Review Article

The Dramatic Role of IFN Family in Aberrant Inflammatory Osteolysis

Author(s): Zihan Deng, Wenhui Hu, Hongbo Ai, Yueqi Chen* and Shiwu Dong*

Volume 21, Issue 2, 2021

Published on: 27 November, 2020

Page: [112 - 129] Pages: 18

DOI: 10.2174/1566523220666201127114845

Price: $65

Open Access Journals Promotions 2
Abstract

Skeletal system has been considered a highly dynamic system, in which bone-forming osteoblasts and bone-resorbing osteoclasts go through a continuous remodeling cycle to maintain homeostasis of bone matrix. It has been well acknowledged that interferons (IFNs), acting as a subgroup of cytokines, not only have crucial effects on regulating immunology but also could modulate the dynamic balance of bone matrix. In the light of different isoforms, IFNs have been divided into three major categories in terms of amino acid sequences, recognition of specific receptors and biological activities. Currently, type I IFNs consist of a multi-gene family with several subtypes, of which IFN-α exerts pro-osteoblastogenic effects to activate osteoblast differentiation and inhibits osteoclast fusion to maintain bone matrix integrity. Meanwhile, IFN-β suppresses osteoblast-mediated bone remodeling as well as exhibits inhibitory effects on osteoclast differentiation to attenuate bone resorption. Type II IFN constitutes the only type, IFN-γ, which exerts regulatory effects on osteoclastic bone resorption and osteoblastic bone formation by biphasic ways. Interestingly, type III IFNs are regarded as new members of IFN family composed of four members, including IFN-λ1 (IL-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B) and IFN-λ4, which have been certified to participate in bone destruction. However, the direct regulatory mechanisms underlying how type III IFNs modulate the metabolic balance of bone matrix, remains poorly elucidated. In this review, we have summarized functions of IFN family during physiological and pathological conditions and described the mechanisms by which IFNs maintain bone matrix homeostasis via affecting the osteoclast-osteoblast crosstalk. In addition, the potential therapeutic effects of IFNs on inflammatory bone destruction diseases such as rheumatoid arthritis (RA), osteoarthritis (OA) and infectious bone diseases are also well displayed, which are based on the predominant role of IFNs in modulating the dynamic equilibrium of bone matrix.

Keywords: Interferons (IFNs), osteoclast-osteoblast crosstalk, bone homeostasis, inflammatory bone destruction diseases, skeletal, bone-forming osteoblasts.

Next »
Graphical Abstract
[1]
Wong IP, Zengin A, Herzog H, Baldock PA. Central regulation of bone mass. Semin Cell Dev Biol 2008; 19(5): 452-8.
[http://dx.doi.org/10.1016/j.semcdb.2008.08.001] [PMID: 18761098]
[2]
Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys 2008; 473(2): 201-9.
[http://dx.doi.org/10.1016/j.abb.2008.03.027] [PMID: 18406338]
[3]
Chen Y, Dou C, Yi J, et al. Inhibitory effect of vanillin on RANKL-induced osteoclast formation and function through activating mitochondrial-dependent apoptosis signaling pathway. Life Sci 2018; 208: 305-14.
[http://dx.doi.org/10.1016/j.lfs.2018.07.048] [PMID: 30055205]
[4]
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37: 53-65.
[http://dx.doi.org/10.1016/j.smim.2018.01.001] [PMID: 29395681]
[5]
Blair HC, Robinson LJ, Zaidi M. Osteoclast signalling pathways. Biochem Biophys Res Commun 2005; 328(3): 728-38.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.077] [PMID: 15694407]
[6]
Zhang C, Dou CE, Xu J, Dong S. DC-STAMP, the key fusion-mediating molecule in osteoclastogenesis. J Cell Physiol 2014; 229(10): 1330-5.
[http://dx.doi.org/10.1002/jcp.24553] [PMID: 24420845]
[7]
Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397(6717): 315-23.
[http://dx.doi.org/10.1038/16852] [PMID: 9950424]
[8]
Abraham AK, Ramanathan M, Weinstock-Guttman B, Mager DE. Mechanisms of interferon-beta effects on bone homeostasis. Biochem Pharmacol 2009; 77(12): 1757-62.
[http://dx.doi.org/10.1016/j.bcp.2009.01.007] [PMID: 19428330]
[9]
Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103(9): 1345-52.
[http://dx.doi.org/10.1172/JCI5703] [PMID: 10225978]
[10]
Komine M, Kukita A, Kukita T, Ogata Y, Hotokebuchi T, Kohashi O. Tumor necrosis factor-alpha cooperates with receptor activator of nuclear factor kappaB ligand in generation of osteoclasts in stromal cell-depleted rat bone marrow cell culture. Bone 2001; 28(5): 474-83.
[http://dx.doi.org/10.1016/S8756-3282(01)00420-3] [PMID: 11344046]
[11]
Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res 2002; 4(Suppl. 3): S227-32.
[http://dx.doi.org/10.1186/ar581] [PMID: 12110142]
[12]
Takayanagi H, Sato K, Takaoka A, Taniguchi T. Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev 2005; 208: 181-93.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00337.x] [PMID: 16313349]
[13]
Negishi H, Taniguchi T, Yanai H. The Interferon (IFN) class of cytokines and the IFN Regulatory Factor (IRF) transcription factor family. Cold Spring Harb Perspect Biol 2018; 10(11): a028423.
[http://dx.doi.org/10.1101/cshperspect.a028423] [PMID: 28963109]
[14]
Bandurska K, Król I, Myga-Nowak M. Interferons: between structure and function. Postepy Hig Med Dosw 2014; 68: 428-40.
[http://dx.doi.org/10.5604/17322693.1101229] [PMID: 24864095]
[15]
Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 2011; 17(9): 2619-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1114] [PMID: 21372217]
[16]
de Weerd NA, Nguyen T. The interferons and their receptors--distribution and regulation. Immunol Cell Biol 2012; 90(5): 483-91.
[http://dx.doi.org/10.1038/icb.2012.9] [PMID: 22410872]
[17]
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14(1): 36-49.
[http://dx.doi.org/10.1038/nri3581] [PMID: 24362405]
[18]
Decker T, Müller M, Stockinger S. The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol 2005; 5(9): 675-87.
[http://dx.doi.org/10.1038/nri1684] [PMID: 16110316]
[19]
Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004; 202: 8-32.
[http://dx.doi.org/10.1111/j.0105-2896.2004.00204.x] [PMID: 15546383]
[20]
Taniguchi T, Takaoka A. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2001; 2(5): 378-86.
[http://dx.doi.org/10.1038/35073080] [PMID: 11331912]
[21]
Kalliolias GD, Ivashkiv LB. Overview of the biology of type I interferons. Arthritis Res Ther 2010; 12(Suppl. 1): S1.
[http://dx.doi.org/10.1186/ar2881] [PMID: 20392288]
[22]
Cohen B, Novick D, Barak S, Rubinstein M. Ligand-induced association of the type I interferon receptor components. Mol Cell Biol 1995; 15(8): 4208-14.
[http://dx.doi.org/10.1128/MCB.15.8.4208] [PMID: 7623815]
[23]
Rehermann B, Bertoletti A. Immunological aspects of antiviral therapy of chronic hepatitis B virus and hepatitis C virus infections. Hepatology 2015; 61(2): 712-21.
[http://dx.doi.org/10.1002/hep.27323] [PMID: 25048716]
[24]
Hoofnagle JH, di Bisceglie AM. The treatment of chronic viral hepatitis. N Engl J Med 1997; 336(5): 347-56.
[http://dx.doi.org/10.1056/NEJM199701303360507] [PMID: 9011789]
[25]
Capobianchi MR, Uleri E, Caglioti C, Dolei A. Type I IFN family members: similarity, differences and interaction. Cytokine Growth Factor Rev 2015; 26(2): 103-11.
[http://dx.doi.org/10.1016/j.cytogfr.2014.10.011] [PMID: 25466633]
[26]
van Holten J, Smeets TJ, Blankert P, Tak PP. Expression of interferon beta in synovial tissue from patients with rheumatoid arthritis: comparison with patients with osteoarthritis and reactive arthritis. Ann Rheum Dis 2005; 64(12): 1780-2.
[http://dx.doi.org/10.1136/ard.2005.040477] [PMID: 15878901]
[27]
Gray PW, Leung DW, Pennica D, et al. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature 1982; 295(5849): 503-8.
[http://dx.doi.org/10.1038/295503a0] [PMID: 6173769]
[28]
Wheelock EF. Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science 1965; 149(3681): 310-1.
[http://dx.doi.org/10.1126/science.149.3681.310]
[29]
Takaoka A, Mitani Y, Suemori H, et al. Cross talk between interferon-gamma and -alpha/beta signaling components in caveolar membrane domains. Science 2000; 288(5475): 2357-60.
[http://dx.doi.org/10.1126/science.288.5475.2357] [PMID: 10875919]
[30]
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004; 75(2): 163-89.
[http://dx.doi.org/10.1189/jlb.0603252] [PMID: 14525967]
[31]
Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 1983; 158(3): 670-89.
[http://dx.doi.org/10.1084/jem.158.3.670] [PMID: 6411853]
[32]
Lazear HM, Nice TJ, Diamond MS. Interferon-λ: Immune Functions at Barrier Surfaces and Beyond. Immunity 2015; 43(1): 15-28.
[http://dx.doi.org/10.1016/j.immuni.2015.07.001] [PMID: 26200010]
[33]
Uzé G, Monneron D. IL-28 and IL-29: newcomers to the interferon family. Biochimie 2007; 89(6-7): 729-34.
[http://dx.doi.org/10.1016/j.biochi.2007.01.008] [PMID: 17367910]
[34]
Iversen MB, Paludan SR. Mechanisms of type III interferon expression. J Interferon Cytokine Res 2010; 30(8): 573-8.
[http://dx.doi.org/10.1089/jir.2010.0063] [PMID: 20645874]
[35]
Robek MD, Boyd BS, Chisari FV. Lambda interferon inhibits hepatitis B and C virus replication. J Virol 2005; 79(6): 3851-4.
[http://dx.doi.org/10.1128/JVI.79.6.3851-3854.2005] [PMID: 15731279]
[36]
Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 2008; 10(11): a028423.
[http://dx.doi.org/10.1371/journal.ppat.1000017] [PMID: 18369468]
[37]
Meager A, Visvalingam K, Dilger P, Bryan D, Wadhwa M. Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine 2005; 31(2): 109-18.
[http://dx.doi.org/10.1016/j.cyto.2005.04.003] [PMID: 15899585]
[38]
Hamming OJ, Gad HH, Paludan S, Hartmann R. Lambda Interferons: New Cytokines with Old Functions. Pharmaceuticals (Basel) 2010; 3(4): 795-809.
[http://dx.doi.org/10.3390/ph3040795] [PMID: 27713280]
[39]
Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21(2): 115-37.
[PMID: 10782361]
[40]
Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of osteoclast differentiation by cytokine networks. Immune Netw 2018; 18(1): e8.
[http://dx.doi.org/10.4110/in.2018.18.e8] [PMID: 29503739]
[41]
Walsh MC, Kim N, Kadono Y, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 2006; 24: 33-63.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090646] [PMID: 16551243]
[42]
Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007; 7(4): 292-304.
[http://dx.doi.org/10.1038/nri2062] [PMID: 17380158]
[43]
Amarasekara DS, Yu J, Rho J. Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res 2015; 2015: 832127.
[http://dx.doi.org/10.1155/2015/832127] [PMID: 26065006]
[44]
Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu Rev Biochem 1987; 56: 727-77.
[http://dx.doi.org/10.1146/annurev.bi.56.070187.003455] [PMID: 2441659]
[45]
Gensure RC, Gardella TJ, Jüppner H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 2005; 328(3): 666-78.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.069] [PMID: 15694400]
[46]
Jüppner H, Abou-Samra AB, Freeman M, et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991; 254(5034): 1024-6.
[http://dx.doi.org/10.1126/science.1658941] [PMID: 1658941]
[47]
Laroche M, Bret J, Brouchet A, Mazières B. Clinical and densitometric efficacy of the association of interferon alpha and pamidronate in the treatment of osteoporosis in patients with systemic mastocytosis. Clin Rheumatol 2007; 26(2): 242-3.
[http://dx.doi.org/10.1007/s10067-006-0369-0] [PMID: 16902757]
[48]
Luther G, Wagner ER, Zhu G, et al. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr Gene Ther 2011; 11(3): 229-40.
[http://dx.doi.org/10.2174/156652311795684777] [PMID: 21453282]
[49]
Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 2004; 11(17): 1312-20.
[http://dx.doi.org/10.1038/sj.gt.3302298] [PMID: 15269709]
[50]
Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012; 8(2): 272-88.
[http://dx.doi.org/10.7150/ijbs.2929] [PMID: 22298955]
[51]
Gao L, Liesveld J, Anolik J, Mcdavid A, Looney RJ. IFNβ signaling inhibits osteogenesis in human SLE bone marrow. Lupus 2020; 29(9): 1040-9.
[http://dx.doi.org/10.1177/0961203320930088] [PMID: 32515653]
[52]
Takayanagi H, Kim S, Matsuo K, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002; 416(6882): 744-9.
[http://dx.doi.org/10.1038/416744a] [PMID: 11961557]
[53]
Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95(7): 3597-602.
[http://dx.doi.org/10.1073/pnas.95.7.3597] [PMID: 9520411]
[54]
Kobayashi N, Kadono Y, Naito A, et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 2001; 20(6): 1271-80.
[http://dx.doi.org/10.1093/emboj/20.6.1271] [PMID: 11250893]
[55]
Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000; 408(6812): 600-5.
[http://dx.doi.org/10.1038/35046102] [PMID: 11117749]
[56]
Au PY, Yeh WC. Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol 2007; 597: 32-47.
[http://dx.doi.org/10.1007/978-0-387-70630-6_3] [PMID: 17633015]
[57]
Matsuo K, Owens JM, Tonko M, Elliott C, Chambers TJ, Wagner EF. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 2000; 24(2): 184-7.
[http://dx.doi.org/10.1038/72855] [PMID: 10655067]
[58]
Bucay N, Sarosi I, Dunstan CR, et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12(9): 1260-8.
[http://dx.doi.org/10.1101/gad.12.9.1260] [PMID: 9573043]
[59]
Ha H, Lee JH, Kim HN, et al. Stimulation by TLR5 modulates osteoclast differentiation through STAT1/IFN-beta. J Immunol 2008; 180(3): 1382-9.
[http://dx.doi.org/10.4049/jimmunol.180.3.1382] [PMID: 18209032]
[60]
Lee Y, Hyung SW, Jung HJ, et al. The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-beta-induced inhibitory signaling. Blood 2008; 111(2): 885-93.
[http://dx.doi.org/10.1182/blood-2007-03-082941] [PMID: 17928529]
[61]
Lemaire I, Falzoni S, Leduc N, et al. Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J Immunol 2006; 177(10): 7257-65.
[http://dx.doi.org/10.4049/jimmunol.177.10.7257] [PMID: 17082644]
[62]
Lemaire I, Falzoni S, Adinolfi E. Purinergic signaling in giant cell formation. Front Biosci (Elite Ed) 2012; 4: 41-55.
[http://dx.doi.org/10.2741/e359] [PMID: 22201854]
[63]
Hayashida C, Ito J, Nakayachi M, et al. Osteocytes produce interferon-β as a negative regulator of osteoclastogenesis. J Biol Chem 2014; 289(16): 11545-55.
[http://dx.doi.org/10.1074/jbc.M113.523811] [PMID: 24610813]
[64]
Zhao R, Chen NN, Zhou XW, et al. Exogenous IFN-beta regulates the RANKL-c-Fos-IFN-beta signaling pathway in the collagen antibody-induced arthritis model. J Transl Med 2014; 12: 330.
[http://dx.doi.org/10.1186/s12967-014-0330-y] [PMID: 25491303]
[65]
Kurihara N, Roodman GD. Interferons-alpha and -gamma inhibit interleukin-1 beta-stimulated osteoclast-like cell formation in long-term human marrow cultures. J Interferon Res 1990; 10(5): 541-7.
[http://dx.doi.org/10.1089/jir.1990.10.541] [PMID: 2125633]
[66]
Coelho LF, Magno de Freitas Almeida G, Mennechet FJ, Blangy A, Uzé G. Interferon-alpha and -beta differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expression. Proc Natl Acad Sci USA 2005; 102(33): 11917-22.
[http://dx.doi.org/10.1073/pnas.0502188102] [PMID: 16081539]
[67]
Avnet S, Cenni E, Perut F, et al. Interferon-alpha inhibits in vitro osteoclast differentiation and renal cell carcinoma-induced angiogenesis. Int J Oncol 2007; 30(2): 469-76.
[PMID: 17203230]
[68]
Gowen M, MacDonald BR, Russell RG. Actions of recombinant human gamma-interferon and tumor necrosis factor alpha on the proliferation and osteoblastic characteristics of human trabecular bone cells in vitro. Arthritis Rheum 1988; 31(12): 1500-7.
[http://dx.doi.org/10.1002/art.1780311206] [PMID: 3143369]
[69]
Ruiz C, Pérez E, García-Martínez O, Díaz-Rodríguez L, Arroyo-Morales M, Reyes-Botella C. Expression of cytokines IL-4, IL-12, IL-15, IL-18, and IFNgamma and modulation by different growth factors in cultured human osteoblast-like cells. J Bone Miner Metab 2007; 25(5): 286-92.
[http://dx.doi.org/10.1007/s00774-007-0767-7] [PMID: 17704993]
[70]
Maruhashi T, Kaifu T, Yabe R, et al. DCIR maintains bone homeostasis by regulating IFN-γ production in T cells. J Immunol 2015; 194(12): 5681-91.
[http://dx.doi.org/10.4049/jimmunol.1500273] [PMID: 25926676]
[71]
Duque G, Huang DC, Macoritto M, et al. Autocrine regulation of interferon gamma in mesenchymal stem cells plays a role in early osteoblastogenesis. Stem Cells 2009; 27(3): 550-8.
[http://dx.doi.org/10.1634/stemcells.2008-0886] [PMID: 19096039]
[72]
Croes M, Öner FC, van Neerven D, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone 2016; 84: 262-70.
[http://dx.doi.org/10.1016/j.bone.2016.01.010] [PMID: 26780388]
[73]
Yamaguchi T, Movila A, Kataoka S, et al. Proinflammatory M1 Macrophages Inhibit RANKL-Induced Osteoclastogenesis. Infect Immun 2016; 84(10): 2802-12.
[http://dx.doi.org/10.1128/IAI.00461-16] [PMID: 27456834]
[74]
Söderström K, Stein E, Colmenero P, et al. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci USA 2010; 107(29): 13028-33.
[http://dx.doi.org/10.1073/pnas.1000546107] [PMID: 20615964]
[75]
Choi Y, Kim JJ. B cells activated in the presence of Th1 cytokines inhibit osteoclastogenesis. Exp Mol Med 2003; 35(5): 385-92.
[http://dx.doi.org/10.1038/emm.2003.51] [PMID: 14646592]
[76]
Ji JD, Park-Min KH, Shen Z, et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors. J Immunol 2009; 183(11): 7223-33.
[http://dx.doi.org/10.4049/jimmunol.0900072] [PMID: 19890054]
[77]
Li H, Lu Y, Qian J, et al. Human osteoclasts are inducible immunosuppressive cells in response to T cell-derived IFN-γ and CD40 ligand in vitro. J Bone Miner Res 2014; 29(12): 2666-75.
[http://dx.doi.org/10.1002/jbmr.2294] [PMID: 24916315]
[78]
Xiong Q, Zhang L, Ge W, Tang P. The roles of interferons in osteoclasts and osteoclastogenesis. Joint Bone Spine 2016; 83(3): 276-81.
[http://dx.doi.org/10.1016/j.jbspin.2015.07.010] [PMID: 26832190]
[79]
Kohara H, Kitaura H, Fujimura Y, et al. IFN-γ directly inhibits TNF-α-induced osteoclastogenesis in vitro and in vivo and induces apoptosis mediated by Fas/Fas ligand interactions. Immunol Lett 2011; 137(1-2): 53-61.
[http://dx.doi.org/10.1016/j.imlet.2011.02.017] [PMID: 21338623]
[80]
Cheng J, Liu J, Shi Z, et al. Molecular mechanisms of the biphasic effects of interferon-γ on osteoclastogenesis. J Interferon Cytokine Res 2012; 32(1): 34-45.
[http://dx.doi.org/10.1089/jir.2011.0019] [PMID: 22142221]
[81]
Huang W, O’Keefe RJ, Schwarz EM. Exposure to receptor-activator of NFkappaB ligand renders pre-osteoclasts resistant to IFN-gamma by inducing terminal differentiation. Arthritis Res Ther 2003; 5(1): R49-59.
[http://dx.doi.org/10.1186/ar612] [PMID: 12716453]
[82]
Wang L, Liu S, Zhao Y, et al. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ 2015; 22(10): 1654-64.
[http://dx.doi.org/10.1038/cdd.2015.14] [PMID: 25744024]
[83]
Kim JW, Lee MS, Lee CH, et al. Effect of interferon-γ on the fusion of mononuclear osteoclasts into bone-resorbing osteoclasts. BMB Rep 2012; 45(5): 281-6.
[http://dx.doi.org/10.5483/BMBRep.2012.45.5.281] [PMID: 22617451]
[84]
Miyamoto T. Regulators of osteoclast differentiation and cell-cell fusion. Keio J Med 2011; 60(4): 101-5.
[http://dx.doi.org/10.2302/kjm.60.101] [PMID: 22200633]
[85]
Gao Y, Grassi F, Ryan MR, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 2007; 117(1): 122-32.
[http://dx.doi.org/10.1172/JCI30074] [PMID: 17173138]
[86]
Cenci S, Toraldo G, Weitzmann MN, et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci USA 2003; 100(18): 10405-10.
[http://dx.doi.org/10.1073/pnas.1533207100] [PMID: 12923292]
[87]
Luster AD, Ravetch JV. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 1987; 166(4): 1084-97.
[http://dx.doi.org/10.1084/jem.166.4.1084] [PMID: 2443596]
[88]
Kwak HB, Ha H, Kim HN, et al. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum 2008; 58(5): 1332-42.
[http://dx.doi.org/10.1002/art.23372] [PMID: 18438854]
[89]
Gad HH, Dellgren C, Hamming OJ, Vends S, Paludan SR, Hartmann R. Interferon-lambda is functionally an interferon but structurally related to the interleukin-10 family. J Biol Chem 2009; 284(31): 20869-75.
[http://dx.doi.org/10.1074/jbc.M109.002923] [PMID: 19457860]
[90]
Lopušná K, Režuchová I, Betáková T, et al. Interferons lambda, new cytokines with antiviral activity. Acta Virol 2013; 57(2): 171-9.
[http://dx.doi.org/10.4149/av_2013_02_171] [PMID: 23600875]
[91]
Coccia EM, Severa M, Giacomini E, et al. Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 2004; 34(3): 796-805.
[http://dx.doi.org/10.1002/eji.200324610] [PMID: 14991609]
[92]
Selvakumar TA, Bhushal S, Kalinke U, et al. Identification of a predominantly interferon-λ-induced transcriptional profile in murine intestinal epithelial cells. Front Immunol 2017; 8: 1302.
[http://dx.doi.org/10.3389/fimmu.2017.01302] [PMID: 29085367]
[93]
Lin JD, Feng N, Sen A, et al. Distinct roles of Type I and Type III interferons in intestinal immunity to homologous and heterologous Rotavirus Infections. PLoS Pathog 2016; 12(4): e1005600.
[http://dx.doi.org/10.1371/journal.ppat.1005600] [PMID: 27128797]
[94]
Kohli A, Zhang X, Yang J, et al. Distinct and overlapping genomic profiles and antiviral effects of Interferon-λ and -α on HCV-infected and noninfected hepatoma cells. J Viral Hepat 2012; 19(12): 843-53.
[http://dx.doi.org/10.1111/j.1365-2893.2012.01610.x] [PMID: 23121362]
[95]
Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J Virol 2007; 81(14): 7749-58.
[http://dx.doi.org/10.1128/JVI.02438-06] [PMID: 17507495]
[96]
Marcello T, Grakoui A, Barba-Spaeth G, et al. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 2006; 131(6): 1887-98.
[http://dx.doi.org/10.1053/j.gastro.2006.09.052] [PMID: 17087946]
[97]
Siegel R, Eskdale J, Gallagher G. Regulation of IFN-λ1 promoter activity (IFN-λ1/IL-29) in human airway epithelial cells. J Immunol 2011; 187(11): 5636-44.
[http://dx.doi.org/10.4049/jimmunol.1003988] [PMID: 22058416]
[98]
Chen Y, Wang Y, Tang R, et al. Dendritic cells-derived interferon-λ1 ameliorated inflammatory bone destruction through inhibiting osteoclastogenesis. Cell Death Dis 2020; 11(6): 414.
[http://dx.doi.org/10.1038/s41419-020-2612-z] [PMID: 32488049]
[99]
Xu J, Tan JW, Huang L, et al. Cloning, sequencing, and functional characterization of the rat homologue of receptor activator of NF-kappaB ligand. J Bone Miner Res 2000; 15(11): 2178-86.
[http://dx.doi.org/10.1359/jbmr.2000.15.11.2178] [PMID: 11092398]
[100]
Yamashita T, Yao Z, Li F, et al. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 2007; 282(25): 18245-53.
[http://dx.doi.org/10.1074/jbc.M610701200] [PMID: 17485464]
[101]
Plotkin LI, Essex AL, Davis HM. RAGE Signaling in Skeletal Biology. Curr Osteoporos Rep 2019; 17(1): 16-25.
[http://dx.doi.org/10.1007/s11914-019-00499-w] [PMID: 30685821]
[102]
Seeliger C, Schyschka L, Kronbach Z, et al. Signaling pathway STAT1 is strongly activated by IFN-β in the pathogenesis of osteoporosis. Eur J Med Res 2015; 20: 1.
[http://dx.doi.org/10.1186/s40001-014-0074-4] [PMID: 25563300]
[103]
Angelotti F, Parma A, Cafaro G, Capecchi R, Alunno A, Puxeddu I. One year in review 2017: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol 2017; 35(3): 368-78.
[PMID: 28631608]
[104]
Castillo-Martínez D, Juarez M, Patlán M, Páez A, Massó F, Amezcua-Guerra LM. Type-III interferons and rheumatoid arthritis: Correlation between interferon lambda 1 (interleukin 29) and antimutated citrullinated vimentin antibody levels. Autoimmunity 2017; 50(2): 82-5.
[http://dx.doi.org/10.1080/08916934.2017.1289181] [PMID: 28263098]
[105]
Choi SI, Brahn E. Rheumatoid arthritis therapy: advances from bench to bedside. Autoimmunity 2010; 43(7): 478-92.
[http://dx.doi.org/10.3109/08916931003674717] [PMID: 20429843]
[106]
Hou Y, Lin H, Zhu L, et al. The inhibitory effect of IFN-γ on protease HTRA1 expression in rheumatoid arthritis. J Immunol 2014; 193(1): 130-8.
[http://dx.doi.org/10.4049/jimmunol.1302700] [PMID: 24907345]
[107]
Shim JH, Stavre Z, Gravallese EM. Bone loss in rheumatoid arthritis: basic mechanisms and clinical implications. Calcif Tissue Int 2018; 102(5): 533-46.
[http://dx.doi.org/10.1007/s00223-017-0373-1] [PMID: 29204672]
[108]
Søe K, Merrild DM, Delaissé JM. Steering the osteoclast through the demineralization-collagenolysis balance. Bone 2013; 56(1): 191-8.
[http://dx.doi.org/10.1016/j.bone.2013.06.007] [PMID: 23777960]
[109]
Xing L, Schwarz EM, Boyce BF. Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev 2005; 208: 19-29.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00336.x] [PMID: 16313338]
[110]
Martin TJ. Historically significant events in the discovery of RANK/RANKL/OPG. World J Orthop 2013; 4(4): 186-97.
[http://dx.doi.org/10.5312/wjo.v4.i4.186] [PMID: 24147254]
[111]
Mohamed SG, Sugiyama E, Shinoda K, et al. Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells. Bone 2007; 41(4): 592-602.
[http://dx.doi.org/10.1016/j.bone.2007.05.016] [PMID: 17627913]
[112]
Vis M, Güler-Yüksel M, Lems WF. Can bone loss in rheumatoid arthritis be prevented? Osteoporos Int 2013; 24(10): 2541-53.
[http://dx.doi.org/10.1007/s00198-013-2334-5] [PMID: 23775419]
[113]
Karonitsch T, von Dalwigk K, Steiner CW, et al. Interferon signals and monocytic sensitization of the interferon-γ signaling pathway in the peripheral blood of patients with rheumatoid arthritis. Arthritis Rheum 2012; 64(2): 400-8.
[http://dx.doi.org/10.1002/art.33347] [PMID: 21953607]
[114]
Olalekan SA, Cao Y, Hamel KM, Finnegan A. B cells expressing IFN-γ suppress Treg-cell differentiation and promote autoimmune experimental arthritis. Eur J Immunol 2015; 45(4): 988-98.
[http://dx.doi.org/10.1002/eji.201445036] [PMID: 25645456]
[115]
Steiner G, Tohidast-Akrad M, Witzmann G, et al. Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology (Oxford) 1999; 38(3): 202-13.
[http://dx.doi.org/10.1093/rheumatology/38.3.202] [PMID: 10325658]
[116]
Thanapati S, Ganu M, Giri P, et al. Impaired NK cell functionality and increased TNF-α production as biomarkers of chronic chikungunya arthritis and rheumatoid arthritis. Hum Immunol 2017; 78(4): 370-4.
[http://dx.doi.org/10.1016/j.humimm.2017.02.006] [PMID: 28213049]
[117]
Boissier MC, Chiocchia G, Bessis N, et al. Biphasic effect of interferon-gamma in murine collagen-induced arthritis. Eur J Immunol 1995; 25(5): 1184-90.
[http://dx.doi.org/10.1002/eji.1830250508] [PMID: 7774621]
[118]
Yokota K, Sato K, Miyazaki T, et al. Combination of tumor necrosis factor α and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol 2014; 66(1): 121-9.
[http://dx.doi.org/10.1002/art.38218] [PMID: 24431283]
[119]
Lee WS, Kato M, Sugawara E, et al. Protective Role of Optineurin Against Joint Destruction in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis Rheumatol 2020; 72(9): 1493-504.
[http://dx.doi.org/10.1002/art.41290] [PMID: 32307918]
[120]
Danks L, Komatsu N, Guerrini MM, et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis 2016; 75(6): 1187-95.
[http://dx.doi.org/10.1136/annrheumdis-2014-207137] [PMID: 26025971]
[121]
Kato M. New insights into IFN-γ in rheumatoid arthritis: role in the era of JAK inhibitors. Immunol Med 2020; 43(2): 72-8.
[http://dx.doi.org/10.1080/25785826.2020.1751908] [PMID: 32338187]
[122]
Vermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol 1997; 158(11): 5507-13.
[PMID: 9164974]
[123]
Nakajima H, Takamori H, Hiyama Y, Tsukada W. The effect of treatment with interferon-gamma on type II collagen-induced arthritis. Clin Exp Immunol 1990; 81(3): 441-5.
[http://dx.doi.org/10.1111/j.1365-2249.1990.tb05353.x] [PMID: 2118846]
[124]
Guedez YB, Whittington KB, Clayton JL, et al. Genetic ablation of interferon-gamma up-regulates interleukin-1beta expression and enables the elicitation of collagen-induced arthritis in a nonsusceptible mouse strain. Arthritis Rheum 2001; 44(10): 2413-24.
[http://dx.doi.org/10.1002/1529-0131(200110)44:10<2413::AID-ART406>3.0.CO;2-E] [PMID: 11665984]
[125]
Sarkar S, Cooney LA, White P, et al. Regulation of pathogenic IL-17 responses in collagen-induced arthritis: roles of endogenous interferon-gamma and IL-4. Arthritis Res Ther 2009; 11(5): R158.
[http://dx.doi.org/10.1186/ar2838] [PMID: 19852819]
[126]
Chu CQ, Swart D, Alcorn D, Tocker J, Elkon KB. Interferon-gamma regulates susceptibility to collagen-induced arthritis through suppression of interleukin-17. Arthritis Rheum 2007; 56(4): 1145-51.
[http://dx.doi.org/10.1002/art.22453] [PMID: 17393396]
[127]
Xu L, Feng X, Tan W, et al. IL-29 enhances Toll-like receptor-mediated IL-6 and IL-8 production by the synovial fibroblasts from rheumatoid arthritis patients. Arthritis Res Ther 2013; 15(5): R170.
[http://dx.doi.org/10.1186/ar4357] [PMID: 24286242]
[128]
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2020.
[http://dx.doi.org/10.1136/annrheumdis-2020-218089] [PMID: 33158879]
[129]
Woodell-May JE, Sommerfeld SD. Role of inflammation and the immune system in the progression of osteoarthritis. J Orthop Res 2020; 38(2): 253-7.
[http://dx.doi.org/10.1002/jor.24457] [PMID: 31469192]
[130]
Loeser RF. Osteoarthritis year in review 2013: biology. Osteoarthritis Cartilage 2013; 21(10): 1436-42.
[http://dx.doi.org/10.1016/j.joca.2013.05.020] [PMID: 23774472]
[131]
Chen Z, Andreev D, Oeser K, et al. Th2 and eosinophil responses suppress inflammatory arthritis. Nat Commun 2016; 7: 11596.
[http://dx.doi.org/10.1038/ncomms11596] [PMID: 27273006]
[132]
Kratochvill F, Neale G, Haverkamp JM, et al. TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Rep 2015; 12(11): 1902-14.
[http://dx.doi.org/10.1016/j.celrep.2015.08.033] [PMID: 26365184]
[133]
Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006; 203(12): 2673-82.
[http://dx.doi.org/10.1084/jem.20061775] [PMID: 17088434]
[134]
Kotake S, Nanke Y, Mogi M, et al. IFN-gamma-producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL. Eur J Immunol 2005; 35(11): 3353-63.
[http://dx.doi.org/10.1002/eji.200526141] [PMID: 16220542]
[135]
Birt MC, Anderson DW, Bruce Toby E, Wang J. Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J Orthop 2016; 14(1): 45-52.
[http://dx.doi.org/10.1016/j.jor.2016.10.004] [PMID: 27822001]
[136]
Sultana S, Adhikary R, Nandi A, Bishayi B. Neutralization of MMP-2 protects Staphylococcus aureus infection induced septic arthritis in mice and regulates the levels of cytokines. Microb Pathog 2016; 99: 148-61.
[http://dx.doi.org/10.1016/j.micpath.2016.08.021] [PMID: 27554276]
[137]
Yoshii T, Magara S, Miyai D, et al. Local levels of interleukin-1beta, -4, -6 and tumor necrosis factor alpha in an experimental model of murine osteomyelitis due to staphylococcus aureus. Cytokine 2002; 19(2): 59-65.
[http://dx.doi.org/10.1006/cyto.2002.1039] [PMID: 12182840]
[138]
Grundmeier M, Tuchscherr L, Brück M, et al. Staphylococcal strains vary greatly in their ability to induce an inflammatory response in endothelial cells. J Infect Dis 2010; 201(6): 871-80.
[http://dx.doi.org/10.1086/651023] [PMID: 20132035]
[139]
Dapunt U, Maurer S, Giese T, Gaida MM, Hänsch GM. The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: linking inflammation to bone degradation. Mediators Inflamm 2014; 2014: 728619.
[http://dx.doi.org/10.1155/2014/728619] [PMID: 24795505]
[140]
Josse J, Guillaume C, Bour C, et al. Impact of the maturation of human primary bone-forming cells on their behavior in acute or persistent staphylococcus aureus infection models. Front Cell Infect Microbiol 2016; 6: 64.
[http://dx.doi.org/10.3389/fcimb.2016.00064] [PMID: 27446812]
[141]
Muñoz-Planillo R, Franchi L, Miller LS, Núñez G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 2009; 183(6): 3942-8.
[http://dx.doi.org/10.4049/jimmunol.0900729] [PMID: 19717510]
[142]
Craven RR, Gao X, Allen IC, et al. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 2009; 4(10): e7446.
[http://dx.doi.org/10.1371/journal.pone.0007446] [PMID: 19826485]
[143]
Holzinger D, Gieldon L, Mysore V, et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 2012; 92(5): 1069-81.
[http://dx.doi.org/10.1189/jlb.0112014] [PMID: 22892107]
[144]
Krauss JL, Zeng R, Hickman-Brecks CL, Wilson JE, Ting JP, Novack DV. NLRP12 provides a critical checkpoint for osteoclast differentiation. Proc Natl Acad Sci USA 2015; 112(33): 10455-60.
[http://dx.doi.org/10.1073/pnas.1500196112] [PMID: 26240332]
[145]
Kassem A, Lindholm C, Lerner UH. Toll-Like Receptor 2 Stimulation of osteoblasts mediates staphylococcus aureus induced bone resorption and osteoclastogenesis through enhanced RANKL. PLoS One 2016; 11(6): e0156708.
[http://dx.doi.org/10.1371/journal.pone.0156708] [PMID: 27311019]
[146]
Claro T, Widaa A, McDonnell C, Foster TJ, O’Brien FJ, Kerrigan SW. Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection. Microbiology (Reading) 2013; 159(Pt 1): 147-54.
[http://dx.doi.org/10.1099/mic.0.063016-0] [PMID: 23154968]
[147]
Young AB, Cooley ID, Chauhan VS, Marriott I. Causative agents of osteomyelitis induce death domain-containing TNF-related apoptosis-inducing ligand receptor expression on osteoblasts. Bone 2011; 48(4): 857-63.
[http://dx.doi.org/10.1016/j.bone.2010.11.015] [PMID: 21130908]
[148]
Sanchez CJ Jr, Ward CL, Romano DR, et al. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet Disord 2013; 14: 187.
[http://dx.doi.org/10.1186/1471-2474-14-187] [PMID: 23767824]
[149]
Chen Q, Hou T, Luo F, Wu X, Xie Z, Xu J. Involvement of toll-like receptor 2 and pro-apoptotic signaling pathways in bone remodeling in osteomyelitis. Cell Physiol Biochem 2014; 34(6): 1890-900.
[http://dx.doi.org/10.1159/000366387] [PMID: 25503704]
[150]
Hajishengallis G, Liang S, Payne MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 2011; 10(5): 497-506.
[http://dx.doi.org/10.1016/j.chom.2011.10.006] [PMID: 22036469]
[151]
Kassem A, Henning P, Lundberg P, Souza PP, Lindholm C, Lerner UH. Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (Receptor Activator of NF-kappaB Ligand) through activation of Toll-like Receptor 2 in Osteoblasts. J Biol Chem 2015; 290(33): 20147-58.
[http://dx.doi.org/10.1074/jbc.M115.655787] [PMID: 26085099]
[152]
Prates TP, Taira TM, Holanda MC, et al. NOD2 contributes to Porphyromonas gingivalis-induced bone resorption. J Dent Res 2014; 93(11): 1155-62.
[http://dx.doi.org/10.1177/0022034514551770] [PMID: 25239844]
[153]
Lin D, Li L, Sun Y, et al. IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB pathways. Immunology 2015; 144(3): 472-85.
[PMID: 25263088]
[154]
Ho CTK, Mok CC, Cheung TT, Kwok KY, Yip RML. Hong Kong Society of Rheumatology. Management of rheumatoid arthritis: 2019 updated consensus recommendations from the Hong Kong Society of Rheumatology. Clin Rheumatol 2019; 38(12): 3331-50.
[http://dx.doi.org/10.1007/s10067-019-04761-5] [PMID: 31485846]
[155]
Cohen SB, Emery P, Greenwald MW, et al. REFLEX Trial Group. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 2006; 54(9): 2793-806.
[http://dx.doi.org/10.1002/art.22025] [PMID: 16947627]
[156]
Edwards JC, Szczepanski L, Szechinski J, et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350(25): 2572-81.
[http://dx.doi.org/10.1056/NEJMoa032534] [PMID: 15201414]
[157]
Koenders MI, van den Berg WB. Novel therapeutic targets in rheumatoid arthritis. Trends Pharmacol Sci 2015; 36(4): 189-95.
[http://dx.doi.org/10.1016/j.tips.2015.02.001] [PMID: 25732812]
[158]
Taylor PC. Pharmacology of TNF blockade in rheumatoid arthritis and other chronic inflammatory diseases. Curr Opin Pharmacol 2010; 10(3): 308-15.
[http://dx.doi.org/10.1016/j.coph.2010.01.005] [PMID: 20172761]
[159]
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19.
[http://dx.doi.org/10.21037/sci.2019.06.04] [PMID: 31463312]
[160]
Lopez-Santalla M, Fernandez-Perez R, Garin MI. Mesenchymal stem/stromal Cells for rheumatoid arthritis treatment: an update on clinical applications. Cells 2020; 9(8): 1852.
[http://dx.doi.org/10.3390/cells9081852] [PMID: 32784608]
[161]
Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol 2020; 11: 1912.
[http://dx.doi.org/10.3389/fimmu.2020.01912] [PMID: 32973792]
[162]
He X, Yang Y, Yao M, et al. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis. Ann Rheum Dis 2020; 79(10): 1298-304.
[http://dx.doi.org/10.1136/annrheumdis-2020-217798] [PMID: 32561603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy