Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Emerging Need of Today: Significant Utilization of Various Databases and Softwares in Drug Design and Development

Author(s): Neema Bisht*, Archana N. Sah, Sandeep Bisht and Himanshu Joshi

Volume 21, Issue 8, 2021

Published on: 14 December, 2020

Page: [1025 - 1032] Pages: 8

DOI: 10.2174/1389557520666201214101329

Price: $65

Open Access Journals Promotions 2
Abstract

In drug discovery, in silico methods have become a very important part of the process. These approaches impact the entire development process by discovering and identifying new target proteins as well as designing potential ligands with a significant reduction of time and cost. Furthermore, in silico approaches are also preferred because of reduction in the experimental use of animals as; in vivo testing for safer drug design and repositioning of known drugs. Novel software-based discovery and development such as direct/indirect drug design, molecular modelling, docking, screening, drug-receptor interaction, and molecular simulation studies are very important tools for the predictions of ligand-target interaction pattern, pharmacodynamics as well as pharmacokinetic properties of ligands. On the other part, the computational approaches can be numerous, requiring interdisciplinary studies and the application of advanced computer technology to design effective and commercially feasible drugs. This review mainly focuses on the various databases and software used in drug design and development to speed up the process.

Keywords: In silico methods, Drug development process, computational approaches, potential ligands, interaction studies, softwares and databases.

Graphical Abstract
[1]
Dutta, S.; Sachann, K. Computer-aided drug design-a new approach in drug design and discovery. Int. J. Pharm. Sci. Rev. Res., 2017, 4, 146-151.
[2]
Seidel, T.; Schuetz, D.A.; Garon, A.; Langer, T. The pharmacophore concept and its applications in computer-aided drug design. Prog. Chem. Org. Nat. Prod., 2019, 110, 99-141.
[http://dx.doi.org/10.1007/978-3-030-14632-0_4] [PMID: 31621012]
[3]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future challenges. Proteins: Struct. Funct. Bioinf, 2006, 65, 115.
[4]
Taft, C.A.; Silva, C.H. Invited international review: Cancer and aids, new trends in drug design and chemotherapy. Curr Comput-Aided Drug Des, 2006, 2, 307.
[http://dx.doi.org/10.2174/157340906778226382]
[5]
Imam, S.S.; Gilani, S.J. Computer aided drug design: A novel loom to drug discovery. Org. Med. Chem. IJ, 2017, 1, 1-6.
[6]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[http://dx.doi.org/10.1038/nrd1032] [PMID: 12612645]
[7]
Silva, C.H.; Taft, C.A. ADMET properties, database screening, molecular dynamics, density functional, and docking studies of novel potential anti-cancer compounds. J. Biomol. Struct. Dyn., 2006, 24(3), 263-268.
[http://dx.doi.org/10.1080/07391102.2006.10507118] [PMID: 17054384]
[8]
Baldi, A. Computational approaches for drug design and discovery: An overview. Drug Des. Discov., 2010, 1, 99-105.
[9]
Fujita, T.; Nishioka, T.; Nakajima, M. Hydrogen-bonding parameter and its significance in quantitative structure––activity studies. J. Med. Chem., 1977, 20(8), 1071-1081.
[http://dx.doi.org/10.1021/jm00218a017] [PMID: 894678]
[10]
Fujita, T. Steric effects in quantitative structure activity relationships. Pure Appl. Chem., 1978, 50, 987-994.
[http://dx.doi.org/10.1351/pac197850090987]
[11]
Ekins, S.; Waller, C.L.; Swaan, P.W.; Cruciani, G.; Wrighton, S.A.; Wikel, J.H. Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 251-272.
[http://dx.doi.org/10.1016/S1056-8719(00)00109-X] [PMID: 11274894]
[12]
Basith, S.; Cui, M.; Macalino, S.J.Y.; Park, J.; Clavio, N.A.B.; Kang, S.; Choi, S. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: Impact on rational drug design. Front. Pharmacol., 2018, 9, 128.
[http://dx.doi.org/10.3389/fphar.2018.00128] [PMID: 29593527]
[25]
Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res., 2008, 36(Database issue)(Suppl. 1), D684-D688.
[PMID: 18084021]
[26]
Warr, W.A. Representation of chemical structures. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(4), 557-579.
[http://dx.doi.org/10.1002/wcms.36]
[34]
Inaoka, D.K.; Iida, M.; Tabuchi, T.; Honma, T.; Lee, N.; Hashimoto, S.; Matsuoka, S.; Kuranaga, T.; Sato, K.; Shiba, T.; Sakamoto, K.; Balogun, E.O.; Suzuki, S.; Nara, T.; Rocha, J.R.; Montanari, C.A.; Tanaka, A.; Inoue, M.; Kita, K.; Harada, S. The open form inducer approach for structure-based drug design. PLoS One, 2016, 11(11)e0167078
[http://dx.doi.org/10.1371/journal.pone.0167078] [PMID: 27893848]
[44]
Nadendla, R.R. Molecular modeling: A powerful tool for drug design and molecular docking. Resonance, 2004, 9(5), 51-60.
[http://dx.doi.org/10.1007/BF02834015]
[45]
Vanommeslaeghe, K; MacKerell, AD Jr CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochim. Biophys. Acta. (BBA)-General Subjects,, 2015, 861-871.
[48]
Pissurlenkar, RR.; Shaikh, MS.; Iyer, RP.; Coutinho, EC. Molecular mechanics force fields and their applications in drug design. Antiinfect. Agents Med. Chem., 2009, 8(2), 128-150.
[52]
Krieger, E.; Nabuurs, S.B.; Vriend, G. Homology modeling. Methods Biochem. Anal., 2003, 44, 509-523.
[PMID: 12647402]
[59]
Jiang, M.; Li, Z.; Bian, Y.; Wei, Z. A novel protein descriptor for the prediction of drug binding sites. BMC Bioinformatics, 2019, 20(1), 478.
[http://dx.doi.org/10.1186/s12859-019-3058-0] [PMID: 31533611]
[69]
Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
[76]
Sakakibara, Y.; Hachiya, T.; Uchida, M.; Nagamine, N.; Sugawara, Y.; Yokota, M.; Nakamura, M.; Popendorf, K.; Komori, T.; Sato, K. COPICAT: A software system for predicting interactions between proteins and chemical compounds. Bioinformatics, 2012, 28(5), 745-746.
[http://dx.doi.org/10.1093/bioinformatics/bts031] [PMID: 22257668]
[77]
Lage, O.M.; Ramos, M.C.; Calisto, R.; Almeida, E.; Vasconcelos, V.; Vicente, F. Current screening methodologies in drug discovery for selected human diseases. Mar. Drugs, 2018, 16(8), 279.
[http://dx.doi.org/10.3390/md16080279] [PMID: 30110923]
[83]
Peón, A.; Naulaerts, S.; Ballester, P.J. Predicting the reliability of drug-target interaction predictions with maximum coverage of target space. Sci. Rep., 2017, 7(1), 3820.
[http://dx.doi.org/10.1038/s41598-017-04264-w] [PMID: 28630414]
[84]
Rey, J.; Rasolohery, I.; Tufféry, P.; Guyon, F.; Moroy, G. PatchSearch: A web server for off-target protein identification. Nucleic Acids Res., 2019, 47(W1), W365-W372.
[http://dx.doi.org/10.1093/nar/gkz478] [PMID: 31131411]
[89]
Peris, E.; Crabtree, R.H. Key factors in pincer ligand design. Chem. Soc. Rev., 2018, 47(6), 1959-1968.
[http://dx.doi.org/10.1039/C7CS00693D] [PMID: 29431828]
[90]
Pardo, E.; Ruiz-García, R.; Cano, J.; Ottenwaelder, X.; Lescouëzec, R.; Journaux, Y.; Lloret, F.; Julve, M. Ligand design for multidimensional magnetic materials: A metallosupramolecular perspective. Dalton Trans., 2008, (21), 2780-2805.
[http://dx.doi.org/10.1039/b801222a] [PMID: 18478138]
[92]
Moriaud, F.; Henry, T.; Adcock, S.A.; Vorotynsev, A.M.; Martin, L.; Doppelt, O.; De Brevern, A.G.; Delfaud, F. A computational protocol to fragment-based drug design at PDB scale. Chem. Cent. J., 2008, 2(S1), S6.
[http://dx.doi.org/10.1186/1752-153X-2-S1-S6]
[98]
Mobley, D.L.; Gilson, M.K. Predicting binding free energies: Frontiers and benchmarks. Annu. Rev. Biophys., 2017, 46, 531-558.
[http://dx.doi.org/10.1146/annurev-biophys-070816-033654] [PMID: 28399632]
[99]
Guedes, I.A.; Pereira, F.S.S.; Dardenne, L.E. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges. Front. Pharmacol., 2018, 9, 1089.
[http://dx.doi.org/10.3389/fphar.2018.01089] [PMID: 30319422]
[100]
Durrant, J.D.; McCammon, J.A.N.N. NNScore: A neural-network-based scoring function for the characterization of protein-ligand complexes. J. Chem. Inf. Model., 2010, 50(10), 1865-1871.
[http://dx.doi.org/10.1021/ci100244v] [PMID: 20845954]
[104]
Cronin, M.T. Quantitative structure–activity relationships (QSARs)–applications and methodology; Rec. Adv. QSAR Stud, 2010, pp. 3-11.
[113]
Runfola, M.; Gul, S. The importance of characterizing chemical starting points of drugs using appropriate in vitro ADME-toxicity assays. Drug Target Rev., 2019, 5(1), 16-18.
[119]
Song, C.M.; Lim, S.J.; Tong, J.C. Recent advances in computer-aided drug design. Brief. Bioinform., 2009, 10(5), 579-591.
[http://dx.doi.org/10.1093/bib/bbp023] [PMID: 19433475]
[120]
Gertig, C.; Kai, L.; Andre, B. Computer-aided molecular and processes design based on quantum chemistry: Current status and future prospects. Curr. Opin. Chem. Eng., 2020, 27, 89-97.
[http://dx.doi.org/10.1016/j.coche.2019.11.007]
[121]
Carta, G.; Onnis, V.; Knox, A.J.; Fayne, D.; Lloyd, D.G. Permuting input for more effective sampling of 3D conformer space. J. Comput. Aided Mol. Des., 2006, 20(3), 179-190.
[http://dx.doi.org/10.1007/s10822-006-9044-4] [PMID: 16841235]
[122]
Kerns, E.H. Drug-like properties: Concepts, structure design and methods: From ADME to toxicity optimization. Int. J. Pharm. Res., 2008, 3, 56.
[123]
Laoui, A.; Polyakov, V.R. Web services as applications’ integration tool: QikProp case study. J. Comput. Chem., 2011, 32(9), 1944-1951.
[http://dx.doi.org/10.1002/jcc.21778] [PMID: 21455963]
[124]
Martin, Y.C. Challenges and prospects for computational aids to molecular diversity. Perspect. Drug Discov. Des., 1997, 7, 159-172.
[125]
Finn, P.W. Cheminformatics in the identification of drug classes for the treatment of type 2 diabetes. Methods Mol. Biol., 2020, 2076, 71-84.
[http://dx.doi.org/10.1007/978-1-4939-9882-1_4] [PMID: 31586322]
[126]
Chen, W.L. Chemoinformatics: Past, present, and future. J. Chem. Inf. Model., 2006, 46(6), 2230-2255.
[http://dx.doi.org/10.1021/ci060016u] [PMID: 17125167]
[127]
Van Drie, J.H. Computer-aided drug design: The next 20 years. J. Comput. Aided Mol. Des., 2007, 21(10-11), 591-601.
[http://dx.doi.org/10.1007/s10822-007-9142-y] [PMID: 17989929]
[128]
Kore, P.P.; Mutha, M.M.; Antre, R.V.; Oswal, R.J.; Kshirsagar, S.S. Computer-aided drug design: An innovative tool for modelling. Open J. Med. Chem., 2012, 2, 139-148.
[http://dx.doi.org/10.4236/ojmc.2012.24017]
[130]
Dineshkumar, B.; Kumar, P.V.; Bhuvaneshwaran, S.P.; Mitra, A. Advanced drug designing softwares and their applications in medical research. Int. J. Pharm. Pharm. Sci., 2010, 2(3), 16-18.
[132]
Roy, S.; Coldren, C.; Karunamurthy, A.; Kip, N.S.; Klee, E.W.; Lincoln, S.E.; Leon, A.; Pullambhatla, M.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Wang, C.; Carter, A.B. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: A joint recommendation of the association for molecular pathology and the college of american pathologists. J. Mol. Diagn., 2018, 20(1), 4-27.
[http://dx.doi.org/10.1016/j.jmoldx.2017.11.003] [PMID: 29154853]
[134]
Shehadi, I.A.; Rashdan, H.R.M.; Abdelmonsef, A.H. Homology modeling and virtual screening studies of antigen MLAA-42 protein: Identification of novel drug candidates against leukemia-An in silico approach. Comput. Math. Methods Med., 2020, 20208196147
[http://dx.doi.org/10.1155/2020/8196147] [PMID: 32256683]
[136]
Bunin, B.A.; Siesel, B.; Morales, G.A.; Bajorath, J. Chemoinformatics: Theory; Practice, & Products, 2007, pp. 51-269.
[138]
Begam, B.F.; Kumar, J.S. A study on cheminformatics and its applications on modern drug discovery. Procedia Eng., 2012, 38, 1264-1275.
[http://dx.doi.org/10.1016/j.proeng.2012.06.156]
[140]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[142]
Nayeem, A.; Sitkoff, D.; Krystek, S. Jr A comparative study of available software for high-accuracy homology modeling: From sequence alignments to structural models. Protein Sci., 2006, 15(4), 808-824.
[http://dx.doi.org/10.1110/ps.051892906] [PMID: 16600967]
[144]
Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem., 2013, 113(18), 2110-2142.
[http://dx.doi.org/10.1002/qua.24481]
[146]
Corbeil, C.R.; Englebienne, P.; Moitessier, N. Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J. Chem. Inf. Model., 2007, 47(2), 435-449.
[http://dx.doi.org/10.1021/ci6002637] [PMID: 17305329]
[148]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Molecular docking simulations with ArgusLab. Methods Mol. Biol., 2019, 2053, 203-220.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_13]
[149]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[150]
Bharath, E.N.; Manjula, S.N.; Vijaychand, A. In silico drug design tool for overcoming the innovation deficit in the drug discovery process. Int. J. Pharm. Pharm. Sci., 2011, 3, 1-5.
[151]
Sisodiya, D.; Pandey, P.; Dashora, K. Drug designing softwares and their applications in new drug discovery. J. Pharm. Res., 2012, 5, 124-126.
[152]
Acharya, C.; Coop, A.; Polli, J.E.; Mackerell, A.D., Jr Recent advances in ligand-based drug design: Relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des, 2011, 7(1), 10-22.
[http://dx.doi.org/10.2174/157340911793743547] [PMID: 20807187]
[153]
Lin, S.K. Pharmacophore perception, development and use in drug design. Molecules, 2000, 5(7), 987-989.
[http://dx.doi.org/10.3390/50700987]
[154]
Sutter, J.; Li, J.; Maynard, A.J.; Goupil, A.; Luu, T.; Nadassy, K. New features that improve the pharmacophore tools from Accelrys. Curr. Comput. Aided Drug Des., 2011, 7(3), 173-180.
[http://dx.doi.org/10.2174/157340911796504305] [PMID: 21726193]
[155]
Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact., 2008, 171(2), 165-176.
[http://dx.doi.org/10.1016/j.cbi.2006.12.006] [PMID: 17229415]
[156]
Liao, C.; Sitzmann, M.; Pugliese, A.; Nicklaus, M.C. Software and resources for computational medicinal chemistry. Future Med. Chem., 2011, 3(8), 1057-1085.
[http://dx.doi.org/10.4155/fmc.11.63] [PMID: 21707404]
[157]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[158]
Hoque, I.; Chatterjee, A.; Bhattacharya, S.; Biswas, R. An approach of computer-aided drug design (CADD) tools for in silico pharmaceutical drug design and development. Int. J. Adv. Res. Boil. Sci., 2017, 4, 60-71.
[http://dx.doi.org/10.22192/ijarbs.2017.04.02.009]
[159]
Veselovsky, A.V.; Ivanov, A.S. Strategy of computer-aided drug design. Curr. Drug Targets Infect. Disord., 2003, 33-40.
[160]
Joseph, T.L.; Namasivayam, V.; Poongavanam, V.; Kannan, S. In silico approaches for drug discovery and development. Int. J. Biosci., 2017, 3, 3-74.
[161]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[162]
Talele, T.T.; Khedkar, S.A.; Rigby, A.C. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141.
[http://dx.doi.org/10.2174/156802610790232251] [PMID: 19929824]
[163]
Meek, P.J.; Liu, Z.; Tian, L.; Wang, C.Y.; Welsh, W.J.; Zauhar, R.J. Shape signatures: Speeding up computer aided drug discovery. Drug Discov. Today, 2006, 11(19-20), 895-904.
[http://dx.doi.org/10.1016/j.drudis.2006.08.014] [PMID: 16997139]
[164]
Alejandra, H.S.; Aldo, Y.T.; Victor, A.; Hector, V.C.; Claudia, M.B. Protein-protein and protein-ligand docking. Intech. Open Sci. Open Minds, 2013, 3, 64-81.
[165]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[166]
Tang, Y.; Zhu, W.; Chen, K.; Jiang, H. New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery. Drug Discov. Today. Technol., 2006, 3(3), 307-313.
[http://dx.doi.org/10.1016/j.ddtec.2006.09.004] [PMID: 24980533]
[167]
Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.F.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop prediction. Proteins, 2004, 55(2), 351-367.
[http://dx.doi.org/10.1002/prot.10613] [PMID: 15048827]
[168]
Zhang, S. Computer-aided drug discovery and development. Methods Mol. Biol., 2011, 716, 23-38.
[http://dx.doi.org/10.1007/978-1-61779-012-6_2] [PMID: 21318898]
[169]
Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem., 2013, 113, 2110-2142.
[http://dx.doi.org/10.1002/qua.24481]
[170]
Clark, D.E. What has computer-aided molecular design ever done for drug discovery? Expert Opin. Drug Discov., 2006, 1(2), 103-110.
[http://dx.doi.org/10.1517/17460441.1.2.103] [PMID: 23495794]
[171]
Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12, 2694-2718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[172]
Buchan, D.W.; Ward, S.M.; Lobley, A.E.; Nugent, T.C.; Bryson, K.; Jones, D.T. Protein annotation and modelling servers at University College London. Nucleic Acids Res, 2010, 38((Web Server issue), W563-8.)
[http://dx.doi.org/10.1093/nar/gkq427] [PMID: 20507913]
[173]
Rahman, M.M.; Karim, M.R.; Ahsan, M.Q.; Khalipha, A.B.R.; Chowdhury, M.R.; Saifuzzaman, M. Use of computer in drug design and drug discovery: A review. Int. J. Pharm. Life Sci., 2012, 11-21.
[174]
Prasad, G.J.; Mahavir, H.G.; Balaji, R.A. Software based approaches for drug designing and development: A systematic review on commonly used software and its applications. Bull. Fac. Pharm. Cairo Univ., 2017, 55(2), 203-210.
[http://dx.doi.org/10.1016/j.bfopcu.2017.10.001]
[175]
Ou-Yang, S.S.; Lu, J.Y.; Kong, X.Q.; Liang, Z.J.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 33(9), 1131-1140.
[http://dx.doi.org/10.1038/aps.2012.109] [PMID: 22922346]
[176]
Loving, K.; Salam, N.K.; Sherman, W. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J. Comput. Aided Mol. Des., 2009, 23(8), 541-554.
[http://dx.doi.org/10.1007/s10822-009-9268-1] [PMID: 19421721]
[177]
Kalyaanamoorthy, S.; Chen, Y.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy