Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Mini-Review Article

Polysarcosine: The Best Alternative of Poly (Ethylene Glycol)

Author(s): Manu Singhai and Sankha Bhattacharya*

Volume 4, Issue 2, 2021

Published on: 24 November, 2020

Page: [93 - 98] Pages: 6

DOI: 10.2174/2452271604999201124222313

Price: $65

Open Access Journals Promotions 2
Abstract

Polysarcosine (psar) is a non-ionic hydrophilic polypeptoid with numerous biologically relevant properties. Polysarcosine is poly (n-methylated glycine) and has been reported first by Weslay and co-workers in the 1920s. Polysarcosine was first synthesized via ring-opening polymerization (rop) of sarcosine n-carboxyanhydride, using high-vacuum techniques. Overall, findings highlight the potential of poly(sarcosine) as an alternative corona-forming polymer to poly (ethylene glycol)-based analogues of (polymerization-induced self-assembly) pisa assemblies for use in various pharmaceutical and biomedical applications. Numerous studies suggested that such polypeptoids hold enormous potential for many biomedical applications, including protein delivery, colloidal stabilization, and nanomedicine.

Keywords: Polysarcosine, polypeptoid, PEGylation, nanomedicine, biomedical applications poly (Ethylene Glycol), N-methylated glycine.

« Previous
Graphical Abstract
[1]
Veronese FM, Mero AJB. The impact of PEGylation on biological therapies 2008; 22(5): 315-29.
[http://dx.doi.org/10.2165/00063030-200822050-00004]
[2]
Thordarson P, Le Droumaguet B, Velonia K. Well-defined protein-polymer conjugates--synthesis and potential applications. Appl Microbiol Biotechnol 2006; 73(2): 243-54.
[http://dx.doi.org/10.1007/s00253-006-0574-4] [PMID: 17061132]
[3]
Hu Y, Hou Y, Wang H, Lu H. Polysarcosine as an alternative to PEG for therapeutic protein conjugation. Bioconjug Chem 2018; 29(7): 2232-8.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00237] [PMID: 29863329]
[4]
Conilh L, Fournet G, Fourmaux E, et al. Exatecan antibody drug conjugates based on a hydrophilic polysarcosine drug-linker platform. Pharmaceuticals (Basel) 2021; 14(3): 247.
[http://dx.doi.org/10.3390/ph14030247] [PMID: 33803327]
[5]
Skoulas D, Stuettgen V, Gaul R, Cryan SA, Brayden DJ, Heise A. Amphiphilic star polypept (o) ides as nanomeric vectors in mucosal drug delivery. Biomacromolecules 2020; 21(6): 2455-62.
[http://dx.doi.org/10.1021/acs.biomac.0c00381] [PMID: 32343127]
[6]
Hörtz C, Birke A, Kaps L, et al. Cylindrical brush polymers with polysarcosine side chains: A novel biocompatible carrier for biomedical applications. Macromolecules 2015; 48(7): 2074-86.
[http://dx.doi.org/10.1021/ma502497x]
[7]
Zeng G, Qiu L, Wen TJPC. Recent advances in crystallization and self‐assembly of polypeptoid polymers. Polym Crystal 2019; 2(3): e10065.
[http://dx.doi.org/10.1002/pcr2.10065]
[8]
Barz M, Luxenhofer R, Zentelb R, Vicent JM. Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polym Chem 2011; 2(9): 1900-18.
[http://dx.doi.org/10.1039/c0py00406e]
[9]
Park Y, Andrew KYL, Alissa PAH, Petit C. Recent advances in anhydrous solvents for CO2 capture: ionic liquids, switchable solvents, and nanoparticle organic hybrid materials. Front Energy Res 2015; 3: 42.
[http://dx.doi.org/10.3389/fenrg.2015.00042]
[10]
Liarou E, Varlas S, Skoulas D, et al. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization. Prog Polym Sci 2018; 83: 28-78.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.05.001]
[11]
Kappel C, Seidl C, Medina-Montano C, et al. Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells. ACS Nano 2021; 15(9): 15191-209.
[http://dx.doi.org/10.1021/acsnano.1c05713] [PMID: 34431291]
[12]
Langel Ü. CPP, cell-penetrating peptides. Singapore: Springer 2019; p. 12.
[http://dx.doi.org/10.1007/978-981-13-8747-0]
[13]
Sanborn TJ, Wu CW, Zuckermann RN, Barron AE. Extreme stability of helices formed by water-soluble poly-N-substituted glycines (polypeptoids) with α-chiral side chains. Biopolymers 2002; 63(1): 12-20.
[http://dx.doi.org/10.1002/bip.1058] [PMID: 11754344]
[14]
Tao X, Deng C, Ling J. PEG-amine-initiated polymerization of sarcosine N-thiocarboxyanhydrides toward novel double-hydrophilic PEG-b-polysarcosine diblock copolymers. Macromol Rapid Commun 2014; 35(9): 875-81.
[http://dx.doi.org/10.1002/marc.201400066] [PMID: 24668926]
[15]
Domingos SR, Ramos Silva M, Martins ND, Matos Beja A, Paixão JA. Pyromellitic acid-sarcosine (1/2). Acta Crystallogr Sect E Struct Rep Online 2008; 64(Pt 5): o826.
[http://dx.doi.org/10.1107/S1600536808009045] [PMID: 21202315]
[16]
Mostad A, Natarajan S. Crystal and molecular structure of sarcosine. Acta Chem Scand 1989; 43(10): 1004-6.
[http://dx.doi.org/10.3891/acta.chem.scand.43-1004] [PMID: 2484928]
[17]
Zhou J, Niu X, Yang W, et al. Surface action mechanism and planarization effect of sarcosine as an auxiliary complexing agent in copper film chemical mechanical polishing. Appl Surf Sci 2020; 529: 147109.
[http://dx.doi.org/10.1016/j.apsusc.2020.147109]
[18]
Murshid G, Butt WA, Garg S. Investigation of thermophysical properties for aqueous blends of sarcosine with 1-(2-aminoethyl) piperazine and diethylenetriamine as solvents for CO2 absorption. J Mol Liq 2019; 278: 584-91.
[http://dx.doi.org/10.1016/j.molliq.2019.01.079]
[19]
Birke A, Ling J, Barz M. Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications. Prog Polym Sci 2018; 81: 163-208.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.01.002]
[20]
Ozeki E, Kimura S, Makino A. Branched amphipathic block polymer and molecular aggregate and drug delivery system using same. US000009821078B2, 2017.
[21]
Sellaturay P, Nasser S, Ewan P. Polyethylene Glycol-Induced Systemic Allergic Reactions (Anaphylaxis). J Allergy Clin Immunol Pract 2021; 9(2): 670-5.
[http://dx.doi.org/10.1016/j.jaip.2020.09.029] [PMID: 33011299]
[22]
Yu H, Ingram N, Rowley JV, et al. Thermoresponsive polysarcosine-based nanoparticles. J Mater Chem B Mater Biol Med 2019; 7(26): 4217-23.
[http://dx.doi.org/10.1039/C9TB00588A]
[23]
Aoi K, Nakamura R, Okada M. Polypeptide‐synthetic polymer hybrids, 2. Miscibility of poly (vinyl alcohol) with polysarcosine. Macromol Chem Phys 2000; 201(11): 1059-66.
[http://dx.doi.org/10.1002/1521-3935(20000701)201:11<1059::AID-MACP1059>3.0.CO;2-O]
[24]
Settanni G, Schäfer T, Muhl C, Barz M, Schmid F. Poly-sarcosine and Poly (Ethylene-Glycol) interactions with proteins investigated using molecular dynamics simulations. Comput Struct Biotechnol J 2018; 16: 543-50.
[http://dx.doi.org/10.1016/j.csbj.2018.10.012] [PMID: 30524669]
[25]
Bleher S, Buck J, Muhl C, et al. Poly(Sarcosine) surface modification imparts stealth-like properties to liposomes. Small 2019; 15(50): e1904716.
[http://dx.doi.org/10.1002/smll.201904716] [PMID: 31722126]
[26]
Siefker D, Zhang D. Ring-opening polymerization of N-carboxyanhydrides using organic initiators or catalysts. In: Dove A, Sardon H, Stefan N, Eds. Organic catalysis for polymerisation. UK: RSC Publishing 2018; 31: pp. 367-405.
[http://dx.doi.org/10.1039/9781788015738-00367]
[27]
Matsutani E, Ozeki E, Kawabe T. Method for producing molecular assemblies, and device for producing molecular assemblies. US20180021748, 2016.
[28]
Weber B, Birke A, Fischer K, Schmidt M, Barz M. Solution properties of polysarcosine: From absolute and relative molar mass determinations to complement activation. Macromolecules 2018; 51(7): 2653-61.
[http://dx.doi.org/10.1021/acs.macromol.8b00258]
[29]
Schäfer O, Klinker K, Braun L, et al. Combining orthogonal reactive groups in block copolymers for functional nanoparticle synthesis in a single step. ACS Macro Lett 2017; 6(10): 1140-5.
[http://dx.doi.org/10.1021/acsmacrolett.7b00678]
[30]
Ma G, Nguyen H, Romo D. Concise total synthesis of (+/-)-salinosporamide A, (+/-)-cinnabaramide A, and derivatives via a bis-cyclization process: implications for a biosynthetic pathway? Org Lett 2007; 9(11): 2143-6.
[http://dx.doi.org/10.1021/ol070616u] [PMID: 17477539]
[31]
Fetsch C, Luxenhofer R. Highly defined multiblock copolypeptoids: pushing the limits of living nucleophilic ring-opening polymerization. Macromol Rapid Commun 2012; 33(19): 1708-13.
[http://dx.doi.org/10.1002/marc.201200189] [PMID: 22674859]
[32]
Liu Y, von Gunten HR. Migration chemistry and behaviour of iodine relevant to geological disposal of radioactive wastes A literature review with a compilation of sorption data. Available from:https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/005/20005563.pdf?r=1
[33]
Katchalski E. Poly-α-amino acids. Adv Protein Chem 1951; 6: 123-85.
[http://dx.doi.org/10.1016/S0065-3233(08)60503-3] [PMID: 14846695]
[34]
David H, Adrian S, Benjamin W, Matthias B. A head-to-head comparison of poly (sarcosine) and poly (ethylene glycol) in peptidic, amphiphilic block copolymers. Polymer (Guildf) 2015; 67: 240-8.
[http://dx.doi.org/10.1016/j.polymer.2015.04.070]
[35]
Doriti A, Brosnan SM, Weidnerb MS, Schlaad H. Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base. Polym Chem 2016; 7(18): 3067-70.
[http://dx.doi.org/10.1039/C6PY00221H]
[36]
Weber B, Seidl C, Schwiertz D, et al. Polysarcosine-based lipids: from lipopolypeptoid micelles to stealth-like lipids in langmuir blodgett monolayers. Polymers (Basel) 2016; 8(12): 427.
[http://dx.doi.org/10.3390/polym8120427] [PMID: 30974703]
[37]
Lau KHA. Peptoids for biomaterials science. Biomater Sci 2014; 2(5): 627-33.
[http://dx.doi.org/10.1039/C3BM60269A] [PMID: 32481842]
[38]
Son K, Ueda M, Taguchi K, Maruyama T, Takeoka S, Ito Y. Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. J Control Release 2020; 322: 209-16.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.022] [PMID: 32194174]
[39]
Klein PM, Klinker K, Zhang W, et al. Efficient shielding of polyplexes using heterotelechelic polysarcosines. Polymers (Basel) 2018; 10(6): 689.
[http://dx.doi.org/10.3390/polym10060689] [PMID: 30966723]
[40]
Deng Y, Zou T, Tao X, et al. Poly (ε-caprolactone)-block-polysarcosine by ring-opening polymerization of sarcosine N-thiocarboxyanhydride: synthesis and thermoresponsive self-assembly. Biomacromolecules 2015; 16(10): 3265-74.
[http://dx.doi.org/10.1021/acs.biomac.5b00930] [PMID: 26388179]
[41]
England RM, Moss JI, Gunnarsson A, Parker JS, Ashford MB. Synthesis and characterization of dendrimer-based polysarcosine star polymers: Well-defined, versatile platforms designed for drug-delivery applications. Biomacromolecules 2020; 21(8): 3332-41.
[http://dx.doi.org/10.1021/acs.biomac.0c00768] [PMID: 32672451]
[42]
Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Peptoids and polypeptoids at the frontier of supra-and macromolecular engineering. Chem Rev 2016; 116(4): 1753-802.
[http://dx.doi.org/10.1021/acs.chemrev.5b00201] [PMID: 26699377]
[43]
Bauer TA, Imschweiler J, Muhl C, Weber B, Barz M. Secondary Structure-Driven Self-Assembly of Thiol-Reactive Polypept(o)ides. Biomacromolecules 2021; 22(5): 2171-80.
[http://dx.doi.org/10.1021/acs.biomac.1c00253] [PMID: 33830742]
[44]
Hou Y, Lu H. Protein PEPylation: A new paradigm of protein–polymer conjugation. Bioconjug Chem 2019; 30(6): 1604-16.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00236] [PMID: 31045353]
[45]
Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv 2016; 34(5): 768-89.
[http://dx.doi.org/10.1016/j.biotechadv.2016.04.001] [PMID: 27090752]
[46]
Saji H, Kohei S, Akira M, et al. Conjugate of polysarcosine and nir contrast agent for photoacoustic imaging. US20180280547, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy