Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Identification of Binding Partners of CsaA - An Archaeal Chaperonic Protein of Picrophilus torridus

Author(s): Neelja Singhal, Archana Sharma, Manisha Aswal, Nirpendra Singh, Manish Kumar and Manisha Goel*

Volume 28, Issue 6, 2021

Published on: 26 November, 2020

Page: [675 - 679] Pages: 5

DOI: 10.2174/0929866527999201126205131

Price: $65

conference banner
Abstract

Background: CsaA is among the few chaperones which are present in both bacteria and archaea, but absent in eukaryotes. There are no reports on interactome analysis of CsaA from archaea, till date. Identification of binding partners of CsaA might be helpful in understanding CsaA-associated processes in Picrophilus torridus an extreme thermoacidophilic euryarchaeon.

Objectives: The present study was conducted to identify the binding partners of CsaA of P. torridus (PtCsaA).

Methods: The binding partners of PtCsaA were isolated and identified using a pull down assay and liquid chromatography-mass spectrometry (LC-MS).

Results: The results revealed twelve potential binding partners of CsaA. These were thermosome subunits (Q6KZS2 and Q6L132), nascent polypeptide-associated complex protein (Q6L1N3), elongation factor 1-alpha (Q6L202), uncharacterized protein (Q6L0Y6), citrate synthase (Q6L0M8), asparaginyl- tRNA synthetase (Q6L0M5), succinyl-CoA synthetase beta chain (Q6L0B4), pyruvate ferredoxin oxidoreductase alpha and beta chain proteins (Q6KZA7 and Q6KZA6, respectively), malate dehydrogenase (Q6L0C3) and reversed fumarylacetoacetase (Q6KZ97). Functional categorization revealed that of these, six proteins were involved in energy metabolic pathways, three were archaeal chaperones, two were involved in translation and one might be a transcription regulator. STRING-based analysis of the protein-protein interactions of the experimental interactome revealed strong interactions among them.

Conclusion: PtCsaA might be a multifaceted protein which besides translation might also play important role in metabolic processes of P. torridus. However, further experiments investigating the binding partners of CsaA in other archaea are required for a better understanding of CsaA-associated processes in archaea.

Keywords: Chaperone, protein-protein interactions, binding partners, liquid chromatography mass spectrometry, CsaA, P. torridus.

Graphical Abstract
[1]
Müller, J.; Walter, F.; van Dijl, J.M.; Behnke, D. Suppression of the growth and export defects of an Escherichia coli secA(Ts) mutant by a gene cloned from Bacillus subtilis. Mol. Gen. Genet., 1992, 235(1), 89-96.
[http://dx.doi.org/10.1007/BF00286185] [PMID: 1435734]
[2]
Müller, J.P.; Ozegowski, J.; Vettermann, S.; Swaving, J.; Van Wely, K.H.; Driessen, A.J. Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Biochem. J., 2000, 348(Pt 2), 367-373.
[http://dx.doi.org/10.1042/bj3480367] [PMID: 10816431]
[3]
Kohda, D.; Yokoyama, S.; Miyazawa, T. Functions of isolated domains of methionyl-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8. J. Biol. Chem., 1987, 262(2), 558-563.
[PMID: 3542990]
[4]
Morales, A.J.; Swairjo, M.A.; Schimmel, P. Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus. EMBO J., 1999, 18(12), 3475-3483.
[http://dx.doi.org/10.1093/emboj/18.12.3475] [PMID: 10369686]
[5]
Swairjo, M.A.; Morales, A.J.; Wang, C.C.; Ortiz, A.R.; Schimmel, P. Crystal structure of trbp111: a structure-specific tRNA-binding protein. EMBO J., 2000, 19(23), 6287-6298.
[http://dx.doi.org/10.1093/emboj/19.23.6287] [PMID: 11101501]
[6]
Kawaguchi, S.; Müller, J.; Linde, D.; Kuramitsu, S.; Shibata, T.; Inoue, Y.; Vassylyev, D.G.; Yokoyama, S. The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus. EMBO J., 2001, 20(3), 562-569.
[http://dx.doi.org/10.1093/emboj/20.3.562] [PMID: 11157762]
[7]
Shapova, Y.A.; Paetzel, M. Crystallographic analysis of Bacillus subtilis CsaA. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 4), 478-485.
[http://dx.doi.org/10.1107/S0907444907005045] [PMID: 17372352]
[8]
Feldman, A.R.; Shapova, Y.A.; Wu, S.S.; Oliver, D.C.; Heller, M.; McIntosh, L.P.; Scott, J.K.; Paetzel, M. Crystal structure of the protein secretion chaperone CsaA from Agrobacterium tumefaciens with a genetically fused phage-display derived peptide substrate at the N-terminus. J. Mol. Biol., 2008, 379, 457-470.
[http://dx.doi.org/10.1016/j.jmb.2008.03.048] [PMID: 18462752]
[9]
Sharma, A.; Pal, R.K.; Goel, M. Crystallization and preliminary X-ray diffraction analysis of CsaA from P. torridus: a chaperone rarely found in archaea. Curr. Chem. Biol., 2017, 2017(11), 63-68.
[http://dx.doi.org/10.2174/2212796811666170210105439]
[10]
Schleper, C.; Puehler, G.; Holz, I.; Gambacorta, A.; Janekovic, D.; Santarius, U.; Klenk, H.P.; Zillig, W. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol., 1995, 177(24), 7050-7059.
[http://dx.doi.org/10.1128/JB.177.24.7050-7059.1995] [PMID: 8522509]
[11]
Sharma, A.; Rani, S.; Goel, M. Navigating the structure-function-evolutionary relationship of CsaA chaperone in archaea. Crit. Rev. Microbiol., 2018, 44(3), 274-289.
[http://dx.doi.org/10.1080/1040841X.2017.1357535] [PMID: 28920507]
[12]
Arora, J.; Goswami, K.; Saha, S. Characterization of the replication initiator Orc1/Cdc6 from the Archaeon Picrophilus torridus. J. Bacteriol., 2014, 196(2), 276-286.
[http://dx.doi.org/10.1128/JB.01020-13] [PMID: 24187082]
[13]
Kumar, R.; Singh, N.; Abdin, M.Z.; Patel, A.H.; Medigeshi, G.R. Dengue virus capsid interacts with DDX3X-a potential mechanism for suppression of antiviral functions in dengue infection. Front. Cell. Infect. Microbiol., 2018, 7, 542-556.
[http://dx.doi.org/10.3389/fcimb.2017.00542] [PMID: 29387631]
[14]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[15]
Phipps, B.M.; Hoffmann, A.; Stetter, K.O.; Baumeister, W. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J., 1991, 10(7), 1711-1722.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb07695.x] [PMID: 1828761]
[16]
Bigotti, M.G.; Clarke, A.R. Chaperonins: the hunt for the Group II mechanism. Arch. Biochem. Biophys., 2008, 474(2), 331-339.
[http://dx.doi.org/10.1016/j.abb.2008.03.015] [PMID: 18395510]
[17]
Wang, S.; Sakai, H.; Wiedmann, M. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J. Cell Biol., 1995, 130(3), 519-528.
[http://dx.doi.org/10.1083/jcb.130.3.519] [PMID: 7622554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy