Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Systematic Review Article

Various Cell Therapy Approaches for Bone Diseases in the Controlled Clinical Trials: A Systematic Review and Meta-analysis Study

Author(s): Mahboubeh Bouhlouli, Neda Izadi and Arash Khojasteh*

Volume 16, Issue 4, 2021

Published on: 01 December, 2020

Page: [481 - 492] Pages: 12

DOI: 10.2174/1574888X16666201201104927

Price: $65

Open Access Journals Promotions 2
Abstract

The objective of this review was to answer two critical questions in the cell-based bone defect therapies that were as follows: 1) does cell therapy associate with the increase in the occurrence of adverse events in the patients compared to control groups, 2) does the use of various cell therapy approaches, including More-than Minimal Manipulation (MMM) and Minimal Manipulation (MM), affect the occurrence of adverse events? An electronic literature search was performed in five databases. The controlled clinical trial studies were selected according to the eligibility criteria. Then, they were categorized into MMM and MM approaches, and a meta-analysis of the controlled clinical trials on the occurrence of adverse events was conducted. 23 controlled clinical trials, including 10 MMM (n=341 patients) and 13 MM (n=503 patients) approaches were assessed in this study. Bone defects were oral-maxillofacial defects (7MMM and 8MM), osteonecrosis of the femoral head (1MMM and 5MM), long bone shaft fracture (1MMM), and bone defect during revision total hip arthroplasty (1MMM). Cells were isolated from various tissues such as bone marrow (5MMM and 10MM), the dental pulp (2MMM and 2MM), adipose tissue (2MMM), periosteum (1MMM), and peripheral blood (1MMM). Notably, the adverse events were reported in 37 patients, and 3 patients in MMM and MM approaches, respectively. A meta-analysis demonstrated that there was no association between cell therapy and the occurrence of adverse events. Also, the MMM approach (OR: 1.46) has a higher chance of the occurrence of adverse events compared to the MM approach (OR: 0.71). These results suggested that cell therapy, specifically the MM approach, is safe to improve bone regeneration. Also, future systematic reviews should evaluate the efficacy of these cell therapy approaches.

Keywords: Cell therapy, more-than minimal manipulation, minimal manipulation, bone tissue regeneration, and adverse events, periosteum.

« Previous
[1]
Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 2018; 9: 2041731418776819.
[http://dx.doi.org/10.1177/2041731418776819] [PMID: 29899969]
[2]
Rogers GF, Greene AK. Autogenous bone graft: Basic science and clinical implications. J Craniofac Surg 2012; 23(1): 323-7.
[http://dx.doi.org/10.1097/SCS.0b013e318241dcba] [PMID: 22337435]
[3]
Kloss FR, Offermanns V, Kloss-Brandstätter A. Comparison of allogeneic and autogenous bone grafts for augmentation of alveolar ridge defects-A 12-month retrospective radiographic evaluation. Clin Oral Implants Res 2018; 29(11): 1163-75.
[http://dx.doi.org/10.1111/clr.13380] [PMID: 30303581]
[4]
Gjerde C, Mustafa K, Hellem S, et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther 2018; 9(1): 213.
[http://dx.doi.org/10.1186/s13287-018-0951-9] [PMID: 30092840]
[5]
Benefits and associated risks of using allograft, autograft and synthetic bone fusion material for patients and service providers - A Systematic Review. JBI Database Syst Rev Implement Reports 2010; 8(8): 1-13.
[6]
Jones EA, Giannoudis PV, Kouroupis D. Bone repair with skeletal stem cells: Rationale, progress to date and clinical application. Ther Adv Musculoskelet Dis 2016; 8(3): 57-71.
[http://dx.doi.org/10.1177/1759720X16642372] [PMID: 27247633]
[7]
Rosset P, Deschaseaux F, Layrolle P. Cell therapy for bone repair. Orthop Traumatol Surg Res 2014; 100(1)(Suppl.): S107-12.
[http://dx.doi.org/10.1016/j.otsr.2013.11.010] [PMID: 24411717]
[8]
Rammal H, Entz L, Dubus M, et al. Osteoinductive Material to Fine-Tune Paracrine Crosstalk of Mesenchymal Stem Cells With Endothelial Cells and Osteoblasts. Front Bioeng Biotechnol 2019; 7: 256.
[http://dx.doi.org/10.3389/fbioe.2019.00256] [PMID: 31649927]
[9]
Olthof MGL, Lu L, Tryfonidou MA, et al. The Osteoinductive Effect of Controlled Bone Morphogenic Protein 2 Release Is Location Dependent. Tissue Eng Part A 2019; 25(3-4): 193-202.
[http://dx.doi.org/10.1089/ten.tea.2017.0427] [PMID: 30101676]
[10]
Chen M, Woodley D. Use of collagen type VII for maintaining and re-inducing osteogenic abilities of mesenchymal stem cells. Google Patents, 2019.
[11]
Sándor GK, Numminen J, Wolff J, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 2014; 3(4): 530-40.
[http://dx.doi.org/10.5966/sctm.2013-0173] [PMID: 24558162]
[12]
Du F, Wu H, Li H, et al. Bone marrow mononuclear cells combined with Beta-Tricalcium Phosphate granules for alveolar cleft repair: A 12-month clinical study. Sci Rep 2017; 7(1): 13773.
[http://dx.doi.org/10.1038/s41598-017-12602-1] [PMID: 29062005]
[13]
Janko M, Sahm J, Schaible A, et al. Comparison of three different types of scaffolds preseeded with human bone marrow mononuclear cells on the bone healing in a femoral critical size defect model of the athymic rat. J Tissue Eng Regen Med 2018; 12(3): 653-66.
[http://dx.doi.org/10.1002/term.2484] [PMID: 28548246]
[14]
Khojasteh A, Kheiri L, Behnia H, Tehranchi A, Nazeman P, Nadjmi N, et al. Lateral ramus cortical bone plate in alveolar cleft osteoplasty with concomitant use of buccal fat pad derived cells and autogenous bone: Phase I clinical trial. BioMed research international 2017.
[http://dx.doi.org/10.1155/2017/6560234]
[15]
Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar GM. Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: A prospective randomized clinical trial. Clin Oral Implants Res 2011; 22(3): 251-8.
[http://dx.doi.org/10.1111/j.1600-0501.2010.01981.x] [PMID: 20831758]
[16]
Redondo LM, García V, Peral B, et al. Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. J Craniomaxillofac Surg 2018; 46(2): 222-9.
[http://dx.doi.org/10.1016/j.jcms.2017.11.004] [PMID: 29229365]
[17]
Food U, Administration D. Regulatory considerations for human cells, tissues, and cellular and tissue-based products: Minimal manipulation and homologous use. 2018.
[18]
Marks P, Gottlieb S. Balancing safety and innovation for cell-based regenerative medicine. N Engl J Med 2018; 378(10): 954-9.
[http://dx.doi.org/10.1056/NEJMsr1715626] [PMID: 29514023]
[19]
Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions.John Wiley & Sons 2011.
[20]
Ioannidis JP, Evans SJ, Gøtzsche PC, et al. CONSORT Group. Better reporting of harms in randomized trials: An extension of the CONSORT statement. Ann Intern Med 2004; 141(10): 781-8.
[http://dx.doi.org/10.7326/0003-4819-141-10-200411160-00009] [PMID: 15545678]
[21]
Kim S-J, Shin Y-W, Yang K-H, et al. A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast(Ossron) injection to treat fractures. BMC Musculoskelet Disord 2009; 10(1): 20.
[http://dx.doi.org/10.1186/1471-2474-10-20] [PMID: 19216734]
[22]
Lee K, Chan CK, Patil N, Goodman SB. Cell therapy for bone regeneration--bench to bedside. J Biomed Mater Res B Appl Biomater 2009; 89(1): 252-63.
[http://dx.doi.org/10.1002/jbm.b.31199] [PMID: 18777578]
[23]
Zhao D, Cui D, Wang B, et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 2012; 50(1): 325-30.
[http://dx.doi.org/10.1016/j.bone.2011.11.002] [PMID: 22094904]
[24]
Kaigler D, Pagni G, Park CH, et al. Stem cell therapy for craniofacial bone regeneration: A randomized, controlled feasibility trial. Cell Transplant 2013; 22(5): 767-77.
[http://dx.doi.org/10.3727/096368912X652968] [PMID: 22776413]
[25]
Kaigler D, Avila-Ortiz G, Travan S, et al. Bone engineering of maxillary sinus bone deficiencies using enriched CD90+ stem cell therapy: A randomized clinical trial. J Bone Miner Res 2015; 30(7): 1206-16.
[http://dx.doi.org/10.1002/jbmr.2464] [PMID: 25652112]
[26]
Castillo-Cardiel G, López-Echaury AC, Saucedo-Ortiz JA, et al. Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial. Dent Traumatol 2017; 33(1): 38-44.
[http://dx.doi.org/10.1111/edt.12303] [PMID: 27513920]
[27]
d’Aquino R, De Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 2009; 18(7): 75-83.
[http://dx.doi.org/10.22203/eCM.v018a07] [PMID: 19908196]
[28]
Ogawa S, Hoshina H, Nakata K, et al. High‐resolution three‐dimensional computed tomography analysis of the clinical efficacy of cultured autogenous periosteal cells in sinus lift bone grafting. Clin Implant Dent Relat Res 2016; 18(4): 707-16.
[http://dx.doi.org/10.1111/cid.12356] [PMID: 26017402]
[29]
Šponer P, Filip S, Kučera T, Brtková J, Urban K, Palička V, et al. Utilizing Autologous Multipotent Mesenchymal Stromal Cells and-Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial. BioMed research international 2016.
[30]
Akhlaghi F, Hesami N, Rad MR, Nazeman P, Fahimipour F, Khojasteh A. Improved bone regeneration through amniotic membrane loaded with buccal fat pad-derived MSCs as an adjuvant in maxillomandibular reconstruction. J Craniomaxillofac Surg 2019; 47(8): 1266-73.
[http://dx.doi.org/10.1016/j.jcms.2019.03.030] [PMID: 31337570]
[31]
Chen F-M, Gao L-N, Tian B-M, et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: A randomized clinical trial. Stem Cell Res Ther 2016; 7(1): 33.
[http://dx.doi.org/10.1186/s13287-016-0288-1] [PMID: 26895633]
[32]
Pelegrine AA, da Costa CES, Correa MEP, Marques JFC Jr. Clinical and histomorphometric evaluation of extraction sockets treated with an autologous bone marrow graft. Clin Oral Implants Res 2010; 21(5): 535-42.
[http://dx.doi.org/10.1111/j.1600-0501.2009.01891.x] [PMID: 20337664]
[33]
da Costa CE, Pelegrine AA, Fagundes DJ, Simoes MdeJ, Taha MO. Use of corticocancellous allogeneic bone blocks impregnated with bone marrow aspirate: A clinical, tomographic, and histomorphometric study. Gen Dent 2011; 59(5): e200-5.
[PMID: 22313831]
[34]
Sen RK, Tripathy SK, Aggarwal S, Marwaha N, Sharma RR, Khandelwal N. Early results of core decompression and autologous bone marrow mononuclear cells instillation in femoral head osteonecrosis: A randomized control study. J Arthroplasty 2012; 27(5): 679-86.
[http://dx.doi.org/10.1016/j.arth.2011.08.008] [PMID: 22000577]
[35]
Damron TA, Lisle J, Craig T, Wade M, Silbert W, Cohen H. Ultraporous β-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions: comparison in a prospective randomized clinical trial. JBJS 2013; 95(2): 158-66.
[http://dx.doi.org/10.2106/JBJS.K.00181] [PMID: 23324964]
[36]
Ma Y, Wang T, Liao J, et al. Efficacy of autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of femoral head: A prospective, double-blinded, randomized, controlled study. Stem Cell Res Ther 2014; 5(5): 115.
[http://dx.doi.org/10.1186/scrt505] [PMID: 25315149]
[37]
Wildburger A, Payer M, Jakse N, Strunk D, Etchard-Liechtenstein N, Sauerbier S. Impact of autogenous concentrated bone marrow aspirate on bone regeneration after sinus floor augmentation with a bovine bone substitute--a split-mouth pilot study. Clin Oral Implants Res 2014; 25(10): 1175-81.
[http://dx.doi.org/10.1111/clr.12228] [PMID: 23875876]
[38]
Mao Q, Wang W, Xu T, et al. Combination treatment of biomechanical support and targeted intra-arterial infusion of peripheral blood stem cells mobilized by granulocyte-colony stimulating factor for the osteonecrosis of the femoral head: a randomized controlled clinical trial. J Bone Miner Res 2015; 30(4): 647-56.
[http://dx.doi.org/10.1002/jbmr.2390] [PMID: 25349059]
[39]
Pelegrine AA, Teixeira ML, Sperandio M, et al. Can bone marrow aspirate concentrate change the mineralization pattern of the anterior maxilla treated with xenografts? A preliminary study. Contemp Clin Dent 2016; 7(1): 21-6.
[http://dx.doi.org/10.4103/0976-237X.177112] [PMID: 27041895]
[40]
Lavareda Corrêa SC, Elias de Sousa J, Pasquali PJ, et al. use of bone allograft with or without bone marrow aspirate concentrate in appositional reconstructions: A tomographic and histomorphometric study. Implant Dent 2017; 26(6): 915-21.
[http://dx.doi.org/10.1097/ID.0000000000000669] [PMID: 29095784]
[41]
Ferrarotti F, Romano F, Gamba MN, et al. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J Clin Periodontol 2018; 45(7): 841-50.
[http://dx.doi.org/10.1111/jcpe.12931] [PMID: 29779220]
[42]
Yan D, Chen L, Li Z, Guo W, Sun W. Autologous mesenchymal stem cell implantation in the management of osteonecrosis of the femoral head. Curr Orthop Pract 2015; 26(3): 265-8.
[http://dx.doi.org/10.1097/BCO.0000000000000218]
[43]
d’Aquino R, Trovato L, Graziano A, Ceccarelli G, Cusella de Angelis G, Marangini A, et al. Periosteum-derived micro-grafts for tissue regeneration of human maxillary bone. J Transl Sci 2016; 2(2): 125-9.
[http://dx.doi.org/10.15761/JTS.1000128]
[44]
Kang JS, Suh YJ, Moon KH, et al. Clinical efficiency of bone marrow mesenchymal stem cell implantation for osteonecrosis of the femoral head: A matched pair control study with simple core decompression. Stem Cell Res Ther 2018; 9(1): 274.
[http://dx.doi.org/10.1186/s13287-018-1030-y] [PMID: 30359323]
[45]
Domenis R, Lazzaro L, Calabrese S, et al. Adipose tissue derived stem cells: In vitro and in vivo analysis of a standard and three commercially available cell-assisted lipotransfer techniques. Stem Cell Res Ther 2015; 6(1): 2.
[http://dx.doi.org/10.1186/scrt536] [PMID: 25559708]
[46]
Güven S, Karagianni M, Schwalbe M, et al. Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax® technology. Tissue Eng Part C Methods 2012; 18(8): 575-82.
[http://dx.doi.org/10.1089/ten.tec.2011.0617] [PMID: 22372873]
[47]
Graziano A, D’aquino R. Disgregating device of biological material and corresponding manufacturing method and method for the preparation of cell suspensions and tissue micrografts. Google Patents, 2018.
[48]
Bellei B, Migliano E, Tedesco M, Caputo S, Picardo M. Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery. Sci Rep 2017; 7(1): 10015.
[http://dx.doi.org/10.1038/s41598-017-10710-6] [PMID: 28855688]
[49]
Shanbhag S, Suliman S, Pandis N, Stavropoulos A, Sanz M, Mustafa K. Cell therapy for orofacial bone regeneration: A systematic review and meta-analysis. J Clin Periodontol 2019; 46(Suppl. 21): 162-82.
[http://dx.doi.org/10.1111/jcpe.13049] [PMID: 30623455]
[50]
Jäger M, Herten M, Fochtmann U, et al. Bridging the gap: Bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 2011; 29(2): 173-80.
[http://dx.doi.org/10.1002/jor.21230] [PMID: 20740672]
[51]
Nagpal A, Choy FC, Howell S, et al. Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: A systematic review and meta-analysis. Stem Cell Res Ther 2017; 8(1): 191.
[http://dx.doi.org/10.1186/s13287-017-0643-x] [PMID: 28854961]
[52]
Zhang Y, Chen W, Feng B, Cao H. The Clinical Efficacy and Safety of Stem Cell Therapy for Diabetes Mellitus: A Systematic Review and Meta-Analysis. Aging Dis 2020; 11(1): 141-53.
[http://dx.doi.org/10.14336/AD.2019.0421] [PMID: 32010488]
[53]
Fan M, Huang Y, Chen Z, et al. Efficacy of mesenchymal stem cell therapy in systolic heart failure: A systematic review and meta-analysis. Stem Cell Res Ther 2019; 10(1): 150.
[http://dx.doi.org/10.1186/s13287-019-1258-1] [PMID: 31151406]
[54]
Gao W, Chen D, Liu G, Ran X. Autologous stem cell therapy for peripheral arterial disease: A systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2019; 10(1): 140.
[http://dx.doi.org/10.1186/s13287-019-1254-5] [PMID: 31113463]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy