.doi.org/10.31887/DCNS.2014.16.1/dmartins] [PMID: 24733971]
[134]
Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci 2009; 10(6): 446-57.
[http://dx.doi.org/10.1038/nrn2649] [PMID: 19455174]
[135]
Amare AT, Schubert KO, Klingler-Hoffmann M, Cohen-Woods S, Baune BT. The genetic overlap between mood disorders and cardiometabolic diseases: A systematic review of genome wide and candidate gene studies. Transl Psychiatry 2017; 7(1): e1007.
[http://dx.doi.org/10.1038/tp.2016.261] [PMID: 28117839]
[136]
Coleman JRI, Gaspar HA, Bryois J, Breen G. Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Breen G. The genetics of the mood disorder spectrum: Genome-wide association analyses of more than 185,000 cases and 439,000 controls. Biol Psychiatry 2020; 88(2): 169-84.
[http://dx.doi.org/10.1016/j.biopsych.2019.10.015] [PMID: 31926635]
[137]
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol 2017; 18(1): 83.
[http://dx.doi.org/10.1186/s13059-017-1215-1] [PMID: 28476144]
[138]
Chen R, Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med 2013; 5(1): 73-82.
[http://dx.doi.org/10.1002/wsbm.1198] [PMID: 23184638]
[139]
Palagini L, Gemignani A, Banti S, Manconi M, Mauri M, Riemann D. Chronic sleep loss during pregnancy as a determinant of stress: impact on pregnancy outcome. Sleep Med 2014; 15(8): 853-9.
[http://dx.doi.org/10.1016/j.sleep.2014.02.013] [PMID: 24994566]
[140]
Howell BR, Sanchez MM. Understanding behavioral effects of early life stress using the reactive scope and allostatic load models. In: Dev Psychopathol. 2011; 23: pp. (4)1001-6.
[http://dx.doi.org/10.1017/S0954579411000460] [PMID: 22018078]
[141]
Novais A, Monteiro S, Roque S, Correia-Neves M, Sousa N. How age, sex and genotype shape the stress response. Neurobiol Stress 2016; 6: 44-56.
[http://dx.doi.org/10.1016/j.ynstr.2016.11.004] [PMID: 28229108]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy