Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Nano-Neurotherapeutics (NNTs): An Emergent and Multifaceted Tool for CNS Disorders

Author(s): Aashish Sharma*, Romila Manchanda, Faheem H. Pottoo and Ghulam Md. Ashraf

Volume 22, Issue 4, 2021

Published on: 24 November, 2020

Page: [251 - 262] Pages: 12

DOI: 10.2174/1389200221666201124123939

Price: $65

Open Access Journals Promotions 2
Abstract

Impressive research steps have been taken for the treatment of neurological disorders in the last few decades. Still, effective treatments of brain related disorders are very less due to problems associated with crossing the blood-brain barrier (BBB), non-specific therapies, and delay in functional recovery of the central nervous system (CNS) after treatment. Striving for novel treatment options for neurological disorders, nanotechnology- derived materials, and devices have gained ground due to inherent features of derivatization/encapsulation with drugs as per the neurological ailments and pharmacological targets. Facile developments/syntheses of the nanomaterials-drug conjugates have also been the driving force for researchers to get into this field. Moreover, the tunable size and hydro/lipophilicity of these nanomaterials are the added advantages that make these materials more acceptable for CNS disorders. These nano-neurotherapeutics (NNTs) systems provide the platform for diagnosis, theranostics, treatments, restoration of CNS disorders, and encourage the translation of NNTs from “bench to bedside”. Still, these techniques are in the primary stages of medical development. This review describes the latest advancements and future scenarios of developmental and clinical aspects of polymeric NNTs.

Keywords: Nanoparticles, BBB, neuronal disorders, imaging, theranostics, drug delivery, cancer.

Graphical Abstract
[1]
Montesinos, R.N. Liposomal drug delivery to the central nervous system. In: Liposomes; Catala, A., Ed.; InTech: UK, 2017. http://www.intechopen.com/books/liposomes/liposomal-drug-delivery-to-the-central-nervous-system
[http://dx.doi.org/10.5772/intechopen.70055]
[2]
Pandey, M.; Saleem, S.; Nautiyal, H.; Pottoo, F.H.; Javed, M.N. PINK1/Parkin in neurodegenerative disorders: crosstalk between mitochondrial stress and neurodegeneration. In: Quality control of cellular protein in neurodegenerative disorders; SahabUddin, Md., Ed.; IGI Global: Hershey, Pennsylvania, 2020; pp. 282-301.
[3]
Tsintou, M.; Dalamagkas, K.; Makris, N. Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhuman primates versus humans. Neural Regen. Res., 2020, 15(3), 425-437.
[http://dx.doi.org/10.4103/1673-5374.266048] [PMID: 31571651]
[4]
Shamik, C.; Brett, E.S.; Wayne, M.A.; Lawrence, F.M.; Raj, K.N. Traumatic Brain Injury. In: Handbook of Neuroemergency Clinical Trials, 2nd ed; Elsevier Science B. V: Amsterdam, 2018; pp. 85-109.
[5]
Faden, A.I.; Loane, D.J. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics, 2015, 12(1), 143-150.
[http://dx.doi.org/10.1007/s13311-014-0319-5] [PMID: 25421001]
[6]
World Health Organization. Neurological disorders public health challenges. https://www.who.int/mental_health/neurology/neurological_disorders_report_web.pdf
[7]
Gribkoff, V.K.; Kaczmarek, L.K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology, 2017, 120, 11-19.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.021] [PMID: 26979921]
[8]
Srikanth, M.; Kessler, J.A. Nanotechnology-novel therapeutics for CNS disorders. Nat. Rev. Neurol., 2012, 8(6), 307-318.
[http://dx.doi.org/10.1038/nrneurol.2012.76] [PMID: 22526003]
[9]
Pardeshi, C.; Rajput, P.; Belgamwar, V.; Tekade, A.; Patil, G.; Chaudhary, K.; Sonje, A. Solid lipid based nanocarriers: an overview. Acta Pharm., 2012, 62(4), 433-472.
[http://dx.doi.org/10.2478/v10007-012-0040-z] [PMID: 23333884]
[10]
Jayanta, K.P.; Gitishree, D.; Leonardo, F.F.; Estefania, V.R.C.; Maria del, P.R.T.; Luis, A. D.T.; Laura, S. A. T.; Renato, G.; Mallappa, K. S.; Shivesh, S.; Solomon, H.; Han, S. S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16, 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8]
[11]
Crommelin, D.J.; Florence, A.T. Towards more effective advanced drug delivery systems. Int. J. Pharm., 2013, 454(1), 496-511.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.020] [PMID: 23415662]
[12]
Shahryar, S.; Milad, A.; Ali, Z.; Rasoul, R.; Elham, G.A.; Abbas, P.; Mohammad, I.; Anuj, K.; Vijay, K.T. Multifunctional polymeric nanoplatforms for braindiseases diagnosis, therapy andtheranostics. Biomedicine (Taipei), 2020, 8, 13.
[13]
Wong, A.D.; Ye, M.; Levy, A.F.; Rothstein, J.D.; Bergles, D.E.; Searson, P.C. The blood-brain barrier: an engineering perspective. Front. Neuroeng., 2013, 6, 7.
[http://dx.doi.org/10.3389/fneng.2013.00007] [PMID: 24009582]
[14]
Pardridge, W.M. Targeting neurotherapeutic agents through the blood-brain barrier. Arch. Neurol., 2002, 59(1), 35-40.
[http://dx.doi.org/10.1001/archneur.59.1.35] [PMID: 11790228]
[15]
Kabanov, A.V.; Batrakova, E.V. New technologies for drug delivery across the blood brain barrier. Curr. Pharm. Des., 2004, 10(12), 1355-1363.
[http://dx.doi.org/10.2174/1381612043384826] [PMID: 15134486]
[16]
Ghose, A.K.; Herbertz, T.; Hudkins, R.L.; Dorsey, B.D.; Mallamo, J.P. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem. Neurosci., 2012, 3(1), 50-68.
[http://dx.doi.org/10.1021/cn200100h] [PMID: 22267984]
[17]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[18]
Lalatsa, A.; Schatzlein, A.G.; Uchegbu, I.F. Strategies to deliver peptide drugs to the brain. Mol. Pharm., 2014, 11(4), 1081-1093.
[http://dx.doi.org/10.1021/mp400680d] [PMID: 24601686]
[19]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[20]
Neves, V.; Aires-da-Silva, F.; Corte-Real, S.; Castanho, M. Antibody approaches to treat brain diseases. Trends Biotechnol., 2016, 34(1), 36-48.
[http://dx.doi.org/10.1016/j.tibtech.2015.10.005]
[21]
Freskgård, P-O.; Urich, E. Antibody therapies in CNS diseases. Neuropharmacology, 2017, 120, 38-55.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.014] [PMID: 26972827]
[22]
Ryan, P.; Patel, B.; Makwana, V.; Jadhav, H.R.; Kiefel, M.; Davey, A.; Reekie, T.A.; Rudrawar, S.; Kassiou, M. Peptides, peptidomimetics, and carbohydrate-peptide conjugates as amyloidogenic aggregation inhibitors for Alzheimer’s disease. ACS Chem. Neurosci., 2018, 9(7), 1530-1551.
[http://dx.doi.org/10.1021/acschemneuro.8b00185] [PMID: 29782794]
[23]
Pottoo, F.H.; Barkat, M.A.; Ansari, M.A.; Javed, M.N.; Jamal, Q.M.; Kamal, M.A. Nanotechnologoical based miRNA intervention in the therapeutic management of neuroblastoma. Seminars in Cancer Biology, 2019.http://www.sciencedirect.com/science/article/pii/S1044579X1930224X
[24]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[25]
Cipolla, M.J. Barriers of the CNS. San Rafael (CA): Morgan & Claypool Life Sciences 2009.https://www.ncbi.nlm.nih.gov/books/NBK53084/
[26]
Grabrucker, A.M.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Forni, F.; Vandelli, M.A.; Tosi, G. Nanoparticle transport across the blood brain barrier. Tissue Barriers, 2016, 4(1), e1153568.
[http://dx.doi.org/10.1080/21688370.2016.1153568] [PMID: 27141426]
[27]
Reddy, K.B.; Vaijayanthi, V.; Raj, S.B.; Mohanambal, E.; Charulatha, R.; Rao, Y.M. Nanotechnology in Brain Targeting. Indian J. Nov. Drug Deliv., 2011, 3(2), 91-97.
[28]
Saeedi, M.; Eslamifar, M.; Khezri, K.; Dizaj, S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother., 2019, 111, 666-675.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[29]
Mishra, S.; Sharma, S.; Javed, M.N.; Pottoo, F.H.; Barkat, M.A.; Harshita, ; Alam, M.S.; Amir, M.; Sarafroz, M. Bioinspirednano composites: applications in disease diagnosis and treatment. Pharm. Nanotechnol., 2019, 7(3), 206-219.
[http://dx.doi.org/10.2174/2211738507666190425121509] [PMID: 31030662]
[30]
Khezri, K.; Saeedi, M.; Maleki Dizaj, S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother., 2018, 106, 1499-1505.
[http://dx.doi.org/10.1016/j.biopha.2018.07.084] [PMID: 30119225]
[31]
Blasi, P.; Giovagnoli, S.; Schoubben, A.; Ricci, M.; Rossi, C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev., 2007, 59(6), 454-477.
[http://dx.doi.org/10.1016/j.addr.2007.04.011] [PMID: 17570559]
[32]
Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S.P. Drug delivery to the central nervous system: a review. J. Pharm. Pharm. Sci., 2003, 6(2), 252-273.
[PMID: 12935438]
[33]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[34]
Lian, T.; Ho, R.J. Trends and developments in liposome drug delivery systems. J. Pharm. Sci., 2001, 90(6), 667-680.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[35]
Siwak, D.R.; Tari, A.M.; Lopez-Berestein, G. The potential of drug-carrying immunoliposomes as anticancer agents. Commentary re: Park J.W. Anti-HER2 immunoliposomes: enhanced efficacy due to targeted delivery. Clin. Cancer Res., 2002, 8, 1172-1181. Clin. Cancer Res., 2002, 8(4), 955-956.
[PMID: 11948099]
[36]
Zhang, Y.; Schlachetzki, F.; Pardridge, W.M. Global non-viral gene transfer to the primate brain following intravenous administration. Mol. Ther., 2003, 7(1), 11-18.
[http://dx.doi.org/10.1016/S1525-0016(02)00018-7] [PMID: 12573613]
[37]
Koziara, J.M.; Lockman, P.R.; Allen, D.D.; Mumper, R.J. The blood-brain barrier and brain drug delivery. J. Nanosci. Nanotechnol., 2006, 6(9-10), 2712-2735.
[http://dx.doi.org/10.1166/jnn.2006.441] [PMID: 17048477]
[38]
Cerletti, A.; Drewe, J.; Fricker, G.; Eberle, A.N.; Huwyler, J. Endocytosis and transcytosis of an immunoliposome-based brain drug delivery system. J. Drug Target., 2000, 8(6), 435-446.
[http://dx.doi.org/10.3109/10611860008997919] [PMID: 11328669]
[39]
Shi, N.; Boado, R.J.; Pardridge, W.M. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm. Res., 2001, 18(8), 1091-1095.
[http://dx.doi.org/10.1023/A:1010910523202] [PMID: 11587478]
[40]
Weissig, V.; Boddapati, S.V.; Cheng, S-M.; D’Souza, G.G.M. Liposomes and liposome-like vesicles for drug and DNA delivery to mitochondria. J. Liposome Res., 2006, 16(3), 249-264.
[http://dx.doi.org/10.1080/08982100600851169] [PMID: 16952879]
[41]
Gray, B.P.; McGuire, M.J.; Brown, K.C. A liposomal drug platform overrides peptide ligand targeting to a cancer biomarker, irrespective of ligand affinity or density. PLoS One, 2013, 8(8), e72938.
[http://dx.doi.org/10.1371/journal.pone.0072938] [PMID: 24009717]
[42]
Tarahovsky, Y.S. “Smart” liposomal nanocontainers in biology and medicine. Biochemistry (Mosc.), 2010, 75(7), 811-824.
[http://dx.doi.org/10.1134/S0006297910070023] [PMID: 20673204]
[43]
Vieira, D.B.; Gamarra, L.F. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int. J. Nanomedicine, 2016, 11, 5381-5414.
[http://dx.doi.org/10.2147/IJN.S117210] [PMID: 27799765]
[44]
Strother, R.; Matei, D. Pegylated liposomal doxorubicin in ovarian cancer. Ther. Clin. Risk Manag., 2009, 5(3), 639-650.
[PMID: 19707541]
[45]
Sapra, P.; Tyagi, P.; Allen, T.M. Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv., 2005, 2(4), 369-381.
[http://dx.doi.org/10.2174/156720105774370159] [PMID: 16305440]
[46]
Sarris, A.H.; Hagemeister, F.; Romaguera, J.; Rodriguez, M.A.; McLaughlin, P.; Tsimberidou, A.M.; Medeiros, L.J.; Samuels, B.; Pate, O.; Oholendt, M.; Kantarjian, H.; Burge, C.; Cabanillas, F. Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: early results of an ongoing phase II trial. Ann. Oncol., 2000, 11(1), 69-72.
[http://dx.doi.org/10.1023/A:1008348010437] [PMID: 10690390]
[47]
Chhikara, B.S.; Parang, K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin. Drug Deliv., 2010, 7(12), 1399-1414.
[http://dx.doi.org/10.1517/17425247.2010.527330] [PMID: 20964588]
[48]
Cattel, L.; Ceruti, M.; Dosio, F. From conventional to stealth liposomes: a new Frontier in cancer chemotherapy. J. Chemother., 2004, 16(4)(Suppl. 4), 94-97.
[http://dx.doi.org/10.1179/joc.2004.16.Supplement-1.94] [PMID: 15688621]
[49]
Salzberg, M.; Thurlimann, B.; Bonnefois, H.; Fink, D.; Rochlitz, C.; von Moos, R.; Senn, H. Current concepts of treatment strategies in advanced or recurrent ovarian cancer. Oncology, 2005, 68(4-6), 293-298.
[http://dx.doi.org/10.1159/000086967] [PMID: 16020955]
[50]
Cheung, T.W.; Remick, S.C.; Azarnia, N.; Proper, J.A.; Barrueco, J.R.; Dezube, B.J. AIDS-related Kaposi’s sarcoma: a phase II study of liposomal doxorubicin. The TLC D-99 Study Group. Clin. Cancer Res., 1999, 5(11), 3432-3437.
[PMID: 10589755]
[51]
Koukourakis, M.I.; Koukouraki, S.; Giatromanolaki, A.; Archimandritis, S.C.; Skarlatos, J.; Beroukas, K.; Bizakis, J.G.; Retalis, G.; Karkavitsas, N.; Helidonis, E.S. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J. Clin. Oncol., 1999, 17(11), 3512-3521.
[http://dx.doi.org/10.1200/JCO.1999.17.11.3512] [PMID: 10550149]
[52]
Caponigro, F.; Comella, P.; Budillon, A.; Bryce, J.; Avallone, A.; De Rosa, V.; Ionna, F.; Comella, G. Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann. Oncol., 2000, 11(3), 339-342.
[http://dx.doi.org/10.1023/A:1008319618638] [PMID: 10811502]
[53]
Gurturk, Z.; Tezcaner, A.; Dalgic, A.D.; Korkmaz, S.; Keskin, D. Maltodextrin modified liposomes for drug delivery through the blood-brain barrier. MedChemComm, 2017, 8(6), 1337-1345.
[http://dx.doi.org/10.1039/C7MD00045F] [PMID: 30108846]
[54]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A.; Harshita, ; Alam, M.S.; Naim, M.J.; Alam, O.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[55]
Tajes, M.; Ramos-Fernández, E.; Weng-Jiang, X.; Bosch-Morató, M.; Guivernau, B.; Eraso-Pichot, A.; Salvador, B.; Fernàndez-Busquets, X.; Roquer, J.; Muñoz, F.J. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol. Membr. Biol., 2014, 31(5), 152-167.
[http://dx.doi.org/10.3109/09687688.2014.937468] [PMID: 25046533]
[56]
Luissint, A-C.; Artus, C.; Glacial, F.; Ganeshamoorthy, K.; Couraud, P-O. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS, 2012, 9(1), 23.
[http://dx.doi.org/10.1186/2045-8118-9-23] [PMID: 23140302]
[57]
Sharma, S.; Javed, M.N.; Pottoo, F.H.; Rabbani, S.A.; Barkat, M.A.; Harshita, ; Sarafroz, M.; Amir, M. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm. Nanotechnol., 2019, 7(3), 220-233.
[http://dx.doi.org/10.2174/2211738507666190429103814] [PMID: 31486751]
[58]
Neuwelt, E.A.; Bauer, B.; Fahlke, C.; Fricker, G.; Iadecola, C.; Janigro, D.; Leybaert, L.; Molnár, Z.; O’Donnell, M.E.; Povlishock, J.T.; Saunders, N.R.; Sharp, F.; Stanimirovic, D.; Watts, R.J.; Drewes, L.R. Engaging neuroscience to advance translational research in brain barrier biology. Nat. Rev. Neurosci., 2011, 12(3), 169-182.
[http://dx.doi.org/10.1038/nrn2995] [PMID: 21331083]
[59]
Guangxi, Z.; Lin, Z.; Shuang, W. Curcuminmicroemulsion ion sensitive in situ gel preparation for intranasal administration and preparation method thereof. China Patent CN102641237A, 2012.
[60]
Bicker, J.; Alves, G.; Fortuna, A.; Falcão, A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur. J. Pharm. Biopharm., 2014, 87(3), 409-432.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.012] [PMID: 24686194]
[61]
Al-Ghananeem, A.M.; Smith, M.; Coronel, M.L.; Tran, H. Advances in brain targeting and drug delivery of anti-HIV therapeutic agents. Expert Opin. Drug Deliv., 2013, 10(7), 973-985.
[http://dx.doi.org/10.1517/17425247.2013.781999] [PMID: 23510097]
[62]
Alam, M.S.; Javed, M.N.; Pottoo, F.H.; Waziri, A.; Almalki, F.A.; Hasnain, M.S.; Garg, A.; Saifullah, M.K. QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nitro-dye. Appl. Organomet. Chem., 2019, 33(9), e5071.
[63]
Patel, R.B.; Patel, M.R.; Bhatt, K.K.; Patel, B.G.; Gaikwad, R.V. Evaluation of brain targeting efficiency of intranasal microemulsion containing olanzapine: pharmacodynamic and pharmacokinetic consideration. Drug Deliv., 2016, 23(1), 307-315.
[http://dx.doi.org/10.3109/10717544.2014.912694] [PMID: 24845478]
[64]
Nicolas, J.; Couvreur, P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(1), 111-127.
[http://dx.doi.org/10.1002/wnan.15] [PMID: 20049783]
[65]
Chauvierre, C.; Manchanda, R.; Labarre, D.; Vauthier, C.; Marden, M.C.; Leclerc, L. Artificial oxygen carrier based on polysaccharides-poly(alkylcyanoacrylates) nanoparticle templates. Biomaterials, 2010, 31(23), 6069-6074.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.039] [PMID: 20488532]
[66]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[67]
Baldrick, P. The safety of chitosan as a pharmaceutical excipient. Regul. Toxicol. Pharmacol., 2010, 56(3), 290-299.
[http://dx.doi.org/10.1016/j.yrtph.2009.09.015] [PMID: 19788905]
[68]
Peng, C-L.; Shih, Y-H.; Lee, P-C.; Hsieh, T.M-H.; Luo, T-Y.; Shieh, M-J. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano, 2011, 5(7), 5594-5607.
[http://dx.doi.org/10.1021/nn201100m] [PMID: 21671580]
[69]
Ramge, P.; Unger, R.E.; Oltrogge, J.B.; Zenker, D.; Begley, D.; Kreuter, J.; Von Briesen, H. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur. J. Neurosci., 2000, 12(6), 1931-1940.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00078.x] [PMID: 10886334]
[70]
Kreuter, J.; Ramge, P.; Petrov, V.; Hamm, S.; Gelperina, S.E.; Engelhardt, B.; Alyautdin, R.; von Briesen, H.; Begley, D.J. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res., 2003, 20(3), 409-416.
[http://dx.doi.org/10.1023/A:1022604120952] [PMID: 12669961]
[71]
Alyautdin, R.N.; Petrov, V.E.; Langer, K.; Berthold, A.; Kharkevich, D.A.; Kreuter, J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res., 1997, 14(3), 325-328.
[http://dx.doi.org/10.1023/A:1012098005098] [PMID: 9098875]
[72]
Gulyaev, A.E.; Gelperina, S.E.; Skidan, I.N.; Antropov, A.S.; Kivman, G.Y.; Kreuter, J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res., 1999, 16(10), 1564-1569.
[http://dx.doi.org/10.1023/A:1018983904537] [PMID: 10554098]
[73]
Yemisci, M.; Bozdag, S.; Cetin, M.; Söylemezoglu, F.; Capan, Y.; Dalkara, T.; Vural, I. Treatment of malignant gliomas with mitoxantrone-loaded poly (lactide-co-glycolide) microspheres. Neurosurgery, 2006, 59(6), 1296-1302.
[http://dx.doi.org/10.1227/01.NEU.0000245607.99946.8F] [PMID: 17277693]
[74]
Menei, P.; Boisdron-Celle, M.; Croué, A.; Guy, G.; Benoit, J.P. Effect of stereotactic implantation of biodegradable 5-fluorouracil-loaded microspheres in healthy and C6 glioma-bearing rats. Neurosurgery, 1996, 39(1), 117-123.
[http://dx.doi.org/10.1097/00006123-199607000-00023] [PMID: 8805147]
[75]
Chen, W.; He, J.; Olson, J.J.; Lu, D.R. Carboplatin-loaded PLGA microspheres for intracerebralimplantation: in vivo characterization. Drug Deliv., 1997, 4(4), 301-311.
[http://dx.doi.org/10.3109/10717549709052017] [PMID: 26582450]
[76]
Benny, O.; Duvshani-Eshet, M.; Cargioli, T.; Bello, L.; Bikfalvi, A.; Carroll, R.S.; Machluf, M. Continuous delivery of endogenous inhibitors from poly(lactic-co-glycolic acid) polymeric microspheres inhibits glioma tumor growth. Clin. Cancer Res., 2005, 11(2 Pt 1), 768-776.
[PMID: 15701867]
[77]
Garbayo, E.; Ansorena, E.; Blanco-Prieto, M.J. Drug development in Parkinson’s disease: from emerging molecules to innovative drug delivery systems. Maturitas, 2013, 76(3), 272-278.
[http://dx.doi.org/10.1016/j.maturitas.2013.05.019] [PMID: 23827471]
[78]
McRae, A.; Dahlström, A. Transmitter-loaded polymeric microspheres induce regrowth of dopaminergic nerve terminals in striata of rats with 6-OH- DA induced parkinsonism. Neurochem. Int., 1994, 25(1), 27-33.
[http://dx.doi.org/10.1016/0197-0186(94)90049-3] [PMID: 7950966]
[79]
Péan, J.M.; Venier-Julienne, M.C.; Filmon, R.; Sergent, M.; Phan-Tan-Luu, R.; Benoit, J.P. Optimization of HSA and NGF encapsulation yields in PLGA microparticles. Int. J. Pharm., 1998, 166(1), 105-115.
[http://dx.doi.org/10.1016/S0378-5173(98)00033-7]
[80]
Leong, K.W.; Brott, B.C.; Langer, R. Bioerodible polyanhydrides as drug- carrier matrices. I: characterization, degradation, and release characteristics. J. Biomed. Mater. Res., 1985, 19(8), 941-955.
[http://dx.doi.org/10.1002/jbm.820190806] [PMID: 3880353]
[81]
Wang, P.P.; Frazier, J.; Brem, H. Local drug delivery to the brain. Adv. Drug Deliv. Rev., 2002, 54(7), 987-1013.
[http://dx.doi.org/10.1016/S0169-409X(02)00054-6] [PMID: 12384318]
[82]
Lesniak, M.S.; Upadhyay, U.; Goodwin, R.; Tyler, B.; Brem, H. Local delivery of doxorubicin for the treatment of malignant brain tumors in rats. Anticancer Res., 2005, 25(6B), 3825-3831.
[PMID: 16312042]
[83]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[84]
Md, S.; Ali, M.; Baboota, S.; Sahni, J.K.; Bhatnagar, A.; Ali, J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev. Ind. Pharm., 2014, 40(2), 278-287.
[http://dx.doi.org/10.3109/03639045.2012.758130] [PMID: 23369094]
[85]
Herrán, E.; Pérez-González, R.; Igartua, M.; Pedraz, J.L.; Carro, E.; Hernández, R.M. VEGF-releasing biodegradable nanospheres administered by craniotomy: a novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer’s disease. J. Control. Release, 2013, 170(1), 111-119.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.028] [PMID: 23684689]
[86]
Pillay, S.; Pillay, V.; Choonara, Y.E.; Naidoo, D.; Khan, R.A.; du Toit, L.C.; Ndesendo, V.M.; Modi, G.; Danckwerts, M.P.; Iyuke, S.E. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int. J. Pharm., 2009, 382(1-2), 277-290.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.021] [PMID: 19703530]
[87]
Hu, K.; Shi, Y.; Jiang, W.; Han, J.; Huang, S.; Jiang, X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int. J. Pharm., 2011, 415(1-2), 273-283.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.062] [PMID: 21651967]
[88]
Agyare, E.K.; Jaruszewski, K.M.; Curran, G.L.; Rosenberg, J.T.; Grant, S.C.; Lowe, V.J.; Ramakrishnan, S.; Paravastu, A.K.; Poduslo, J.F.; Kandimalla, K.K. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J. Control. Release, 2014, 185, 121-129.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.010] [PMID: 24735640]
[89]
Domb, A.J. Polymeric carriers for regional drug therapy. Mol. Med. Today, 1995, 1(3), 134-139.
[http://dx.doi.org/10.1016/S1357-4310(95)80091-3] [PMID: 9415149]
[90]
Sawyer, A.J.; Piepmeier, J.M.; Saltzman, W.M. New methods for direct delivery of chemotherapy for treating brain tumors. Yale J. Biol. Med., 2006, 79(3-4), 141-152.
[PMID: 17940624]
[91]
Olivier, J-C. Drug transport to brain with targeted nanoparticles. NeuroRx, 2005, 2(1), 108-119.
[http://dx.doi.org/10.1602/neurorx.2.1.108] [PMID: 15717062]
[92]
Singh, R.; Lillard, J.W., Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[93]
Calvo, P.; Gouritin, B.; Chacun, H.; Desmaële, D.; D’Angelo, J.; Noel, J.P.; Georgin, D.; Fattal, E.; Andreux, J.P.; Couvreur, P. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm. Res., 2001, 18(8), 1157-1166.
[http://dx.doi.org/10.1023/A:1010931127745] [PMID: 11587488]
[94]
Nowak, M.; Brown, T.D.; Graham, A.; Helgeson, M.E.; Mitragotri, S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng. Transl. Med., 2019, 5(2), e10153.
[PMID: 32440560]
[95]
Korfel, A.; Nowosielski, M.; Pardo-Moreno, J.; Penalver, F.J.; Buda, G.; Bennani, H.; Costopoulos, M.; Le Garff-Tavernier, M.; Soussain, C.; Schmid, M.; Orfao, J.A.; Glantz, M. How to facilitate early diagnosis of CNS involvement in malignant lymphoma. Expert Rev. Hematol., 2016, 9(11), 1081-1091.
[http://dx.doi.org/10.1080/17474086.2016.1242405] [PMID: 27677656]
[96]
Zhang, W.; Wang, W.; Yu, D.X.; Xiao, Z.; He, Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine (Lond.), 2018, 13(18), 2341-2371.
[http://dx.doi.org/10.2217/nnm-2018-0163] [PMID: 30088440]
[97]
Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Contrast agents delivery: an up-to-date review of nanodiagnostics in neuroimaging. Nanomaterials (Basel), 2019, 9(4), 542.
[http://dx.doi.org/10.3390/nano9040542] [PMID: 30987211]
[98]
Vallabani, N.V.S.; Singh, S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 2018, 8(6), 279.
[http://dx.doi.org/10.1007/s13205-018-1286-z] [PMID: 29881657]
[99]
Daldrup-Link, H.E. Ten things you might not know about iron oxide nanoparticles. Radiology, 2017, 284(3), 616-629.
[http://dx.doi.org/10.1148/radiol.2017162759] [PMID: 28825888]
[100]
Mohanty, S.; Chen, Z.; Li, K.; Morais, G.R.; Klockow, J.; Yerneni, K.; Pisani, L.; Chin, F.T.; Mitra, S.; Cheshier, S.; Chang, E.; Gambhir, S.S.; Rao, J.; Loadman, P.M.; Falconer, R.A.; Daldrup-Link, H.E. A novel theranostic strategy for MMP-14-Expressing glioblastomas impacts survival. Mol. Cancer Ther., 2017, 16(9), 1909-1921.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0022] [PMID: 28659432]
[101]
Tang, T.; Valenzuela, A.; Petit, F.; Chow, S.; Leung, K.; Gorin, F. In vivo MRI of functionalized iron oxide nanoparticles for brain inflammation. Contrast Media Mol. I., 2018.
[102]
Lu, C-W.; Hsiao, J-K.; Liu, H-M.; Wu, C-H. Characterization of an iron oxide nanoparticle labelling and MRI-based protocol for inducing human mesenchymal stem cells into neural-like cells. Sci. Rep., 2017, 7(1), 3587.
[http://dx.doi.org/10.1038/s41598-017-03863-x] [PMID: 28620162]
[103]
Tomitaka, A.; Arami, H.; Huang, Z.; Raymond, A.; Rodriguez, E.; Cai, Y.; Febo, M.; Takemura, Y.; Nair, M. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale, 2017, 10(1), 184-194.
[http://dx.doi.org/10.1039/C7NR07255D] [PMID: 29210401]
[104]
Ramanathan, S.; Archunan, G.; Sivakumar, M.; Tamil Selvan, S.; Fred, A.L.; Kumar, S.; Gulyás, B.; Padmanabhan, P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int. J. Nanomedicine, 2018, 13, 5561-5576.
[http://dx.doi.org/10.2147/IJN.S149022] [PMID: 30271147]
[105]
Fülöp, A.; Sammour, D.A.; Erich, K.; von Gerichten, J.; van Hoogevest, P.; Sandhoff, R.; Hopf, C. Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry. Sci. Rep., 2016, 6(1), 33791.
[http://dx.doi.org/10.1038/srep33791] [PMID: 27650487]
[106]
Lin, Q.; Mao, K-L.; Tian, F-R.; Yang, J-J.; Chen, P-P.; Xu, J.; Fan, Z.L.; Zhao, Y.P.; Li, W.F.; Zheng, L.; Zhao, Y.Z.; Lu, C.T. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes. Cancer Chemother. Pharmacol., 2016, 77(2), 269-280.
[http://dx.doi.org/10.1007/s00280-015-2926-1] [PMID: 26666650]
[107]
Denora, N.; Trapani, A.; Laquintana, V.; Lopedota, A.; Trapani, G. Recent advances in medicinal chemistry and pharmaceutical technology-strategies for drug delivery to the brain. Curr. Top. Med. Chem., 2009, 9(2), 182-196.
[http://dx.doi.org/10.2174/156802609787521571] [PMID: 19200004]
[108]
Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H.F.; Kulkarni, A.R.; Sung, H.W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J. Control. Release, 2005, 108(2-3), 193-214.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.024] [PMID: 16246446]
[109]
van Rooy, I.; Cakir-Tascioglu, S.; Hennink, W.E.; Storm, G.; Schiffelers, R.M.; Mastrobattista, E. In vivo methods to study uptake of nanoparticles into the brain. Pharm. Res., 2011, 28(3), 456-471.
[http://dx.doi.org/10.1007/s11095-010-0291-7] [PMID: 20924653]
[110]
Velasco-Aguirre, C.; Morales-Zavala, F.; Salas-Huenuleo, E.; Gallardo- Toledo, E.; Andonie, O.; Muñoz, L.; Rojas, X.; Acosta, G.; Sánchez-Navarro, M.; Giralt, E.; Araya, E.; Albericio, F.; Kogan, M.J. Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2. Nanomedicine (Lond.), 2017, 12(20), 2503-2517.
[http://dx.doi.org/10.2217/nnm-2017-0181] [PMID: 28882086]
[111]
Khongkow, M.; Yata, T.; Boonrungsiman, S.; Ruktanonchai, U.R.; Graham, D.; Namdee, K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci. Rep., 2019, 9(1), 8278.
[http://dx.doi.org/10.1038/s41598-019-44569-6] [PMID: 31164665]
[112]
Papadia, K.; Giannou, A.D.; Markoutsa, E.; Bigot, C.; Vanhoute, G.; Mourtas, S.; Van der Linded, A.; Stathopoulos, G.T.; Antimisiaris, S.G. Multifunctional LUV liposomes decorated for BBB and amyloid targeting - B. In vivo brain targeting potential in wild-type and APP/PS1 mice. Eur. J. Pharm. Sci., 2017, 102, 180-187.
[http://dx.doi.org/10.1016/j.ejps.2017.03.010] [PMID: 28285172]
[113]
Rotman, M.; Welling, M.M.; Bunschoten, A.; de Backer, M.E.; Rip, J.; Nabuurs, R.J.A.; Gaillard, P.J.; van Buchem, M.A.; van der Maarel, S.M.; van der Weerd, L. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease. J. Control. Release, 2015, 203, 40-50.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.012] [PMID: 25668771]
[114]
Manchanda, R.; Fernandez-Fernandez, A.; Nagesetti, A.; McGoron, A.J. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids Surf. B Biointerfaces, 2010, 75(1), 260-267.
[http://dx.doi.org/10.1016/j.colsurfb.2009.08.043] [PMID: 19775872]
[115]
Leenders, A.C.; Reiss, P.; Portegies, P.; Clezy, K.; Hop, W.C.; Hoy, J.; Borleffs, J.C.; Allworth, T.; Kauffmann, R.H.; Jones, P.; Kroon, F.P.; Verbrugh, H.A.; de Marie, S. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS, 1997, 11(12), 1463-1471.
[http://dx.doi.org/10.1097/00002030-199712000-00010] [PMID: 9342068]
[116]
Panigrahi, M.; Das, P.K.; Parikh, P.M. Brain tumor and Gliadel wafer treatment. Indian J. Cancer, 2011, 48(1), 11-17.
[http://dx.doi.org/10.4103/0019-509X.76623] [PMID: 21330749]
[117]
Siegal, T.; Horowitz, A.; Gabizon, A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg., 1995, 83(6), 1029-1037.
[http://dx.doi.org/10.3171/jns.1995.83.6.1029] [PMID: 7490617]
[118]
Beier, C.P.; Schmid, C.; Gorlia, T.; Kleinletzenberger, C.; Beier, D.; Grauer, O.; Steinbrecher, A.; Hirschmann, B.; Brawanski, A.; Dietmaier, C.; Jauch-Worley, T.; Kölbl, O.; Pietsch, T.; Proescholdt, M.; Rümmele, P.; Muigg, A.; Stockhammer, G.; Hegi, M.; Bogdahn, U.; Hau, P. RNOP-09: pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma-a phase II study. BMC Cancer, 2009, 9(1), 308.
[http://dx.doi.org/10.1186/1471-2407-9-308] [PMID: 19725960]
[119]
Fatema, E.; Amr, A.O.; Chris, A.; Aliaa, H.; Mohamed, I.N. Tailored nanocarriers and bioconjugates for combating glioblastoma and other brain tumors. J. Cancer Metastasis Treat., 2016, 2, 112-122.
[http://dx.doi.org/10.20517/2394-4722.2015.78]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy