Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health

Author(s): Tsun-Thai Chai*, Kah-Yaw Ee, D. Thirumal Kumar, Fazilah Abd Manan and Fai-Chu Wong

Volume 28, Issue 6, 2021

Published on: 11 December, 2020

Page: [623 - 642] Pages: 20

DOI: 10.2174/0929866527999201211195936

Price: $65

Open Access Journals Promotions 2
Abstract

Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.

Keywords: Anticancer, antidiabetic, antimicrobial, antioxidant, bioactive peptide, molecular docking.

Graphical Abstract
[1]
Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol., 2019, 56(2), 535-547.
[http://dx.doi.org/10.1007/s13197-018-3549-4] [PMID: 30906011]
[2]
Chai, T.-T.; Law, Y.-C.; Wong, F.-C.; Kim, S.-K. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: a review. Mar. Drugs, 2017, 15(2), 42.
[http://dx.doi.org/10.3390/md15020042] [PMID: 28212329]
[3]
Wong, F.-C.; Xiao, J.; Wang, S.; Ee, K.-Y.; Chai, T.-T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol., 2020, 99, 44-57.
[http://dx.doi.org/10.1016/j.tifs.2020.02.012]
[4]
Sánchez, A.; Vázquez, A. Bioactive peptides: a review. Food Quality and Safety, 2017, 1(1), 29-46.
[http://dx.doi.org/10.1093/fqs/fyx006]
[5]
Sarabandi, K.; Gharehbeglou, P.; Jafari, S.M. Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Dry. Technol., 2020, 38(5-6), 577-595.
[http://dx.doi.org/10.1080/07373937.2019.1689399]
[6]
Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: a review. Peptides, 2010, 31(10), 1949-1956.
[http://dx.doi.org/10.1016/j.peptides.2010.06.020] [PMID: 20600423]
[7]
Priya, S. Therapeutic perspectives of food bioactive peptides: a mini review. Protein Pept. Lett., 2019, 26(9), 664-675.
[http://dx.doi.org/10.2174/0929866526666190617092140] [PMID: 31215368]
[8]
Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients, 2018, 10(11), 1738.
[http://dx.doi.org/10.3390/nu10111738] [PMID: 30424533]
[9]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[10]
de la Torre, B.G.; Albericio, F. Peptide therapeutics 2.0. Molecules, 2020, 25(10)
[http://dx.doi.org/10.3390/molecules25102293] [PMID: 32414106]
[11]
Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci., 2019, 20(23), 5978.
[http://dx.doi.org/10.3390/ijms20235978] [PMID: 31783634]
[12]
Feng, L.; Peng, F.; Wang, X.; Li, M.; Lei, H.; Xu, H. Identification and characterization of antioxidative peptides derived from simulated in vitro gastrointestinal digestion of walnut meal proteins. Food Res. Int., 2019, 116, 518-526.
[http://dx.doi.org/10.1016/j.foodres.2018.08.068] [PMID: 30716976]
[13]
Jiang, Y.; Zhao, D.; Sun, J.; Luo, X.; Li, H.; Sun, X.; Zheng, F. Analysis of antioxidant effect of two tripeptides isolated from fermented grains (Jiupei) and the antioxidative interaction with 4-methylguaiacol, 4-ethylguaiacol, and vanillin. Food Sci. Nutr., 2019, 7(7), 2391-2403.
[http://dx.doi.org/10.1002/fsn3.1100] [PMID: 31367368]
[14]
Wu, J.; Sun, B.; Luo, X.; Zhao, M.; Zheng, F.; Sun, J.; Li, H.; Sun, X.; Huang, M. Cytoprotective effects of a tripeptide from Chinese Baijiu against AAPH-induced oxidative stress in HepG2 cells via Nrf2 signaling. RSC Advances, 2018, 8(20), 10898-10906.
[http://dx.doi.org/10.1039/C8RA01162A]
[15]
Rogozhin, E.A.; Slezina, M.P.; Slavokhotova, A.A.; Istomina, E.A.; Korostyleva, T.V.; Smirnov, A.N.; Grishin, E.V.; Egorov, T.A.; Odintsova, T.I. A novel antifungal peptide from leaves of the weed Stellaria media L. Biochimie, 2015, 116, 125-132.
[http://dx.doi.org/10.1016/j.biochi.2015.07.014] [PMID: 26196691]
[16]
Bakare, O.O.; Fadaka, A.O.; Klein, A.; Pretorius, A. Dietary effects of antimicrobial peptides in therapeutics. All Life, 2020, 13(1), 78-91.
[http://dx.doi.org/10.1080/26895293.2020.1726826]
[17]
Karkouch, I.; Tabbene, O.; Gharbi, D.; Ben Mlouka, M.A.; Elkahoui, S.; Rihouey, C.; Coquet, L.; Cosette, P.; Jouenne, T.; Limam, F. Antioxidant, antityrosinase and antibiofilm activities of synthesized peptides derived from Vicia faba protein hydrolysate: a powerful agents in cosmetic application. Ind. Crops Prod., 2017, 109, 310-319.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.025]
[18]
Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; Camp, J.V.; Alasalvar, C.; Ismail, A.B.; Elmore, S.; Birch, G.G.; Charalampopoulos, D.; Astley, S.B.; Pegg, R.; Zhou, P.; Finglas, P. Antioxidant activity, total phenolics and flavonoids contents: should we ban in vitro screening methods? Food Chem., 2018, 264, 471-475.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.012] [PMID: 29853403]
[19]
Lammi, C.; Bollati, C.; Ferruzza, S.; Ranaldi, G.; Sambuy, Y.; Arnoldi, A. Soybean- and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum. Nutrients, 2018, 10(8), 1082.
[http://dx.doi.org/10.3390/nu10081082] [PMID: 30104520]
[20]
Mojica, L.; de Mejía, E.G. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct., 2016, 7(2), 713-727.
[http://dx.doi.org/10.1039/C5FO01204J] [PMID: 26824775]
[21]
Ngoh, Y-Y.; Tye, G.J.; Gan, C-Y. The investigation of α-amylase inhibitory activity of selected Pinto bean peptides via preclinical study using AR42J cell. J. Funct. Foods, 2017, 35, 641-647.
[http://dx.doi.org/10.1016/j.jff.2017.06.037]
[22]
Chai, T-T.; Xiao, J.; Mohana Dass, S.; Teoh, J-Y.; Ee, K-Y.; Ng, W-J.; Wong, F-C. Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chem., 2020, 340(1), 127876.
[http://dx.doi.org/10.1016/j.foodchem.2020.127876] [PMID: 32871354]
[23]
Chai, T.-T.; Soo, Z.-Y.; Hsu, K.-C.; Li, J.-C.; Abd Manan, F.; Wong, F.-C. Antioxidant activity of semen cassiae protein hydrolysate: Thermal and gastrointestinal stability, peptide identification, and in silico analysis. Xiandai Shipin Keji, 2019, 35(9), 38-48.
[24]
Sun, C.; Tang, X.; Ren, Y.; Wang, E.; Shi, L.; Wu, X.; Wu, H. Novel antioxidant peptides purified from mulberry (Morus atropurpurea Roxb.) leaf protein hydrolysates with hemolysis inhibition ability and cellular antioxidant activity. J. Agric. Food Chem., 2019, 67(27), 7650-7659.
[http://dx.doi.org/10.1021/acs.jafc.9b01115] [PMID: 31241944]
[25]
Wang, J.; Du, K.; Fang, L.; Liu, C.; Min, W.; Liu, J. Evaluation of the antidiabetic activity of hydrolyzed peptides derived from Juglans mandshurica Maxim. fruits in insulin-resistant HepG2 cells and type 2 diabetic mice. J. Food Biochem., 2018, 42(3), e12518.
[http://dx.doi.org/10.1111/jfbc.12518]
[26]
Mäkinen, S.; Streng, T.; Larsen, L.B.; Laine, A.; Pihlanto, A. Angiotensin I-converting enzyme inhibitory and antihypertensive properties of potato and rapeseed protein-derived peptides. J. Funct. Foods, 2016, 25, 160-173.
[http://dx.doi.org/10.1016/j.jff.2016.05.016]
[27]
Zheng, Y.; Li, Y.; Zhang, Y.; Ruan, X.; Zhang, R. Purification, characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. J. Funct. Foods, 2017, 28, 48-58.
[http://dx.doi.org/10.1016/j.jff.2016.11.021]
[28]
Chai, T.-T.; Ang, S.-Y.; Goh, K.; Lee, Y.-H.; Ngoo, J.-M.; Teh, L.-K.; Wong, F.-C. Trypsin-hydrolyzed corn silk proteins: antioxidant activities, in vitro gastrointestinal and thermal stability, and hematoprotective effects. eFood, 2020, 1(2), 156-164.
[29]
Görgüç, A.; Gençdağ, E.; Yılmaz, F.M. Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments - A review. Food Res. Int., 2020, 136, 109504.
[http://dx.doi.org/10.1016/j.foodres.2020.109504] [PMID: 32846583]
[30]
Sarethy, I.P. Plant peptides: bioactivity, opportunities and challenges. Protein Pept. Lett., 2017, 24(2), 102-108.
[http://dx.doi.org/10.2174/0929866523666161220113632] [PMID: 28000568]
[31]
Zhang, Q.; Tong, X.; Li, Y.; Wang, H.; Wang, Z.; Qi, B.; Sui, X.; Jiang, L. Purification and characterization of antioxidant peptides from alcalase-hydrolyzed soybean (Glycine max L.) hydrolysate and their cytoprotective effects in human intestinal Caco-2 cells. J. Agric. Food Chem., 2019, 67(20), 5772-5781.
[http://dx.doi.org/10.1021/acs.jafc.9b01235] [PMID: 31046268]
[32]
Hira, T.; Mochida, T.; Miyashita, K.; Hara, H. GLP-1 secretion is enhanced directly in the ileum but indirectly in the duodenum by a newly identified potent stimulator, zein hydrolysate, in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297(4), G663-G671.
[http://dx.doi.org/10.1152/ajpgi.90635.2008] [PMID: 19661152]
[33]
Mohana, D.S.; Chai, T-T.; Wong, F-C. Antioxidant and protein protection potentials of fennel seed-derived protein hydrolysates and peptides. Xiandai Shipin Keji, 2019, 35(9), 22-29.
[34]
Memarpoor-Yazdi, M.; Mahaki, H.; Zare-Zardini, H. Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits. J. Funct. Foods, 2013, 5(1), 62-70.
[http://dx.doi.org/10.1016/j.jff.2012.08.004]
[35]
Pooja, K.; Rani, S.; Prakash, B. In silico approaches towards the exploration of rice bran proteins-derived angiotensin-I-converting enzyme inhibitory peptides. Int. J. Food Prop., 2017, 20(sup2), 2178-2191.
[36]
Ji, D.; Udenigwe, C.C.; Agyei, D. Antioxidant peptides encrypted in flaxseed proteome: an in silico assessment. Food Sci. Hum. Wellness, 2019, 8(3), 306-314.
[http://dx.doi.org/10.1016/j.fshw.2019.08.002]
[37]
Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: sequence, structure, and functions. Trends Analyt. Chem., 2018, 105, 7-17.
[http://dx.doi.org/10.1016/j.trac.2018.04.005]
[38]
FitzGerald, R.J.; Cermeño, M.; Khalesi, M.; Kleekayai, T.; Amigo-Benavent, M. Application of in silico approaches for the generation of milk protein-derived bioactive peptides. J. Funct. Foods, 2020, 64(14), 103636.
[http://dx.doi.org/10.1016/j.jff.2019.103636]
[39]
Liang, L-l.; Cai, S-y.; Gao, M.; Chu, X-m.; Pan, X-y.; Gong, K-K.; Xiao, C-w.; Chen, Y.; Zhao, Y-q.; Wang, B.; Sun, K-l. Purification of antioxidant peptides of Moringa oleifera seeds and their protective effects on H2O2 oxidative damaged Chang liver cells. J. Funct. Foods, 2020, 64, 103698.
[http://dx.doi.org/10.1016/j.jff.2019.103698]
[40]
Ma, H.; Liu, R.; Zhao, Z.; Zhang, Z.; Cao, Y.; Ma, Y.; Guo, Y.; Xu, L. A novel peptide from soybean protein isolate significantly enhances resistance of the organism under oxidative stress. PLoS One, 2016, 11(7), e0159938-e0159938.
[http://dx.doi.org/10.1371/journal.pone.0159938] [PMID: 27455060]
[41]
He, R.; Wang, Y.; Yang, Y.; Wang, Z.; Ju, X.; Yuan, J. Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. J. Funct. Foods, 2019, 55, 211-219.
[http://dx.doi.org/10.1016/j.jff.2019.02.031]
[42]
Zhao, F.; Wang, J.; Lu, H.; Fang, L.; Qin, H.; Liu, C.; Min, W. Neuroprotection by walnut-derived peptides through autophagy promotion via Akt/mTOR signaling pathway against oxidative stress in PC12 cells. J. Agric. Food Chem., 2020, 68(11), 3638-3648.
[http://dx.doi.org/10.1021/acs.jafc.9b08252] [PMID: 32090563]
[43]
Zhou, Y.; Jiang, Y.; Shi, R.; Chen, Z.; Li, Z.; Wei, Y.; Zhou, X. Structural and antioxidant analysis of Tartary buckwheat (Fagopyrum tartaricum Gaertn.) 13S globulin. J. Sci. Food Agric., 2020, 100(3), 1220-1229.
[http://dx.doi.org/10.1002/jsfa.10133] [PMID: 31680256]
[44]
Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Wan, J.; Yang, X. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate. J. Agric. Food Chem., 2019, 67(12), 3305-3312.
[http://dx.doi.org/10.1021/acs.jafc.8b05722] [PMID: 30817142]
[45]
Yang, R.; Li, X.; Lin, S.; Zhang, Z.; Chen, F. Identification of novel peptides from 3 to 10kDa pine nut (Pinus koraiensis) meal protein, with an exploration of the relationship between their antioxidant activities and secondary structure. Food Chem., 2017, 219, 311-320.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.163] [PMID: 27765232]
[46]
Qiu, W.; Chen, X.; Tian, Y.; Wu, D.; Du, M.; Wang, S. Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide. Food Chem. Toxicol., 2020, 135, 110881.
[http://dx.doi.org/10.1016/j.fct.2019.110881] [PMID: 31622731]
[47]
Adebayo, J.O.; Adewole, K.E.; Krettli, A.U. Cysteine-stabilised peptide extract of Morinda lucida (Benth) leaf exhibits antimalarial activity and augments antioxidant defense system in P. berghei-infected mice. J. Ethnopharmacol., 2017, 207, 118-128.
[http://dx.doi.org/10.1016/j.jep.2017.06.026] [PMID: 28645782]
[48]
Yin, H.; Pan, X-c.; Wang, S-k.; Yang, L-g.; Sun, G-j. Protective effect of wheat peptides against small intestinal damage induced by non-steroidal anti-inflammatory drugs in rats. J. Integr. Agric., 2014, 13(9), 2019-2027.
[http://dx.doi.org/10.1016/S2095-3119(13)60619-X]
[49]
Yu, G-C.; Lv, J.; He, H.; Huang, W.; Han, Y. Hepatoprotective effects of corn peptides against carbon tetrachloride-induced liver injury in mice. J. Food Biochem., 2012, 36(4), 458-464.
[http://dx.doi.org/10.1111/j.1745-4514.2011.00551.x]
[50]
Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Frontiers, 2020, 1(1), 60-69.
[http://dx.doi.org/10.1002/fft2.10]
[51]
Chai, T.-T.; Tan, Y.-N.; Ee, K.-Y.; Xiao, J.; Wong, F.-C. Seeds, fermented foods, and agricultural by-products as sources of plant-derived antibacterial peptides. Crit. Rev. Food Sci. Nutr., 2019, 59(sup1), S162-S177.
[http://dx.doi.org/10.1080/10408398.2018.1561418]
[52]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[53]
Waghu, F.H.; Idicula-Thomas, S. Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Sci., 2020, 29(1), 36-42.
[http://dx.doi.org/10.1002/pro.3714] [PMID: 31441165]
[54]
Kang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data, 2019, 6(1), 148.
[http://dx.doi.org/10.1038/s41597-019-0154-y] [PMID: 31409791]
[55]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[56]
Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel), 2020, 9(1), 24.
[http://dx.doi.org/10.3390/antibiotics9010024] [PMID: 31941022]
[57]
Taniguchi, M.; Aida, R.; Saito, K.; Kikura, T.; Ochiai, A.; Saitoh, E.; Tanaka, T. Identification and characterization of multifunctional cationic peptides from enzymatic hydrolysates of soybean proteins. J. Biosci. Bioeng., 2020, 129(1), 59-66.
[http://dx.doi.org/10.1016/j.jbiosc.2019.06.016] [PMID: 31324383]
[58]
Song, W.; Kong, X.; Hua, Y.; Chen, Y.; Zhang, C.; Chen, Y. Identification of antibacterial peptides generated from enzymatic hydrolysis of cottonseed proteins. LWT, 2020, 125
[http://dx.doi.org/10.1016/j.lwt.2020.109199]
[59]
Souza, G.S.; do Nascimento, V.V.; de Carvalho, L.P.; de Melo, E.J.T.; Fernandes, K.V.; Machado, O.L.T.; Retamal, C.A.; Gomes, V.M.; Carvalho, Ade.O. Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis. Exp. Parasitol., 2013, 135(1), 116-125.
[http://dx.doi.org/10.1016/j.exppara.2013.06.005] [PMID: 23816644]
[60]
Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138.
[http://dx.doi.org/10.1016/j.bcp.2016.09.018] [PMID: 27663838]
[61]
Arulrajah, B.; Muhialdin, B.J.; Zarei, M.; Hasan, H.; Saari, N. Lacto-fermented Kenaf (Hibiscus cannabinus L.) seed protein as a source of bioactive peptides and their applications as natural preservatives. Food Control, 2020, 110
[http://dx.doi.org/10.1016/j.foodcont.2019.106969]
[62]
Taniguchi, M.; Aida, R.; Saito, K.; Oya, R.; Ochiai, A.; Saitoh, E.; Tanaka, T. Identification of cationic peptides derived from low protein rice by-products and evaluation of their multifunctional activities. J. Biosci. Bioeng., 2020, 129(3), 307-314.
[http://dx.doi.org/10.1016/j.jbiosc.2019.09.009] [PMID: 31585860]
[63]
Kerenga, B.K.; McKenna, J.A.; Harvey, P.J.; Quimbar, P.; Garcia-Ceron, D.; Lay, F.T.; Phan, T.K.; Veneer, P.K.; Vasa, S.; Parisi, K.; Shafee, T.M.A.; van der Weerden, N.L.; Hulett, M.D.; Craik, D.J.; Anderson, M.A.; Bleackley, M.R. Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32. Front. Microbiol., 2019, 10(795), 795.
[http://dx.doi.org/10.3389/fmicb.2019.00795] [PMID: 31031739]
[64]
Seyedjavadi, S.S.; Khani, S.; Zare-Zardini, H.; Halabian, R.; Goudarzi, M.; Khatami, S.; Imani Fooladi, A.A.; Amani, J.; Razzaghi-Abyaneh, M. Isolation, functional characterization, and biological properties of MCh-AMP1, a novel antifungal peptide from Matricaria chamomilla L. Chem. Biol. Drug Des., 2019, 93(5), 949-959.
[http://dx.doi.org/10.1111/cbdd.13500] [PMID: 30773822]
[65]
Jia, F.; Zhang, Y.; Wang, J.; Peng, J.; Zhao, P.; Zhang, L.; Yao, H.; Ni, J.; Wang, K. The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I. Peptides, 2019, 112, 56-66.
[http://dx.doi.org/10.1016/j.peptides.2018.11.006] [PMID: 30500360]
[66]
Souza, G.S.; de Carvalho, L.P.; de Melo, E.J.T.; da Silva, F.C.V.; Machado, O.L.T.; Gomes, V.M.; de Oliveira Carvalho, A. A synthetic peptide derived of the β23 loop of the plant defensin from Vigna unguiculata seeds induces Leishmania amazonensis apoptosis-like cell death. Amino Acids, 2019, 51(10-12), 1633-1648.
[http://dx.doi.org/10.1007/s00726-019-02800-8] [PMID: 31654210]
[67]
Gonçalves, S.; Silva, P.M.; Felício, M.R.; de Medeiros, L.N.; Kurtenbach, E.; Santos, N.C. Psd1 Effects on Candida albicans planktonic cells and biofilms. Front. Cell. Infect. Microbiol., 2017, 7(249), 249.
[http://dx.doi.org/10.3389/fcimb.2017.00249] [PMID: 28649561]
[68]
Taniguchi, M.; Kawabe, J.; Toyoda, R.; Namae, T.; Ochiai, A.; Saitoh, E.; Tanaka, T. Cationic peptides from peptic hydrolysates of rice endosperm protein exhibit antimicrobial, LPS-neutralizing, and angiogenic activities. Peptides, 2017, 97, 70-78.
[http://dx.doi.org/10.1016/j.peptides.2017.09.019] [PMID: 28987278]
[69]
Díaz-Murillo, V.; Medina-Estrada, I.; López-Meza, J.E.; Ochoa-Zarzosa, A. Defensin γ-thionin from Capsicum chinense has immunomodulatory effects on bovine mammary epithelial cells during Staphylococcus aureus internalization. Peptides, 2016, 78, 109-118.
[http://dx.doi.org/10.1016/j.peptides.2016.02.008] [PMID: 26939717]
[70]
Bamdad, F.; Sun, X.; Guan, L.L.; Chen, L. Preparation and characterization of antimicrobial cationized peptides from barley (Hordeum vulgare L.) proteins. LWT, 2015, 63(1), 29-36.
[http://dx.doi.org/10.1016/j.lwt.2015.03.012]
[71]
Cheng, A-C.; Lin, H-L.; Shiu, Y-L.; Tyan, Y-C.; Liu, C-H. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish Shellfish Immunol., 2017, 67, 270-279.
[http://dx.doi.org/10.1016/j.fsi.2017.06.006] [PMID: 28602685]
[72]
Patil, S.P.; Goswami, A.; Kalia, K.; Kate, A.S. Plant-derived bioactive peptides: A treatment to cure diabetes. Int. J. Pept. Res. Ther., 2020, 26(2), 955-968.
[http://dx.doi.org/10.1007/s10989-019-09899-z] [PMID: 32435169]
[73]
Kehinde, B.A.; Sharma, P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Crit. Rev. Food Sci. Nutr., 2020, 60(2), 322-340.
[http://dx.doi.org/10.1080/10408398.2018.1528206] [PMID: 30463420]
[74]
Zhao, C.; Wan, X.; Zhou, S.; Cao, H. Natural polyphenols: a potential therapeutic approach to hypoglycemia. eFood, 2020, 1(2), 107-118.
[75]
Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive peptides with antidiabetic properties: a review. Int. J. Food Sci. Technol., 2019, 54(6), 1909-1919.
[http://dx.doi.org/10.1111/ijfs.14090]
[76]
Ina, S.; Hamada, A.; Nakamura, H.; Yamaguchi, Y.; Kumagai, H.; Kumagai, H. Rice (Oryza sativa japonica) albumin hydrolysates suppress postprandial blood glucose elevation by adsorbing glucose and inhibiting Na+-d-glucose cotransporter SGLt1 expression. J. Funct. Foods, 2020, 64, 103603.
[http://dx.doi.org/10.1016/j.jff.2019.103603]
[77]
Mojica, L.; Gonzalez de Mejia, E.; Granados-Silvestre, M.Á.; Menjivar, M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. J. Funct. Foods, 2017, 31, 274-286.
[http://dx.doi.org/10.1016/j.jff.2017.02.006]
[78]
Ishikawa, Y.; Hira, T.; Inoue, D.; Harada, Y.; Hashimoto, H.; Fujii, M.; Kadowaki, M.; Hara, H. Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Food Funct., 2015, 6(8), 2525-2534.
[http://dx.doi.org/10.1039/C4FO01054J] [PMID: 26107658]
[79]
Lammi, C.; Zanoni, C.; Arnoldi, A. Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. Int. J. Mol. Sci., 2015, 16(11), 27362-27370.
[http://dx.doi.org/10.3390/ijms161126029] [PMID: 26580610]
[80]
Jiang, H.; Feng, J.; Du, Z.; Zhen, H.; Lin, M.; Jia, S.; Li, T.; Huang, X.; Ostenson, C-G.; Chen, Z. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats. J. Nutr. Biochem., 2014, 25(9), 954-963.
[http://dx.doi.org/10.1016/j.jnutbio.2014.04.010] [PMID: 24985367]
[81]
Lu, J.; Zeng, Y.; Hou, W.; Zhang, S.; Li, L.; Luo, X.; Xi, W.; Chen, Z.; Xiang, M. The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway. J. Nutr. Biochem., 2012, 23(11), 1449-1457.
[http://dx.doi.org/10.1016/j.jnutbio.2011.09.007] [PMID: 22278080]
[82]
Sarmadi, B.; Aminuddin, F.; Hamid, M.; Saari, N.; Abdul-Hamid, A.; Ismail, A. Hypoglycemic effects of cocoa (Theobroma cacao L.) autolysates. Food Chem., 2012, 134(2), 905-911.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.202] [PMID: 23107706]
[83]
Wei, Y.; Zhang, R.; Fang, L.; Qin, X.; Cai, M.; Gu, R.; Lu, J.; Wang, Y. Hypoglycemic effects and biochemical mechanisms of Pea oligopeptide on high-fat diet and streptozotocin-induced diabetic mice. J. Food Biochem., 2019, 43(12), e13055.
[http://dx.doi.org/10.1111/jfbc.13055] [PMID: 31591749]
[84]
Zhang, H.; Wang, J.; Liu, Y.; Sun, B. Peptides derived from oats improve insulin sensitivity and lower blood glucose in streptozotocin-induced diabetic mice. J. Biomed. Sci., 2015, 4(1)
[85]
Soriano-Santos, J.; Reyes-Bautista, R.; Guerrero-Legarreta, I.; Ponce-Alquicira, E.; Escalona-Buendia, H.B.; Almanza-Pérez, J.C.; Díaz-Godínez, G.; Román-Ramos, R. Dipeptidyl peptidase IV inhibitory activity of protein hydrolyzates from Amaranthus hypochondriacus L. grain and their influence on postprandial glycemia in streptozotocin-induced diabetic mice. Afr. J. Tradit. Complement. Altern. Med., 2015, 12(1), 90-98.
[http://dx.doi.org/10.4314/ajtcam.v12i1.13]
[86]
Boonloh, K.; Kukongviriyapan, V.; Kongyingyoes, B.; Kukongviriyapan, U.; Thawornchinsombut, S.; Pannangpetch, P. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients, 2015, 7(8), 6313-6329.
[http://dx.doi.org/10.3390/nu7085292] [PMID: 26247962]
[87]
Mochida, T.; Hira, T.; Hara, H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-IV activity in rats. Endocrinology, 2010, 151(7), 3095-3104.
[http://dx.doi.org/10.1210/en.2009-1510] [PMID: 20410194]
[88]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.Jr.; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[89]
Baudino, T.A. Targeted cancer therapy: the next generation of cancer treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[90]
Li, F-M.; Wang, X-Q. Identifying anticancer peptides by using improved hybrid compositions. Sci. Rep., 2016, 6(1), 33910.
[http://dx.doi.org/10.1038/srep33910] [PMID: 27670968]
[91]
Quah, Y.; Mohd Ismail, N.I.; Ooi, J.L.S.; Affendi, Y.A.; Abd Manan, F.; Teh, L-K.; Wong, F-C.; Chai, T-T. Purification and identification of novel cytotoxic oligopeptides from soft coral Sarcophyton glaucum. J. Zhejiang Univ. Sci. B, 2019, 20(1), 59-70.
[http://dx.doi.org/10.1631/jzus.B1700586] [PMID: 30614230]
[92]
Quah, Y.; Mohd Ismail, N.I.; Ooi, J.L.S.; Affendi, Y.A.; Abd Manan, F.; Wong, F-C.; Chai, T-T. Identification of novel cytotoxic peptide KENPVLSLVNGMF from marine sponge Xestospongia testudinaria, with characterization of stability in human serum. Int. J. Pept. Res. Ther., 2018, 24(1), 189-199.
[http://dx.doi.org/10.1007/s10989-017-9604-6]
[93]
Gabernet, G.; Müller, A.T.; Hiss, J.A.; Schneider, G. Membranolytic anticancer peptides. MedChemComm, 2016, 7(12), 2232-2245.
[http://dx.doi.org/10.1039/C6MD00376A]
[94]
Guzmán-Rodríguez, J.J.; Ochoa-Zarzosa, A.; López-Gómez, R.; López-Meza, J.E. Plant antimicrobial peptides as potential anticancer agents. BioMed Res. Int., 2015, 2015(5), 1-11.
[http://dx.doi.org/10.1155/2015/735087] [PMID: 25815333]
[95]
Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5, 5-5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[96]
Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B. From antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4(294), 294.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[97]
Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem., 2018, 245, 205-222.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[98]
Baraya, Y.S.; Wong, K.K.; Yaacob, N.S. The Immunomodulatory Potential of Selected Bioactive Plant-Based Compounds in Breast Cancer: A Review. Anticancer. Agents Med. Chem., 2017, 17(6), 770-783.
[http://dx.doi.org/10.2174/1871520616666160817111242] [PMID: 27539316]
[99]
Qin, Y.; Qin, Z.D.; Chen, J.; Cai, C.G.; Li, L.; Feng, L.Y.; Wang, Z.; Duns, G.J.; He, N.Y.; Chen, Z.S.; Luo, X.F. From antimicrobial to anticancer peptides: the transformation of peptides. Recent Patents Anticancer Drug Discov., 2019, 14(1), 70-84.
[http://dx.doi.org/10.2174/1574892814666190119165157] [PMID: 30663573]
[100]
Al-Snafi, A.E. Anticancer effects of Arabian medicinal plants (part 1)-A review. IOSR J. Pharm., 2017, 7(4), 63-102.
[http://dx.doi.org/10.9790/3013-070401634102]
[101]
Díaz-Gómez, J.L.; Castorena-Torres, F.; Preciado-Ortiz, R.E.; García-Lara, S. Anti-cancer activity of maize bioactive peptides. Front Chem., 2017, 5(44), 44.
[http://dx.doi.org/10.3389/fchem.2017.00044] [PMID: 28680876]
[102]
Xue, Z.; Wen, H.; Zhai, L.; Yu, Y.; Li, Y.; Yu, W.; Cheng, A.; Wang, C.; Kou, X. Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Res. Int., 2015, 77, 75-81.
[http://dx.doi.org/10.1016/j.foodres.2015.09.027]
[103]
Ortiz-Martinez, M.; Gonzalez de Mejia, E.; García-Lara, S.; Aguilar, O.; Lopez-Castillo, L.M.; Otero-Pappatheodorou, J.T. Antiproliferative effect of peptide fractions isolated from a quality protein maize, a white hybrid maize, and their derived peptides on hepatocarcinoma human HepG2 cells. J. Funct. Foods, 2017, 34, 36-48.
[http://dx.doi.org/10.1016/j.jff.2017.04.015]
[104]
Xie, H.; Wang, Y.; Zhang, J.; Chen, J.; Wu, D.; Wang, L. Study of the fermentation conditions and the antiproliferative activity of rapeseed peptides by bacterial and enzymatic cooperation. Int. J. Food Sci. Technol., 2015, 50(3), 619-625.
[http://dx.doi.org/10.1111/ijfs.12682]
[105]
Dia, V.P.; Krishnan, H.B. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Sci. Rep., 2016, 6, 33532-33532.
[http://dx.doi.org/10.1038/srep33532] [PMID: 27628414]
[106]
Xu, Z.; Mao, T-M.; Huang, L.; Yu, Z-C.; Yin, B.; Chen, M-L.; Cheng, Y-H. Purification and identification immunomodulatory peptide from rice protein hydrolysates. Food Agric. Immunol., 2019, 30(1), 150-162.
[http://dx.doi.org/10.1080/09540105.2018.1553938]
[107]
Fernández-Tomé, S.; Sanchón, J.; Recio, I.; Hernández-Ledesma, B. Transepithelial transport of lunasin and derived peptides: Inhibitory effects on the gastrointestinal cancer cells viability. J. Food Compos. Anal., 2017, 68, 101-110.
[http://dx.doi.org/10.1016/j.jfca.2017.01.011]
[108]
Zheng, Q.; Qiu, D.; Liu, X.; Zhang, L.; Cai, S.; Zhang, X. Antiproliferative effect of Dendrobium catenatum Lindley polypeptides against human liver, gastric and breast cancer cell lines. Food Funct., 2015, 6(5), 1489-1495.
[http://dx.doi.org/10.1039/C5FO00060B] [PMID: 25811957]
[109]
Wan, X.; Liu, H.; Sun, Y.; Zhang, J.; Chen, X.; Chen, N. Lunasin: a promising polypeptide for the prevention and treatment of cancer. Oncol. Lett., 2017, 13(6), 3997-4001.
[http://dx.doi.org/10.3892/ol.2017.6017] [PMID: 28599405]
[110]
Jahanbani, R.; Ghaffari, S.M.; Salami, M.; Vahdati, K.; Sepehri, H.; Sarvestani, N.N.; Sheibani, N.; Moosavi-Movahedi, A.A. Antioxidant and anticancer activities of walnut (Juglans regia L.) protein hydrolysates using different proteases. Plant Foods Hum. Nutr., 2016, 71(4), 402-409.
[http://dx.doi.org/10.1007/s11130-016-0576-z] [PMID: 27679440]
[111]
Kroemer, R.T. Structure-based drug design: docking and scoring. Curr. Protein Pept. Sci., 2007, 8(4), 312-328.
[http://dx.doi.org/10.2174/138920307781369382] [PMID: 17696866]
[112]
Jain, A.; Gupta, P.P. In silico comparative molecular docking study and analysis of glycyrrhizin from Abrus precatorius (L.) against antidiabetic activity. European J. Med. Plants, 2015, 6, 212-222.
[http://dx.doi.org/10.9734/EJMP/2015/13855]
[113]
Mishra, A.; Dey, S. Molecular docking studies of a cyclic octapeptide-cyclosaplin from sandalwood. Biomolecules, 2019, 9(11), 740.
[http://dx.doi.org/10.3390/biom9110740] [PMID: 31731771]
[114]
Santos, G.B.; Ganesan, A.; Emery, F.S. Oral administration of peptide-based drugs: Beyond Lipinski’s rule. ChemMedChem, 2016, 11(20), 2245-2251.
[http://dx.doi.org/10.1002/cmdc.201600288] [PMID: 27596610]
[115]
Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: in vitro biochemical screening and in silico molecular modeling study. J. Agric. Food Chem., 2016, 64(51), 9601-9606.
[http://dx.doi.org/10.1021/acs.jafc.6b04041] [PMID: 27983830]
[116]
Lammi, C.; Aiello, G.; Vistoli, G.; Zanoni, C.; Arnoldi, A.; Sambuy, Y.; Ferruzza, S.; Ranaldi, G. A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. J. Funct. Foods, 2016, 24, 297-306.
[http://dx.doi.org/10.1016/j.jff.2016.04.017]
[117]
Wang, X.; Chen, H.; Fu, X.; Li, S.; Wei, J. A novel antioxidant and ACE inhibitory peptide from rice bran protein: biochemical characterization and molecular docking study. LWT, 2017, 75, 93-99.
[http://dx.doi.org/10.1016/j.lwt.2016.08.047]
[118]
Agrawal, P.; Singh, H.; Srivastava, H.K.; Singh, S.; Kishore, G.; Raghava, G.P.S. Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics, 2019, 19(13)(Suppl. 13), 426.
[http://dx.doi.org/10.1186/s12859-018-2449-y] [PMID: 30717654]
[119]
Agrawal, H.; Joshi, R.; Gupta, M. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Res. Int., 2019, 120, 697-707.
[http://dx.doi.org/10.1016/j.foodres.2018.11.028] [PMID: 31000288]
[120]
Ma, F-F.; Wang, H.; Wei, C-K.; Thakur, K.; Wei, Z-J.; Jiang, L. Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: purification, inhibitory kinetic and mechanism. Front. Pharmacol., 1579, 2019, 9.
[PMID: 30697161]
[121]
de Freitas, M.A.G.; Amaral, N.O.; Álvares, A.D.C.M.; de Oliveira, S.A.; Mehdad, A.; Honda, D.E.; Bessa, A.S.M.; Ramada, M.H.S.; Naves, L.M.; Pontes, C.N.R.; Castro, C.H.; Pedrino, G.R.; de Freitas, S.M. Blood pressure-lowering effects of a Bowman-Birk inhibitor and its derived peptides in normotensive and hypertensive rats. Sci. Rep., 2020, 10(1), 11680.
[http://dx.doi.org/10.1038/s41598-020-66624-3] [PMID: 32669617]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy