Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Green Synthesis, Spectroscopic Characterization and Biomedical Applications of Carbon Nanotubes

Author(s): Taha U. Wani, Roohi Mohi-ud-din, Taseen A. Wani, Reyaz H. Mir, Asif M. Itoo, Faheem A. Sheikh, Nisar A. Khan and Faheem H. Pottoo*

Volume 22, Issue 6, 2021

Published on: 10 November, 2020

Page: [793 - 807] Pages: 15

DOI: 10.2174/1389201021999201110205615

Price: $65

conference banner
Abstract

Carbon nanotubes are nano-sized cylindrical chicken wire-like structures made of carbon atoms. Carbon nanotubes have applications in electronics, energy storage, electromagnetic devices, environmental remediation and medicine as well. The biomedical applications of carbon nanotubes can be owed to features like low toxicity, non-immunogenicity, high in vivo stability and rapid cell entry. Carbon nanotubes have a great prospect in the treatment of diseases through diagnostic as well as therapeutic approaches. These nanostructures are interesting carriers for delivery and translocation of therapeutic molecules e.g. proteins, peptides, nucleic acids, drugs, etc. to various organs like the brain, lungs, liver, and pancreas. Commonly used methods to synthesize carbon nanotubes are arc discharge, chemical vapor deposition, pyrolysis, laser ablation etc. These methods have many disadvantages such as operation at high temperature, use of chemical catalysts, prolonged synthesis time and inclusion of toxic metallic particles in the final product requiring additional purification processes. In order to avoid these setbacks, various green chemistry-based synthetic methods have been devised, e.g., those involving interfacial polymerization, supercritical carbon dioxide drying, plant extract assisted synthesis, water- assisted synthesis, etc. This review will provide a thorough outlook of the eco-friendly synthesis of carbon nanotubes reported in the literature and their biomedical applications. Besides, the most commonly used spectroscopic techniques used for the characterization of carbon nanotubes are also discussed.

Keywords: Carbon nanotubes, green synthesis, spectroscopy, therapeutic carriers, natural carbon precursors, biomedical applications.

Graphical Abstract
[1]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[2]
Liu, X. Boron Doping of Single Walled Carbon Nanotubes., PhD Thesis, The Pennsylvania State University: Pennsylvania,. 2009.
[3]
Bethune, D.; Kiang, C.H.; De Vries, M.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363(6430), 605-607.
[http://dx.doi.org/10.1038/363605a0]
[4]
Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today, 1999, 52, 22-30.
[http://dx.doi.org/10.1063/1.882658]
[5]
Yakobson, B.I. Fullerene Nanotubes: C 1,000,000 and Beyond: Some unusual new molecules-long, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family. Am. Sci., 1997, 85(4), 324-337.
[6]
Mehra, N.K.; Mishra, V.; Jain, N.K. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35(4), 1267-1283.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.032] [PMID: 24210872]
[7]
Mehra, N.K.; Verma, A.K.; Mishra, P.R.; Jain, N.K. The cancer targeting potential of D-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials, 2014, 35(15), 4573-4588.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.022] [PMID: 24612818]
[8]
Zhang, W.; Zhang, Z.; Zhang, Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett., 2011, 6(1), 555.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[9]
Huang, H.; Yuan, Q.; Shah, J.S.; Misra, R.D. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1332-1339.
[http://dx.doi.org/10.1016/j.addr.2011.04.001] [PMID: 21514336]
[10]
Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. Smalley C60: Buckminsterfullerene. Nature, 1985, 318(6042), 162-163.
[11]
Jain, K.; Mehra, N.K.; Jain, N.K. Potentials and emerging trends in nanopharmacology. Curr. Opin. Pharmacol., 2014, 15, 97-106.
[http://dx.doi.org/10.1016/j.coph.2014.01.006] [PMID: 24598376]
[12]
Mehra, N.K.; Jain, A.K.; Lodhi, N.; Raj, R.; Dubey, V.; Mishra, D.; Nahar, M.; Jain, N.K. Jain Challenges in the use of carbon nanotubes for biomedical applications. Crit. Rev.™. Ther. Drug Carrier Syst., 2008, 25(2), 169-206.
[13]
Gullapalli, H.; Mohana Reddy, A.L.; Kilpatrick, S.; Dubey, M.; Ajayan, P.M. Graphene growth via carburization of stainless steel and application in energy storage. Small, 2011, 7(12), 1697-1700.
[http://dx.doi.org/10.1002/smll.201100111] [PMID: 21538990]
[14]
Reibold, M.; Paufler, P.; Levin, A.A.; Kochmann, W.; Pätzke, N.; Meyer, D.C. Materials: Carbon nanotubes in an ancient Damascus sabre. Nature, 2006, 444(7117), 286-286.
[http://dx.doi.org/10.1038/444286a] [PMID: 17108950]
[15]
Valenti, G.; Boni, A.; Melchionna, M.; Cargnello, M.; Nasi, L.; Bertoni, G.; Gorte, R.J.; Marcaccio, M.; Rapino, S. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nat. Commun., 2016, 7(1), 1-8.
[http://dx.doi.org/10.1038/ncomms13549]
[16]
Sanderson, K. Sharpest cut from nanotube sword. NATNEWS, 2006, 15.
[17]
Lodhi, N.; Mehra, N.K.; Jain, N.K. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J. Drug Target., 2013, 21(1), 67-76.
[http://dx.doi.org/10.3109/1061186X.2012.729213] [PMID: 23039174]
[18]
Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity. ACS Nano, 2009, 3(9), 2740-2750.
[http://dx.doi.org/10.1021/nn9005686] [PMID: 19702292]
[19]
Das, M.; Datir, S.R.; Singh, R.P.; Jain, S. Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic Acid-multiwalled carbon nanotube conjugate. Mol. Pharm., 2013, 10(7), 2543-2557.
[http://dx.doi.org/10.1021/mp300701e] [PMID: 23683251]
[20]
Niu, L.; Meng, L.; Lu, Q. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol. Biosci., 2013, 13(6), 735-744.
[http://dx.doi.org/10.1002/mabi.201200475] [PMID: 23616476]
[21]
Chang, T.; Jensen, L.R.; Kisliuk, A.; Pipes, R.; Pyrz, R. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer (Guildf.), 2005, 46(2), 439-444.
[http://dx.doi.org/10.1016/j.polymer.2004.11.030]
[22]
Sawant, S.; Shegokar, R. Cancer research and therapy: Where are we today. Int. J. Cancer. Ther. Oncol., 2014, 2(4), 02048.
[http://dx.doi.org/10.14319/ijcto.0204.8]
[23]
Viswanathan, S.; Wu, L.C.; Huang, M.R.; Ho, J.A. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal. Chem., 2006, 78(4), 1115-1121.
[http://dx.doi.org/10.1021/ac051435d] [PMID: 16478102]
[24]
Sharma, P.; Bhalla, V.; Dravid, V.; Shekhawat, G. Jinsong-Wu.; Prasad, E.S.; Suri, C.R. Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes. Sci. Rep., 2012, 2, 877.
[http://dx.doi.org/10.1038/srep00877] [PMID: 23166860]
[25]
Tîlmaciu, C.M.; Morris, M.C. Carbon nanotube biosensors. Front Chem., 2015, 3, 59.
[http://dx.doi.org/10.3389/fchem.2015.00059] [PMID: 26579509]
[26]
Sethi, S.; Ge, L.; Ci, L.; Ajayan, P.M.; Dhinojwala, A. Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett., 2008, 8(3), 822-825.
[http://dx.doi.org/10.1021/nl0727765] [PMID: 18266335]
[27]
Dyatlova, O.A.; Gomis-Bresco, J.; Malic, E.; Telg, H.; Maultzsch, J.; Zhong, G.; Geng, J.; Woggon, U. Dielectric screening effects on transition energies in aligned carbon nanotubes. Phys. Rev. B , 2012, 85(24), 245449.
[http://dx.doi.org/10.1103/PhysRevB.85.245449]
[28]
Awasthi, K.; Srivastava, A.; Srivastava, O.N. Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol., 2005, 5(10), 1616-1636.
[http://dx.doi.org/10.1166/jnn.2005.407] [PMID: 16245519]
[29]
Shah, K.A.; Tali, B.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process., 2016, 41, 67-82.
[http://dx.doi.org/10.1016/j.mssp.2015.08.013]
[30]
Lai, H.; Lin, M.; Yang, M.; Li, A. Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge. Mater. Sci. Eng. C, 2001, 16(1-2), 23-26.
[http://dx.doi.org/10.1016/S0928-4931(01)00303-4]
[31]
Dai, J.; Lauerhaas, J.; Setlur, A.; Chang, R.P. Synthesis of carbon-encapsulated nanowires using polycyclic aromatic hydrocarbon precursors. Chem. Phys. Lett., 1996, 258(5-6), 547-553.
[http://dx.doi.org/10.1016/0009-2614(96)00709-9]
[32]
Zhuo, C.; Hall, B.; Richter, H.; Levendis, Y. Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene. Carbon, 2010, 48(14), 4024-4034.
[http://dx.doi.org/10.1016/j.carbon.2010.07.007]
[33]
Tang, S.L.; Smith, R.L.; Poliakoff, M. Principles of green chemistry: productively. Green Chem., 2005, 7(11), 761-762.
[http://dx.doi.org/10.1039/b513020b]
[34]
Tripathi, N.; Pavelyev, V.; Islam, S. Synthesis of carbon nanotubes using green plant extract as catalyst: unconventional concept and its realization. Appl. Nanosci., 2017, 7(8), 557-566.
[http://dx.doi.org/10.1007/s13204-017-0598-3]
[35]
Alam, M.S.; Garg, A.; Pottoo, F.H.; Saifullah, M.K.; Tareq, A.I.; Manzoor, O.; Mohsin, M.; Javed, M.N. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using box-behnken based statistical design. Int. J. Biol. Macromol., 2017, 104(Pt A), 758-767..
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.129 ] [PMID: 28601649]
[36]
Gao, L.; Li, R.; Sui, X.; Li, R.; Chen, C.; Chen, Q. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ. Sci. Technol., 2014, 48(17), 10191-10197.
[http://dx.doi.org/10.1021/es5021839] [PMID: 25089346]
[37]
Zaytseva, O. Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem. Biologic.Technol. Agric., 2016, 3(1), 17.
[http://dx.doi.org/10.1186/s40538-016-0070-8]
[38]
Hamid, Z.A.; Azim, A.A.; Mouez, F.A.; Rehim, S.A. Challenges on synthesis of carbon nanotubes from environmentally friendly green oil using pyrolysis technique. J. Anal. Appl. Pyrolysis, 2017, 126, 218-229.
[http://dx.doi.org/10.1016/j.jaap.2017.06.005]
[39]
Taziwa, R.; Meyer, E.; Sideras-Haddad, E.; Erasmus, R.; Manikandan, E.; Mwakikunga, B. Mwakikunga Effect of carbon modification on the electrical, structural, and optical properties of TiO2 electrodes and their performance in labscale dye-sensitized solar cells. Int. J. Photoenergy, 2012., Article ID 904323.
[40]
Paul, S.; Samdarshi, S. Carbon microtubes produced from coconut oil. N. Carbon Mater., 2010, 25(5), 321-324.
[http://dx.doi.org/10.1016/S1872-5805(09)60036-6]
[41]
Kumar, R.; Tiwari, R.S.; Srivastava, O.N. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale Res. Lett., 2011, 6(1), 92.
[http://dx.doi.org/10.1186/1556-276X-6-92] [PMID: 21711585]
[42]
Kang, Z.; Wang, E.; Gao, L.; Lian, S.; Jiang, M.; Hu, C.; Xu, L. One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite. J. Am. Chem. Soc., 2003, 125(45), 13652-13653.
[http://dx.doi.org/10.1021/ja037399m] [PMID: 14599190]
[43]
Hakim, Y.Z.; Yulizar, Y.; Nurcahyo, A. Green synthesis of carbon nanotubes from coconut shell waste for the adsorption of Pb(II) ions. Acta Chimica Asiana, 2018, 1(1), 6-10.
[http://dx.doi.org/10.29303/aca.v1i1.2]
[44]
Wang, J.; Wang, C.F. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem. Int. Ed., 2012, 51(37), 9297-9301.
[http://dx.doi.org/10.1002/anie.201204381]
[45]
Akhavan, O.; Bijanzad, K.; Mirsepah, A. Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv, 2014, 4(39), 20441-20448.
[http://dx.doi.org/10.1039/c4ra01550a]
[46]
Suriani, A.; Dalila, A.; Mohamed, A.; Mamat, M.; Salina, M.; Rosmi, M.; Rosly, J.; Nor, R.M.; Rusop, M. Vertically aligned carbon nanotubes synthesized from waste chicken fat. Mater. Lett., 2013, 101, 61-64.
[http://dx.doi.org/10.1016/j.matlet.2013.03.075]
[47]
Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem., 2012, 22(18), 8767-8771.
[http://dx.doi.org/10.1039/c2jm00055e]
[48]
Nguyen, V.H. Shim Green synthesis and characterization of carbon nanotubes/polyaniline nanocomposites. J. Spect., 2015, Article ID 297804..
[49]
Bokobza, L.; Zhang, J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett., 2012, 6(7), 601-608.
[http://dx.doi.org/10.3144/expresspolymlett.2012.63]
[50]
López-Lorente, A.I.; Simonet, B.M.; Valcárcel, M. Raman spectroscopic characterization of single walled carbon nanotubes: Influence of the sample aggregation state. Analyst (Lond.), 2014, 139(1), 290-298.
[http://dx.doi.org/10.1039/C3AN00642E] [PMID: 24255912]
[51]
Attal, S.; Thiruvengadathan, R.; Regev, O. Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy. Anal. Chem., 2006, 78(23), 8098-8104.
[http://dx.doi.org/10.1021/ac060990s] [PMID: 17134145]
[52]
Yu, J.; Grossiord, N.; Koning, C.E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon, 2007, 45(3), 618-623.
[http://dx.doi.org/10.1016/j.carbon.2006.10.010]
[53]
Li, R.; Chang, X.; Li, Z.; Zang, Z.; Hu, Z.; Li, D. Tu Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb (II) ion in water samples. Microchimica acta, 2011, 172(3-4), 269-276.
[54]
Zang, Z.; Hu, Z.; Li, Z.; He, Q.; Chang, X. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. J. Hazard. Mater., 2009, 172(2-3), 958-963.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.078] [PMID: 19692175]
[55]
Shulga, Y.; Tien, T.C.; Huang, C.C.; Lo, S.C.; Muradyan, V.; Polyakova, N.; Ling, Y.C.; Loutfy, R. XPS study of fluorinated carbon multi-walled nanotubes. J. Electron Spectrosc. Relat. Phenom., 2007, 160(1-3), 22-28.
[http://dx.doi.org/10.1016/j.elspec.2007.06.002]
[56]
Bera, D.; Kuiry, S.C.; McCutchen, M.; Kruize, A.; Heinrich, H.; Meyyappan, M.; Seal, S. In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution. Chem. Phys. Lett., 2004, 386(4-6), 364-368.
[http://dx.doi.org/10.1016/j.cplett.2004.01.082]
[57]
Yang, K.X.; Kitto, M.E.; Orsini, J.P.; Swami, K.; Beach, S.E. Evaluation of sample pretreatment methods for multiwalled and single-walled carbon nanotubes for the determination of metal impurities by ICPMS, ICPOES, and instrument neutron activation analysis. J. Anal. At. Spectrom., 2010, 25(8), 1290-1297.
[http://dx.doi.org/10.1039/c0ja00012d]
[58]
Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep., 2005, 409(2), 47-99.
[http://dx.doi.org/10.1016/j.physrep.2004.10.006]
[59]
Jorio, A.; Pimenta, M.; Souza Filho, A.; Saito, R.; Dresselhaus, G. Characterizing carbon nanotube samples with resonance raman scattering. New J. Phys., 2003, 5(1), 139.
[http://dx.doi.org/10.1088/1367-2630/5/1/139]
[60]
Graupner, R. Raman spectroscopy of covalently functionalized single‐wall carbon nanotubes. J. Raman Spectrosc., 2007, 38(6), 673-683.
[61]
Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martinez-Alonso, A.; Tascón, J.D. Raman microprobe studies on carbon materials. Carbon, 1994, 32(8), 1523-1532.
[http://dx.doi.org/10.1016/0008-6223(94)90148-1 ]
[62]
Rao, A.M.; Chen, J.; Richter, E.; Schlecht, U.; Eklund, P.C.; Haddon, R.C.; Venkateswaran, U.D.; Kwon, Y.K.; Tománek, D. Effect of van der waals interactions on the raman modes in single walled carbon nanotubes. Phys. Rev. Lett., 2001, 86(17), 3895-3898.
[http://dx.doi.org/10.1103/PhysRevLett.86.3895] [PMID: 11329351]
[63]
Dresselhaus, M.; Jorio, A. Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy. Annu. Rev. Condens. Matter Phys., 2010, 1(1), 89-108.
[http://dx.doi.org/10.1146/annurev-conmatphys-070909-103919]
[64]
Pillai, S.K.; Ray, S.S.; Moodley, M. Purification of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol., 2008, 8(12), 6187-6207.
[http://dx.doi.org/10.1166/jnn.2008.345] [PMID: 19205185]
[65]
Meng, J.; Yang, M.; Song, L.; Kong, H.; Wang, C.Y.; Wang, R.; Wang, C.; Xie, S.S.; Xu, H.Y. Concentration control of carbon nanotubes in aqueous solution and its influence on the growth behavior of fibroblasts. Colloids Surf. B Biointerfaces, 2009, 71(1), 148-153.
[http://dx.doi.org/10.1016/j.colsurfb.2009.01.020] [PMID: 19250807]
[66]
Wenseleers, W.; Vlasov, I.I.; Goovaerts, E.; Obraztsova, E.D.; Lobach, A.S.; Bouwen, A. Efficient isolation and solubilization of pristine single‐walled nanotubes in bile salt micelles. Adv. Funct. Mater., 2004, 14(11), 1105-1112.
[http://dx.doi.org/10.1002/adfm.200400130]
[67]
Kitiyanan, B.; Alvarez, W.; Harwell, J. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett., 2000, 317(3-5), 497-503.
[http://dx.doi.org/10.1016/S0009-2614(99)01379-2]
[68]
Tan, Y.; Resasco, D.E. Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J. Phys. Chem. B, 2005, 109(30), 14454-14460.
[http://dx.doi.org/10.1021/jp052217r] [PMID: 16852820]
[69]
Yang, B.; Ren, L.; Li, L.; Tao, X.; Shi, Y.; Zheng, Y. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy. Analyst (Lond.), 2013, 138(21), 6671-6676.
[http://dx.doi.org/10.1039/c3an01129a] [PMID: 24000337]
[70]
O’Connell, M.J.; Bachilo, S.M.; Huffman, C.B.; Moore, V.C.; Strano, M.S.; Haroz, E.H.; Rialon, K.L.; Boul, P.J.; Noon, W.H.; Kittrell, C.; Ma, J.; Hauge, R.H.; Weisman, R.B.; Smalley, R.E. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297(5581), 593-596.
[http://dx.doi.org/10.1126/science.1072631] [PMID: 12142535]
[71]
Huang, H.; Zou, M.; Xu, X.; Liu, F.; Li, N.; Wang, X. Near-infrared fluorescence spectroscopy of single-walled carbon nanotubes and its applications. Trends Analyt. Chem., 2011, 30(7), 1109-1119.
[http://dx.doi.org/10.1016/j.trac.2011.03.014]
[72]
Cherukuri, P.; Gannon, C.J.; Leeuw, T.K.; Schmidt, H.K.; Smalley, R.E.; Curley, S.A.; Weisman, R.B. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA, 2006, 103(50), 18882-18886.
[http://dx.doi.org/10.1073/pnas.0609265103] [PMID: 17135351]
[73]
Moore, V.C.; Strano, M.S.; Haroz, E.H.; Hauge, R.H.; Smalley, R.E.; Schmidt, J.; Talmon, Y. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett., 2003, 3(10), 1379-1382.
[http://dx.doi.org/10.1021/nl034524j]
[74]
Rocha, J.D.R.; Bachilo, S.M.; Ghosh, S.; Arepalli, S.; Weisman, R.B. Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples. Anal. Chem., 2011, 83(19), 7431-7437.
[http://dx.doi.org/10.1021/ac2014788] [PMID: 21866945]
[75]
Ramanathan, T.; Fisher, F.; Ruoff, R.; Brinson, L.C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater., 2005, 17(6), 1290-1295.
[http://dx.doi.org/10.1021/cm048357f]
[76]
Maldonado, S.; Morin, S.; Stevenson Structure, K. J. Composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon, 2006, 44(8), 1429-1437.
[http://dx.doi.org/10.1016/j.carbon.2005.11.027]
[77]
Chen, R.J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc., 2001, 123(16), 3838-3839.
[http://dx.doi.org/10.1021/ja010172b] [PMID: 11457124]
[78]
Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Mater. Sci. Eng. B, 2005, 119(2), 105-118.
[http://dx.doi.org/10.1016/j.mseb.2005.02.046]
[79]
Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; Biniak, S.; Trykowski, G. J. Alloys Compd., 2010, 501(1), 77-84.
[http://dx.doi.org/10.1016/j.jallcom.2010.04.032]
[80]
Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos., Part A Appl. Sci. Manuf., 2010, 41(10), 1345-1367.
[http://dx.doi.org/10.1016/j.compositesa.2010.07.003]
[81]
Grazhulene, S.; Red’kin, A.; Telegin, G.; Bazhenov, A.; Fursova, T. Adsorption properties of carbon nanotubes depending on the temperature of their synthesis and subsequent treatment. J. Anal. Chem., 2010, 65(7), 682-689.
[http://dx.doi.org/10.1134/S106193481007004X]
[82]
Cui, Y.; Liu, S.; Hu, Z.J.; Liu, X.H. Solid-phase extraction of lead(II) ions using multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine. Mikrochim. Acta, 2011, 174(1-2), 107.
[http://dx.doi.org/10.1007/s00604-011-0601-8]
[83]
Salam, M.A.; Makki, M.S. Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J. Alloys Compd., 2011, 509(5), 2582-2587.
[http://dx.doi.org/10.1016/j.jallcom.2010.11.094]
[84]
Nelson, D.J.; Kumar, R. Characterizing covalently sidewall-functionalized single-walled carbon nanotubes by using 1H NMR spectroscopy. J. Phys. Chem. C, 2013, 117(28), 14812-14823.
[http://dx.doi.org/10.1021/jp402307k]
[85]
Aaron, L.; Herrell, R.; Hartman, S.; Belcourt, M.; Schmaling, K. Goldberg. Comorbid clinical conditions in chronic fatigue: A co-twin control study. J. Gen. Intern. Med., 2001, 16, 24-31.
[86]
Lukanov, P.; Tîlmaciu, C-M.; Galibert, A.; Soula, B.; Flahaut, E. Filling of carbon nanotubes with compounds in solution or melted phase; Carbon Nanotubes Biomed. Appl, 2011, 41-65.
[http://dx.doi.org/10.1007/978-3-642-14802-6_3]
[87]
Ishikuro, M.; Sato, Y.; Tohji, K.; Wagatsuma, K. Determination of metallic elements in carbon nanotubes by inductively coupled plasma-optical emission spectrometry. Bunseki Kagaku, 2006, 55(2), 117-120.
[http://dx.doi.org/10.2116/bunsekikagaku.55.117]
[88]
Resano, M.; Bolea-Fernández, E.; Mozas, E.; Flórez, M.R.; Grinberg, P. Simultaneous determination of Co, Fe, Ni and Pb in carbon nanotubes by means of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom., 2013, 28(5), 657-665.
[http://dx.doi.org/10.1039/c3ja30377b]
[89]
Masotti, A.; Caporali, A. Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int. J. Mol. Sci., 2013, 14(12), 24619-24642.
[http://dx.doi.org/10.3390/ijms141224619] [PMID: 24351838]
[90]
Caraglia, M.; De Rosa, G.; Salzano, G.; Santini, D.; Lamberti, M.; Sperlongano, P.; Lombardi, A.; Abbruzzese, A.; Addeo, R. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier. Curr. Cancer Drug Targets, 2012, 12(3), 186-196.
[http://dx.doi.org/10.2174/156800912799277421] [PMID: 22268384]
[91]
Yan, Y.; Wang, R.; Hu, Y.; Sun, R.; Song, T.; Shi, X.; Yin, S. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv., 2018, 25(1), 1607-1616.
[http://dx.doi.org/10.1080/10717544.2018.1501120] [PMID: 30348025]
[92]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68(16), 6652-6660.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1468] [PMID: 18701489]
[93]
Samorì, C.; Ali-Boucetta, H.; Sainz, R.; Guo, C.; Toma, F.M.; Fabbro, C.; da Ros, T.; Prato, M.; Kostarelos, K.; Bianco, A. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem. Commun. (Camb.), 2010, 46(9), 1494-1496.
[http://dx.doi.org/10.1039/B923560D] [PMID: 20162159]
[94]
Ji, Z.; Lin, G.; Lu, Q.; Meng, L.; Shen, X.; Dong, L.; Fu, C.; Zhang, X. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J. Colloid Interface Sci., 2012, 365(1), 143-149.
[http://dx.doi.org/10.1016/j.jcis.2011.09.013] [PMID: 21974923]
[95]
Yang, W.; Thordarson, P.; Gooding, J.J.; Ringer, S.P.; Braet, F. Carbon nanotubes for biological and biomedical applications. Nanotechnology, 2007, 18(41), 412001.
[http://dx.doi.org/10.1088/0957-4484/18/41/412001]
[96]
Madani, S.Y.; Naderi, N.; Dissanayake, O.; Tan, A.; Seifalian, A.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int. J. Nanomedicine, 2011, 6, 2963-2979.
[PMID: 22162655]
[97]
Elhissi, A.; Ahmed, W.; Hassan, I.U.; Dhanak, V.; D’Emanuele, A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv., 2012, 347-363.
[http://dx.doi.org/10.1016/B978-1-4557-7862-1.00020-1] [PMID: 22028974 ]
[98]
Van Puyvelde, S.; Deborggraeve, S.; Jacobs, J. Why the antibiotic resistance crisis requires a one health approach. Lancet Infect. Dis., 2018, 18(2), 132-134.
[http://dx.doi.org/10.1016/S1473-3099(17)30704-1] [PMID: 29198739]
[99]
Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[100]
Rosen, Y.; Elman, N.M. Carbon nanotubes in drug delivery: Focus on infectious diseases. Expert Opin. Drug Deliv., 2009, 6(5), 517-530.
[http://dx.doi.org/10.1517/17425240902865579] [PMID: 19413459]
[101]
Rosen, Y.; Mattix, B.; Rao, A.; Alexis, F. Carbon nanotubes and infectious diseases.in Nanomedicine in Health and Disease; Hunter, R.J., Ed.; , 2011, pp. 249-267.
[102]
Jiang, L.; Liu, T.; He, H.; Pham-Huy, L.A.; Li, L.; Pham-Huy, C.; Xiao, D. Adsorption behavior of pazufloxacin mesilate on amino-functionalized carbon nanotubes. J. Nanosci. Nanotechnol., 2012, 12(9), 7271-7279.
[http://dx.doi.org/10.1166/jnn.2012.6562] [PMID: 23035463]
[103]
Liu, C.; Shi, H.; Yang, H.; Yan, S.; Luan, S.; Li, Y.; Teng, M.; Khan, A.F.; Yin, J. Fabrication of antibacterial electrospun nanofibers with vancomycin-carbon nanotube via ultrasonication assistance. Mater. Des., 2017, 120, 128-134.
[http://dx.doi.org/10.1016/j.matdes.2017.02.008]
[104]
Digge, M.; Moon, R.; Gattani, S. Applications of carbon nanotubes in drug delivery: A review. Int. J. Pharm. Tech. Res., 2012, 4(2), 839-847.
[105]
Chen, H.; Wang, B.; Gao, D.; Guan, M.; Zheng, L.; Ouyang, H.; Chai, Z.; Zhao, Y.; Feng, W. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small, 2013, 9(16), 2735-2746.
[http://dx.doi.org/10.1002/smll.201202792] [PMID: 23463684]
[106]
Nunes, A.; Amsharov, N.; Guo, C.; Van den Bossche, J.; Santhosh, P.; Karachalios, T.K.; Nitodas, S.F.; Burghard, M.; Kostarelos, K.; Al-Jamal, K.T. Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small, 2010, 6(20), 2281-2291.
[http://dx.doi.org/10.1002/smll.201000864] [PMID: 20878655]
[107]
Bekyarova, E.; Ni, Y.; Malarkey, E.B.; Montana, V.; McWilliams, J.L.; Haddon, R.C.; Parpura, V. Applications of carbon nanotubes in biotechnology and biomedicine. J. Biomed. Nanotechnol., 2005, 1(1), 3-17.
[http://dx.doi.org/10.1166/jbn.2005.004] [PMID: 19763242]
[108]
Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.P.; Prato, M.; Kostarelos, K. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed., 2004, 43(39), 5242-5246.
[http://dx.doi.org/10.1002/anie.200460437]
[109]
Song, N.; Xu, W.; Guan, H.; Liu, X.; Wang, Y. Nie Several flavonoids from Capsella bursa-pastoris (L.). Medic. Asian Trad. Med., 2007, 2(6), 218-222.
[110]
Kam, N.W.S.; Liu, Z.; Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc., 2005, 127(36), 12492-12493.
[http://dx.doi.org/10.1021/ja053962k] [PMID: 16144388]
[111]
Usui, Y.; Haniu, H.; Tsuruoka, S.; Saito, N. Carbon nanotubes innovate on medical technology. Med. Chem., 2012, 2(1), 1-6.
[PMID: 22420543]
[112]
MacDonald, R.A.; Laurenzi, B.F.; Viswanathan, G.; Ajayan, P.M.; Stegemann, J.P. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J. Biomed. Mater. Res. A, 2005, 74(3), 489-496.
[http://dx.doi.org/10.1002/jbm.a.30386] [PMID: 15973695]
[113]
Francisco-Marquez, M.; Galano, A.; Martínez, A. On the free radical scavenging capability of carboxylated single-walled carbon nanotubes. J. Phys. Chem. C, 2010, 114(14), 6363-6370.
[http://dx.doi.org/10.1021/jp100065t]
[114]
Liao, H.; Paratala, B.; Sitharaman, B.; Wang, Y. Applications of carbon nanotubes in biomedical studies., Biomed. Nanotechnol., 2011, 223-241..
[http://dx.doi.org/10.1007/978-1-61779-052-2_15]
[115]
Calloway, C.G. The scratch of a pen: 1763 and the transformation of North America; Oxford University Press, 2007.
[116]
Koenig, R. The Fourth Horseman; Public Affairs, 2006.
[117]
Song, S.G.; Ha, S.; Cho, H.J.; Lee, M.; Jung, D.; Han, J.H. Single-walled carbon-nanotube-based chemocapacitive sensors with molecular receptors for selective detection of chemical warfare agents. ACS Applied Nano Mats., 2018, 2(1), 109-117.
[118]
Singh, C.; Srivastava, S.; Ali, M.A.; Gupta, T.K.; Sumana, G.; Srivastava, A.; Mathur, R.; Malhotra, B.D. Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sens. Actuators B Chem., 2013, 185, 258-264.
[http://dx.doi.org/10.1016/j.snb.2013.04.040]
[119]
Suresh, S.; Gupta, A.K.; Rao, V.K.; Kumar, O.; Vijayaraghavan, R. Amperometric immunosensor for ricin by using on graphite and carbon nanotube paste electrodes. Talanta, 2010, 81(1-2), 703-708.
[http://dx.doi.org/10.1016/j.talanta.2010.01.007] [PMID: 20188985]
[120]
Tok, J.B.H.; Chuang, F.Y.; Kao, M.C.; Rose, K.A.; Pannu, S.S.; Sha, M.Y.; Chakarova, G.; Penn, S.G.; Dougherty, G.M. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem. Int. Ed. Engl., 2006, 45(41), 6900-6904.
[http://dx.doi.org/10.1002/anie.200601104] [PMID: 16888828]
[121]
Crinelli, R.; Carloni, E.; Menotta, M.; Giacomini, E.; Bianchi, M.; Ambrosi, G.; Giorgi, L.; Magnani, M. Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules. ACS Nano, 2010, 4(5), 2791-2803.
[http://dx.doi.org/10.1021/nn100057c] [PMID: 20411956]
[122]
Liu, Z.; Fan, A.C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D.W.; Dai, H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl., 2009, 48(41), 7668-7672.
[http://dx.doi.org/10.1002/anie.200902612] [PMID: 19760685]
[123]
Liu, Z.; Winters, M.; Holodniy, M. siRNA delivery into human t cells and primary cells with carbon-nanotube transporters. Angew. Chem., 2007, 119(12), 2069-2073.
[http://dx.doi.org/10.1002/ange.200604295]
[124]
Akhavan, O.; Azimirad, R. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater. Chem. Phys., 2011, 130(1-2), 598-602.
[http://dx.doi.org/10.1016/j.matchemphys.2011.07.030]
[125]
Shi Kam, N.W.; Jessop, T.C.; Wender, P.A.; Dai, H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into Mammalian cells. J. Am. Chem. Soc., 2004, 126(22), 6850-6851.
[http://dx.doi.org/10.1021/ja0486059] [PMID: 15174838]
[126]
Ghosh, S.; Dutta, S.; Gomes, E.; Carroll, D.; D’Agostino, R., Jr; Olson, J.; Guthold, M.; Gmeiner, W.H. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano, 2009, 3(9), 2667-2673.
[http://dx.doi.org/10.1021/nn900368b] [PMID: 19655728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy