Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Synthetic and Semi-synthetic Drugs as a Promising Therapeutic Option for the Treatment of COVID-19

Author(s): Ekta Shirbhate, Preeti Patel, Vijay K Patel, Ravichandran Veerasamy, Prabodh C Sharma, Barij N Sinha and Harish Rajak*

Volume 21, Issue 8, 2021

Published on: 04 December, 2020

Page: [1004 - 1016] Pages: 13

DOI: 10.2174/1389557520666201204162103

Price: $65

Open Access Journals Promotions 2
Abstract

The novel coronavirus disease-19 (COVID-19) is a global pandemic that emerged from Wuhan, China, and has spread all around the world, affecting 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 updates of August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine exists. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID- 19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in clinical uses or studies on COVID-19 and also focuses on the mode of action of drugs being repositioned against COVID-19.

Keywords: Clinical trials, coronavirus, COVID-19, pathogenesis, SARS-CoV-2, synthetic and semi-synthetic antiviral drugs.

Next »
Graphical Abstract
[1]
He, F.; Deng, Y.; Li, W. Coronavirus disease 2019: What we know? J. Med. Virol., 2020, 92(7), 719-725.
[http://dx.doi.org/10.1002/jmv.25766] [PMID: 32170865]
[2]
Wu, Y.C.; Chen, C.S.; Chan, Y.J. The outbreak of COVID-19: An overview. J. Chin. Med. Assoc., 2020, 83(3), 217-220.
[http://dx.doi.org/10.1097/JCMA.0000000000000270] [PMID: 32134861]
[3]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[4]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[5]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[6]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[7]
Kruse, R.L. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000 Res., 2020, 9, 72.
[http://dx.doi.org/10.12688/f1000research.22211.2] [PMID: 32117569]
[8]
Gretebeck, L.M.; Subbarao, K. Animal models for SARS and MERS coronaviruses. Curr. Opin. Virol., 2015, 13, 123-129.
[http://dx.doi.org/10.1016/j.coviro.2015.06.009] [PMID: 26184451]
[9]
Gralinski, L.E.; Baric, R.S. Molecular pathology of emerging coronavirus infections. J. Pathol., 2015, 235(2), 185-195.
[http://dx.doi.org/10.1002/path.4454] [PMID: 25270030]
[10]
Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; Berger, A.; Burguière, A.M.; Cinatl, J.; Eickmann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra, J.C.; Müller, S.; Rickerts, V.; Stürmer, M.; Vieth, S.; Klenk, H.D.; Osterhaus, A.D.; Schmitz, H.; Doerr, H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1967-1976.
[http://dx.doi.org/10.1056/NEJMoa030747] [PMID: 12690091]
[11]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[12]
Dhama, K.; Sharun, K.; Tiwari, R.; Dadar, M.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W. COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 2020, 16(6), 1232-1238.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[13]
Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol., 2020, 92(5), 479-490.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[14]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[15]
Zhai, P.; Ding, Y.; Wu, X.; Long, J.; Zhong, Y.; Li, Y. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents, 2020, 55(5)105955
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105955] [PMID: 32234468]
[16]
Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, epidemiology, pathogenesis and control of COVID-19. Viruses, 2020, 12(4), 372.
[http://dx.doi.org/10.3390/v12040372] [PMID: 32230900]
[17]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[18]
Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents, 2020, 55(6)105948
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105948] [PMID: 32201353]
[19]
Sahraei, Z.; Shabani, M.; Shokouhi, S.; Saffaei, A. Aminoquinolines against coronavirus disease 2019 (COVID-19): Chloroquine or hydroxychloroquine. Int. J. Antimicrob. Agents, 2020, 55(4)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105945] [PMID: 32194152]
[20]
Smith, T.; Bushek, J.; Prosser, T. COVID-19 Drug therapy; Clinical Drug Information Clinical Solutions, 2020.
[21]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[22]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[23]
Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect. Dis., 2003, 3(11), 722-727.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[24]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[25]
Meo, S.A.; Klonoff, D.C.; Akram, J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4539-4547.
[PMID: 32373993]
[26]
Yao, T.T.; Qian, J.D.; Zhu, W.Y.; Wang, Y.; Wang, G.Q. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J. Med. Virol., 2020, 92(6), 556-563.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[27]
Cvetkovic, R.S.; Goa, K.L. Lopinavir/ritonavir: A review of its use in the management of HIV infection. Drugs, 2003, 63(8), 769-802.
[http://dx.doi.org/10.2165/00003495-200363080-00004] [PMID: 12662125]
[28]
Hurst, M.; Faulds, D. Lopinavir. Drugs, 2000, 60(6), 1371-1379.
[http://dx.doi.org/10.2165/00003495-200060060-00009] [PMID: 11152017]
[29]
de Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; van Nieuwkoop, S.; Bestebroer, T.M.; van den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother., 2014, 58(8), 4875-4884.
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[30]
Chandwani, A.; Shuter, J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther. Clin. Risk Manag., 2008, 4(5), 1023-1033.
[PMID: 19209283]
[31]
Skinner-Adams, T.S.; Andrews, K.T.; Melville, L.; McCarthy, J.; Gardiner, D.L. Synergistic interactions of the antiretroviral protease inhibitors saquinavir and ritonavir with chloroquine and mefloquine against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother., 2007, 51(2), 759-762.
[http://dx.doi.org/10.1128/AAC.00840-06] [PMID: 17088482]
[32]
Bhatnagar, T.; Murhekar, M.V.; Soneja, M.; Gupta, N.; Giri, S.; Wig, N.; Gangakhedkar, R. Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: Protocol for restricted public health emergency use. Indian J. Med. Res, 2020, 151(2 - 3), 184-189.
[PMID: 32362644]
[33]
Dayer, M.R.; Taleb-Gassabi, S.; Dayer, M.S. Lopinavir: A potent drug against coronavirus infection: Insight from molecular docking study. Arch. Clin. Infect. Dis., 2017, 12, 13823.
[http://dx.doi.org/10.5812/archcid.13823]
[34]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[35]
Li, H.; Liu, S.M.; Yu, X.H.; Tang, S.L.; Tang, C.K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents, 2020, 55(5)105951
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[36]
Ko, W.C.; Rolain, J.M.; Lee, N.Y.; Chen, P.L.; Huang, C.T.; Lee, P.I.; Hsueh, P.R. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int. J. Antimicrob. Agents, 2020, 55(4)105933
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105933] [PMID: 32147516]
[38]
Coronavirus (COVID-19) update: FDA issues emergency use authorization for potential COVID-19 Treatment. https://www.fda.gov/news-events/pressannouncements/coronavirus-covid-19-update-fda-issues-emergency-use-authorization-potential-covid-19-treatment
[39]
Coronavirus (COVID-19) update: FDA warns of newly discovered potential drug interaction that may reduce effectiveness of a COVID- 19 treatment authorized for emergency use. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-updatefda-warns-newlydiscovered-potential-drug-interaction-may-reduce
[40]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[41]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - An update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[42]
Elfiky, A.A.; Elshemey, W.M. IDX-184 is a superior HCV direct-acting antiviral drug: A QSAR study. Med. Chem. Res., 2016, 25(5), 1005-1008.
[http://dx.doi.org/10.1007/s00044-016-1533-y] [PMID: 32214769]
[43]
Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J. Infect., 2020, 81(1), e1-e5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[44]
Boriskin, Y.S.; Leneva, I.A.; Pécheur, E.I.; Polyak, S.J. Arbidol: A broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem., 2008, 15(10), 997-1005.
[http://dx.doi.org/10.2174/092986708784049658] [PMID: 18393857]
[45]
Wang, J. Fast identification of possible drug treatment of coronavirus disease (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model., 2020, 60(6), 3277-3286.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[46]
Khamitov, R.A.; Loginova, S.Ia.; Shchukina, V.N.; Borisevich, S.V.; Maksimov, V.A.; Shuster, A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr. Virusol., 2008, 53(4), 9-13.
[PMID: 18756809]
[47]
Barnard, D.L.; Kumaki, Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 2011, 6(5), 615-631.
[http://dx.doi.org/10.2217/fvl.11.33] [PMID: 21765859]
[48]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253117592
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[49]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[50]
Cimolai, N. Potentially repurposing adamantanes for COVID-19. J. Med. Virol., 2020, 92(6), 531-532.
[http://dx.doi.org/10.1002/jmv.25752] [PMID: 32176361]
[51]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.M. Teicoplanin: An alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4)105944
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[52]
Sathyamoorthy, N.; Chintamaneni, P.K.; Chinni, S. Plausible role of combination of Chlorpromazine hydrochloride and Teicoplanin against COVID-19. Med. Hypotheses, 2020, 144110011
[http://dx.doi.org/10.1016/j.mehy.2020.110011] [PMID: 32593831]
[53]
Zhang, J.; Ma, X.; Yu, F.; Liu, J.; Zou, F.; Pan, T.; Zhang, H. Teicoplanin potently blocks the cell entry of 2019-nCoV. Biorxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.05.935387]
[54]
Zhou, N.; Pan, T.; Zhang, J.; Li, Q.; Zhang, X.; Bai, C.; Huang, F.; Peng, T.; Zhang, J.; Liu, C.; Tao, L.; Zhang, H. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J. Biol. Chem., 2016, 291(17), 9218-9232.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[55]
Colson, P.; Raoult, D. Fighting viruses with antibiotics: An overlooked path. Int. J. Antimicrob. Agents, 2016, 48(4), 349-352.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.07.004] [PMID: 27546219]
[56]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[57]
Retallack, H.; Di Lullo, E.; Arias, C.; Knopp, K.A.; Laurie, M.T.; Sandoval-Espinosa, C.; Mancia Leon, W.R.; Krencik, R.; Ullian, E.M.; Spatazza, J.; Pollen, A.A.; Mandel-Brehm, C.; Nowakowski, T.J.; Kriegstein, A.R.; DeRisi, J.L. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. USA, 2016, 113(50), 14408-14413.
[http://dx.doi.org/10.1073/pnas.1618029113] [PMID: 27911847]
[58]
Madrid, P.B.; Panchal, R.G.; Warren, T.K.; Shurtleff, A.C.; Endsley, A.N.; Green, C.E.; Kolokoltsov, A.; Davey, R.; Manger, I.D.; Gilfillan, L.; Bavari, S.; Tanga, M.J. Evaluation of Ebola virus inhibitors for drug repurposing. ACS Infect. Dis., 2015, 1(7), 317-326.
[http://dx.doi.org/10.1021/acsinfecdis.5b00030] [PMID: 27622822]
[59]
Bosseboeuf, E.; Aubry, M.; Nhan, T.; De Pina, J.J.; Rolain, J.M.; Raoult, D.; Musso, D. Azithromycin inhibits the replication of Zika virus. J. Antivir. Antiretrovir., 2018, 10(1), 6-11.
[http://dx.doi.org/10.4172/1948-5964.1000173]
[60]
Bacharier, L.B.; Guilbert, T.W.; Mauger, D.T.; Boehmer, S.; Beigelman, A.; Fitzpatrick, A.M.; Jackson, D.J.; Baxi, S.N.; Benson, M.; Burnham, C.D.; Cabana, M.; Castro, M.; Chmiel, J.F.; Covar, R.; Daines, M.; Gaffin, J.M.; Gentile, D.A.; Holguin, F.; Israel, E.; Kelly, H.W.; Lazarus, S.C.; Lemanske, R.F., Jr; Ly, N.; Meade, K.; Morgan, W.; Moy, J.; Olin, T.; Peters, S.P.; Phipatanakul, W.; Pongracic, J.A.; Raissy, H.H.; Ross, K.; Sheehan, W.J.; Sorkness, C.; Szefler, S.J.; Teague, W.G.; Thyne, S.; Martinez, F.D. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: A randomized clinical trial. JAMA, 2015, 314(19), 2034-2044.
[http://dx.doi.org/10.1001/jama.2015.13896] [PMID: 26575060]
[61]
Xu, J.; Shi, P.Y.; Li, H.; Zhou, J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect. Dis., 2020, 6(5), 909-915.
[http://dx.doi.org/10.1021/acsinfecdis.0c00052] [PMID: 32125140]
[62]
McCreary, E.K.; Pogue, J.M. Coronavirus disease 2019 treatment: A review of early and emerging options. Open Forum Infect. Dis., 2020, 7(4), a105.
[http://dx.doi.org/10.1093/ofid/ofaa105] [PMID: 32284951]
[63]
Patel, A.B.; Verma, A. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: What is the evidence? JAMA, 2020, 323(18), 1769-1770.
[http://dx.doi.org/10.1001/jama.2020.4812] [PMID: 32208485]
[64]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus disease. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[65]
Gurwitz, D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res., 2020, 81(5), 537-540.
[http://dx.doi.org/10.1002/ddr.21656] [PMID: 32129518]
[66]
Phadke, M.; Saunik, S. COVID-19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev. Res., 2020, 81(5), 541-543.
[http://dx.doi.org/10.1002/ddr.21666] [PMID: 32227357]
[67]
Boseley, S. Recovery trial for Covid-19 treatments: What we know so far. https://www.theguardian.com/world/2020/jun/16/recovery-trial-for-covid-19-treatments-what-we-know-so-far
[68]
WHO welcomes preliminary results about dexamethasone use in treating critically ill COVID-19 patients. https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminary-results-about-dexamethasone-use-in-treating-critically-ill-covid-19-patients
[69]
Jiang, S. Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature, 2020, 579(7799), 321.
[http://dx.doi.org/10.1038/d41586-020-00751-9] [PMID: 32179860]
[70]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[71]
Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Res., 2020, 177.
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[72]
Colson, P.; Rolain, J.M.; Lagier, J.C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents, 2020, 55(4)105932
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[73]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[74]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[75]
Al-Tawfiq, J.A.; Al-Homoud, A.H.; Memish, Z.A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis., 2020, 34.
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[76]
Serafin, M.B.; Bottega, A.; Foletto, V.S.; da Rosa, T.F.; Hörner, A.; Hörner, R. Drug repositioning is an alternative for the treatment of coronavirus COVID-19. Int. J. Antimicrob. Agents, 2020, 55(6)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105969] [PMID: 32278811]
[77]
Arabi, Y.M.; Deeb, A.M.; Al-Hameed, F.; Mandourah, Y.; Almekhlafi, G.A.; Sindi, A.A.; Al-Omari, A.; Shalhoub, S.; Mady, A.; Alraddadi, B.; Almotairi, A.; Al Khatib, K.; Abdulmomen, A.; Qushmaq, I.; Solaiman, O.; Al-Aithan, A.M.; Al-Raddadi, R.; Ragab, A.; Al Harthy, A.; Kharaba, A.; Jose, J.; Dabbagh, T.; Fowler, R.A.; Balkhy, H.H.; Merson, L.; Hayden, F.G. Saudi Critical Care Trials group. Macrolides in critically ill patients with Middle East Respiratory Syndrome. Int. J. Infect. Dis., 2019, 81, 184-190.
[http://dx.doi.org/10.1016/j.ijid.2019.01.041] [PMID: 30690213]
[78]
Al-Bari, M.A.A. Facts and myths: Efficacies of repurposing chloroquine and hydroxychloroquine for the treatment of COVID-19. Curr. Drug Targets, 2020, 21, 1703-1721.
[http://dx.doi.org/10.2174/1389450121666200617133142] [PMID: 32552642]
[79]
Yao, X.; Hou, Z.; Cui, C.; Zhang, M.; Tu, S.; Li, H.; Liu, D. Updates on the pharmacology of chloroquine against Coronavirus disease 2019 (COVID-19): A perspective on its use in the general and geriatric population. Curr. Drug Metab., 2020, 21, 534-540.
[http://dx.doi.org/10.2174/1389200221666200711160440] [PMID: 32651961]
[80]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem., 2020, 27(27), 4536-4541.
[http://dx.doi.org/10.2174/0929867327666200416131117] [PMID: 32297571]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy