Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Detection and Identification of Catalpol Metabolites in the Rat Plasma, Urine and Faeces Using Ultra-high Performance Liquid Chromatography-Q Exactive Hybrid Quadrupole-orbitrap High-resolution Accurate Mass Spectrometry

Author(s): Zedong Xiang, Shaoping Wang, Haoran Li, Pingping Dong, Fan Dong, Zhen Li, Long Dai* and Jiayu Zhang*

Volume 22, Issue 3, 2021

Published on: 25 November, 2020

Page: [173 - 184] Pages: 12

DOI: 10.2174/1389200221999201125205515

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Catalpol, an iridoid glycoside, is one of the richest bioactive components present in Rehmannia glutinosa. More and more metabolites of drugs have exhibited various pharmacological effects, thus providing guidance for clinical application. However, few researches have paid attention to the metabolism of catalpol.

Objective: This study aimed to establish a rapid and effective method to identify catalpol metabolites and evaluate the biotransformation pathways of catalpol in rats.

Methods: In this study, catalpol metabolites in rat urine, plasma and faeces were analyzed by UHPLC-Q-Exactive MS for the characterization of the metabolism of catalpol. Based on high-resolution extracted ion chromatograms (HREICs) and parallel reaction monitoring mode (PRM), metabolites of catalpol were identified by comparing the diagnostic product ions (DPIs), chromatographic retention times, neutral loss fragments (NLFs) and accurate mass measurement with those of catalpol reference standard.

Results: A total of 29 catalpol metabolites were detected and identified in both negative and positive ion modes. Nine metabolic reactions, including deglycosylation, hydroxylation, dihydroxylation, hydrogenation, dehydrogenation, oxidation of methylene to ketone, glucuronidation, glycine conjugation and cysteine conjugation, were proposed.

Conclusion: A rapid and effective method based on UHPLC-Q-Exactive MS was developed to mine the metabolism information of catalpol. Results of metabolites and biotransformation pathways of catalpol suggested that when orally administrated, catalpol was firstly metabolized into catalpol aglycone, after which phase I and phase II reactions occurred. However, hydrophilic chromatography-mass spectrometry is still needed to further find the polar metabolites of catalpol.

Keywords: Catalpol, metabolite, ultra-high performance liquid chromatography, high-resolution mass, bioactive components, parallel reaction monitoring mode, spectrometry.

Graphical Abstract
[1]
Viljoen, A.; Mncwangi, N.; Vermaak, I. Anti-inflammatory iridoids of botanical origin. Curr. Med. Chem., 2012, 19(14), 2104-2127.
[http://dx.doi.org/10.2174/092986712800229005] [PMID: 22414102]
[2]
Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules, 2020, 25(2), 287.
[http://dx.doi.org/10.3390/molecules25020287] [PMID: 31936853]
[3]
Carrillo-Ocampo, D.; Bazaldúa-Gómez, S.; Bonilla-Barbosa, J.R.; Aburto-Amar, R.; Rodríguez-López, V. Anti-inflammatory activity of iridoids and verbascoside isolated from Castilleja tenuiflora. Molecules, 2013, 18(10), 12109-12118.
[http://dx.doi.org/10.3390/molecules181012109] [PMID: 24084016]
[4]
Shieh, J.P.; Cheng, K.C.; Chung, H.H.; Kerh, Y.F.; Yeh, C.H.; Cheng, J.T. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. J. Agric. Food Chem., 2011, 59(8), 3747-3753.
[http://dx.doi.org/10.1021/jf200069t] [PMID: 21391677]
[5]
Bai, Y.; Zhu, R.; Tian, Y.; Li, R.; Chen, B.; Zhang, H.; Xia, B.; Zhao, D.; Mo, F.; Zhang, D.; Gao, S. Catalpol in diabetes and its complications: a review of pharmacology, pharmacokinetics, and safety. Molecules, 2019, 24(18), 3302.
[http://dx.doi.org/10.3390/molecules24183302] [PMID: 31514313]
[6]
Chen, Y.; Zhang, Y.; Xu, M.; Luan, J.; Piao, S.; Chi, S.; Wang, H. Catalpol alleviates ovalbumin-induced asthma in mice: reduced eosinophil infiltration in the lung. Int. Immunopharmacol., 2017, 43, 140-146.
[http://dx.doi.org/10.1016/j.intimp.2016.12.011] [PMID: 27992791]
[7]
García, C.; León, L.G.; Pungitore, C.R.; Ríos-Luci, C.; Daranas, A.H.; Montero, J.C.; Pandiella, A.; Tonn, C.E.; Martín, V.S.; Padrón, J.M. Enhancement of antiproliferative activity by molecular simplification of catalpol. Bioorg. Med. Chem., 2010, 18(7), 2515-2523.
[http://dx.doi.org/10.1016/j.bmc.2010.02.044] [PMID: 20231098]
[8]
Wang, Z.H.; Zhan-Sheng, H. Catalpol inhibits migration and induces apoptosis in gastric cancer cells and in athymic nude mice. Biomed. Pharmacother., 2018, 103, 1708-1719.
[http://dx.doi.org/10.1016/j.biopha.2018.03.094] [PMID: 29864961]
[9]
Wang, Q.; Xing, M.; Chen, W.; Zhang, J.; Qi, H.; Xu, X. HPLC-APCI-MS/MS method for the determination of catalpol in rat plasma and cerebrospinal fluid: application to an in vivo pharmacokinetic study. J. Pharm. Biomed. Anal., 2012, 70, 337-343.
[http://dx.doi.org/10.1016/j.jpba.2012.05.016] [PMID: 22677654]
[10]
Swamy, M.K.; Arumugam, G.; Kaur, R.; Ghasemzadeh, A.; Yusoff, M.M.; Sinniah, U.R. GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of malaysian Plectranthus amboinicus leaves. Evid. Based Complement. Alternat. Med., 2017, 2017, 1517683.
[http://dx.doi.org/10.1155/2017/1517683] [PMID: 28424737]
[11]
Zhang, W.; Saif, M.W.; Dutschman, G.E.; Li, X.; Lam, W.; Bussom, S.; Jiang, Z.; Ye, M.; Chu, E.; Cheng, Y.C. Identification of chemicals and their metabolites from PHY906, a Chinese medicine formulation, in the plasma of a patient treated with irinotecan and PHY906 using liquid chromatography/tandem mass spectrometry (LC/MS/MS). J. Chromatogr. A, 2010, 1217(37), 5785-5793.
[http://dx.doi.org/10.1016/j.chroma.2010.07.045] [PMID: 20696432]
[12]
Wu, H.; Guo, J.; Chen, S.; Liu, X.; Zhou, Y.; Zhang, X.; Xu, X. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2013, 72, 267-291.
[http://dx.doi.org/10.1016/j.jpba.2012.09.004] [PMID: 23031576]
[13]
Lu, J.Q.; Sun, M.Q.; Zhang, H.G. Mechanisms of catalpol and jasminoidin by electrospray ionization mass spectrometry. Chin. Herb. Med., 2008, 07, 1011-1014.
[14]
Tao, J.H.; Zhao, M.; Wang, D.G.; Yang, C.; Du, L.Y.; Qiu, W.Q.; Jiang, S. Biotransformation and metabolic profile of catalpol with human intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1009-1010, 163-169.
[http://dx.doi.org/10.1016/j.jchromb.2015.12.007] [PMID: 26741989]
[15]
Tao, J.H.; Zhao, M.; Wang, D.G.; Yang, C.; Chen, G.T.; Zhao, X.; Pu, X.L.; Jiang, S. UPLC-Q-TOF/MS-based screening and identification of two major bioactive components and their metabolites in normal and CKD rat plasma, urine and feces after oral administration of Rehmannia glutinosa Libosch extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1001, 98-106.
[http://dx.doi.org/10.1016/j.jchromb.2015.07.035] [PMID: 26262601]
[16]
Luo, Y.; Wen, Q.; Lai, C.J.; Feng, Y.; Tan, T. Characterization of polymeric phenolic acids and flavonoids in Clerodendranthi Spicati Herba using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry with target and nontarget data mining strategy. Rapid Commun. Mass Spectrom., 2019, 33(24), 1884-1893.
[http://dx.doi.org/10.1002/rcm.8527] [PMID: 31295373]
[17]
Yang, W.Z.; Shi, X.J.; Yao, C.L.; Huang, Y.; Hou, J.J.; Han, S.M.; Feng, Z.J.; Wei, W.L.; Wu, W.Y.; Guo, D.A. A novel neutral loss/product ion scan-incorporated integral approach for the untargeted characterization and comparison of the carboxyl-free ginsenosides from Panax ginseng, Panax quinquefolius, and Panax notoginseng. J. Pharm. Biomed. Anal., 2020, 177, 112813.
[http://dx.doi.org/10.1016/j.jpba.2019.112813] [PMID: 31472326]
[18]
Zheng, Y.; Zhao, H.; Zhu, L.; Cai, Z. Comprehensive identification of steroid hormones in human urine based on liquid chromatography-high resolution mass spectrometry. Anal. Chim. Acta, 2019, 1089, 100-107.
[http://dx.doi.org/10.1016/j.aca.2019.09.058] [PMID: 31627806]
[19]
Walsh, J.P.; Renaud, J.B.; Hoogstra, S.; McMullin, D.R.; Ibrahim, A.; Visagie, C.M.; Tanney, J.B.; Yeung, K.K.; Sumarah, M.W. Diagnostic fragmentation filtering for the discovery of new chaetoglobosins and cytochalasins. Rapid Commun. Mass Spectrom., 2019, 33(1), 133-139.
[http://dx.doi.org/10.1002/rcm.8306] [PMID: 30325552]
[20]
Ge, Y.; Yu, Y.; Zhang, Y.; Li, X.; Liu, Q. Characterization of the metabolite of AdipoRon in rat and human liver microsomes by ultra-high-performance liquid chromatography combined with Q-Exactive Orbitrap tandem mass spectrometry. Biomed. Chromatogr., 2019, 33(11), e4645.
[http://dx.doi.org/10.1002/bmc.4645] [PMID: 31306503]
[21]
Qin, S.; Xin, G.; Wang, Y.; Qiao, J.; Zhang, W.; Xu, D.; Xu, Z.; Liu, Y.; Zhang, Y.; Lu, J. Characterization and tentative identification of new flunitrazepam metabolites in authentic human urine specimens using liquid chromatography-Q exactive-HF hybrid quadrupole-Orbitrap-mass spectrometry (LC-QE-HF-MS). J. Mass Spectrom., 2019, 54(8), 704-715.
[http://dx.doi.org/10.1002/jms.4383] [PMID: 31233253]
[22]
Li, Z.; Zhang, L.; Yuan, Y.; Yang, Z. Identification of metabolites of evobrutinib in rat and human hepatocytes by using ultra-high performance liquid chromatography coupled with diode array detector and Q Exactive Orbitrap tandem mass spectrometry. Drug Test. Anal., 2019, 11(1), 129-139.
[http://dx.doi.org/10.1002/dta.2477] [PMID: 30102849]
[23]
Michalski, A.; Damoc, E.; Hauschild, J. P.; Lange, O.; Wieghaus, A.; Makarov, A.; Nagaraj, N.; Cox, J.; Mann, M.; Horning, S. Mass spectrometry-based proteomics using Q exactive, a high-459 performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics, 2011, 10(9), M111.011015.
[24]
Scheltema, R.A.; Hauschild, J.P.; Lange, O.; Hornburg, D.; Denisov, E.; Damoc, E.; Kuehn, A.; Makarov, A.; Mann, M. The Q exactive HF, a Benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol. Cell. Proteomics, 2014, 13(12), 3698-3708.
[http://dx.doi.org/10.1074/mcp.M114.043489] [PMID: 25360005]
[25]
Li, Y.; Cai, W.; Cai, Q.; Che, Y.; Zhao, B.; Zhang, J. Comprehensive characterization of the in vitro and in vivo metabolites of geniposide in rats using ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometer. Xenobiotica, 2016, 46(4), 357-368.
[http://dx.doi.org/10.3109/00498254.2015.1079746] [PMID: 26330181]
[26]
Ding, Y.; Hou, J.W.; Zhang, Y.; Zhang, L.Y.; Zhang, T.; Chen, Y.; Cai, Z.Z.; Yang, L. Metabolism of genipin in rat and identification of metabolites by using ultraperformance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Evid. Based Complement. Alternat. Med., 2013, 2013, 957030.
[http://dx.doi.org/10.1155/2013/957030] [PMID: 23573161]
[27]
Han, H.; Yang, L.; Xu, Y.; Ding, Y.; Bligh, S.W.; Zhang, T.; Wang, Z. Identification of metabolites of geniposide in rat urine using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2011, 25(21), 3339-3350.
[http://dx.doi.org/10.1002/rcm.5216] [PMID: 22006398]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy