Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Nano-Lipid-Carriers for the Treatment of Vitiligo: A Recent Update, Pathophysiology and Mechanism of Drug Delivery

Author(s): Supratim Das and Sukhbir Kaur*

Volume 14, Issue 3, 2021

Published on: 09 November, 2020

Page: [306 - 320] Pages: 15

DOI: 10.2174/1874467213999201109220714

Price: $65

Abstract

Background: Vitiligo is an auto-immune disease with white-coloured disfiguring patches or spots on the skin surface. It is highly prevalent in several corners of the world. This disease spreads in different age groups.

Aim: The main aim of this review is to provide an overview of pathophysiology and lipid-based nano-carriers for the treatment of vitiligo.

Methods: The conventional delivery systems available have limited efficacy due to less retention of the drug in the epidermal layer where melanocytes reside. In order to overcome these issues, an advanced delivery system with lipid-based nano-carriers for the treatment of vitiligo was proven to be better as per the literature explored.

Results: This review summarizes the pathophysiology along with novel lipid-based nano-carriers for the treatment of vitiligo.

Conclusion: Though various treatment regimens are present for the disease, nano-lipid carrier systems are significantly gaining importance nowadays, due to their high effectivity in topically acting on the target site. Nano-lipid carrier systems such as liposomes, ethosomes, transethosomes and transferosomes can be said to be at the top of the list in acting effectively against vitiligo or several other tropical diseases.

Keywords: Vitiligo, vesicular lipid systems, liposome, ethosome, transethosome, transferosome.

Graphical Abstract
[1]
Frisoli, M.L.; Harris, J.E. Vitiligo: Mechanistic insights lead to novel treatments. J. Allergy Clin. Immunol., 2017, 140(3), 654-662.
[http://dx.doi.org/10.1016/j.jaci.2017.07.011] [PMID: 28778794]
[2]
Wang, Y.; Li, S.; Li, C. Perspectives of new advances in the pathogenesis of vitiligo: from oxidative stress to autoimmunity. Med. Sci. Monit., 2019, 25, 1017-1023.
[http://dx.doi.org/10.12659/MSM.914898] [PMID: 30723188]
[3]
Rashighi, M.; Harris, J.E. Vitiligo pathogenesis and emerging treatments. Dermatol. Clin., 2017, 35(2), 257-265.
[http://dx.doi.org/10.1016/j.det.2016.11.014] [PMID: 28317534]
[4]
Goh, B.K.; Pandya, A.G. Presentations, signs of activity, and differential diagnosis of vitiligo. Dermatol. Clin., 2017, 35(2), 135-144.
[http://dx.doi.org/10.1016/j.det.2016.11.004] [PMID: 28317523]
[5]
Shivasaraun, U.V.; Sureshkumar, R.; Karthika, C.; Nethravathi, P. Vitiligo: A Review of its Aspects and Treatment Modalities. Asian J. Pharm. Sci, 2018, 12(1), S21-S30.
[6]
Felsten, L.M.; Alikhan, A.; Petronic-Rosic, V. Vitiligo: a comprehensive overview Part II: treatment options and approach to treatment. J. Am. Acad. Dermatol., 2011, 65(3), 493-514.
[http://dx.doi.org/10.1016/j.jaad.2010.10.043] [PMID: 21839316]
[7]
Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine, 2016, 11, 2279-2304.
[http://dx.doi.org/10.2147/IJN.S105016] [PMID: 27307730]
[8]
Krüger, C.; Schallreuter, K.U. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int. J. Dermatol., 2012, 51(10), 1206-1212.
[http://dx.doi.org/10.1111/j.1365-4632.2011.05377.x] [PMID: 22458952]
[9]
Vallerand, I.A.; Lewinson, R.T.; Parsons, L.M.; Hardin, J.; Haber, R.M.; Lowerison, M.W.; Barnabe, C.; Patten, S.B. Vitiligo and major depressive disorder: A bidirectional population-based cohort study. J. Am. Acad. Dermatol., 2019, 80(5), 1371-1379.
[http://dx.doi.org/10.1016/j.jaad.2018.11.047] [PMID: 30528503]
[10]
Morales-Sánchez, M.A.; Vargas-Salinas, M.; Peralta-Pedrero, M.L.; Olguín-García, M.G.; Jurado-Santa Cruz, F. Impacto del vitíligo en la calidad de vida. Actas Dermosifiliogr., 2017, 108(7), 637-642.
[http://dx.doi.org/10.1016/j.ad.2017.03.007] [PMID: 28456327]
[11]
Rodrigues, M.; Ezzedine, K.; Hamzavi, I.; Pandya, A.G.; Harris, J.E. Vitiligo Working Group. New discoveries in the pathogenesis and classification of vitiligo. J. Am. Acad. Dermatol., 2017, 77(1), 1-13.
[http://dx.doi.org/10.1016/j.jaad.2016.10.048] [PMID: 28619550]
[12]
Speeckaert, R.; van Geel, N. Vitiligo: An update on pathophysiology and treatment options. Am. J. Clin. Dermatol., 2017, 18(6), 733-744.
[http://dx.doi.org/10.1007/s40257-017-0298-5] [PMID: 28577207]
[13]
Alikhan, A.; Felsten, L.M.; Daly, M.; Petronic-Rosic, V. Vitiligo: A comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J. Am. Acad. Dermatol., 2011, 65(3), 473-491.
[http://dx.doi.org/10.1016/j.jaad.2010.11.061] [PMID: 21839315]
[14]
Choi, D.; Isedeh, P.; Hamzavi, I.H. Vitiligo: A review of the pathogenesis. J. Egypt. Women. Dermatol. Soc., 2014, 11(3), 145-158.
[http://dx.doi.org/10.1097/01.EWX.0000450307.76457.a3]
[15]
Ormsby, O. Pigment anomalies.Diseases of the skin; Lea and Febiger: Philadelphia, 1927, pp. 585-589.
[16]
Menon, A.N. Ultra-violet therapy in cases of leucoderma. Ind. Med. Gaz., 1945, 80(12), 612-614.
[PMID: 21026566]
[17]
Monem El Mofty, A. A preliminary clinical report on the treatment of leucodermia with Ammi majus Linn. J. Egypt. Med. Assoc., 1948, 31(8), 651-665.
[PMID: 18890453]
[18]
Rodrigues, M.; Ezzedine, K.; Hamzavi, I.; Pandya, A.G.; Harris, J.E. Vitiligo Working Group. Current and emerging treatments for vitiligo. J. Am. Acad. Dermatol., 2017, 77(1), 17-29.
[http://dx.doi.org/10.1016/j.jaad.2016.11.010] [PMID: 28619557]
[19]
Bleuel, R. Therapeutisches Management bei Vitiligo Therapeutic management of vitiligo.
[20]
Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J. Pharm. Sci., 2017, 106(2), 423-445.
[http://dx.doi.org/10.1016/j.xphs.2016.10.001] [PMID: 27865609]
[21]
Pandey, V.; Golhani, D.; Shukla, R. Ethosomes: versatile vesicular carriers for efficient transdermal delivery of therapeutic agents. Drug Deliv., 2015, 22(8), 988-1002.
[http://dx.doi.org/10.3109/10717544.2014.889777] [PMID: 24580572]
[22]
Mezei, M.; Gulasekharam, V. Liposomes-a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci., 1980, 26(18), 1473-1477.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4] [PMID: 6893068]
[23]
Mezei, M.; Gulasekharam, V. Liposomes-a selective drug delivery system for the topical route of administration: gel dosage form. J. Pharm. Pharmacol., 1982, 34(7), 473-474.
[PMID: 6126554]
[24]
Foldvari, M.; Gesztes, A.; Mezei, M. Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J. Microencapsul., 1990, 7(4), 479-489.
[PMID: 2266473]
[25]
Kato, A.; Ishibashi, Y.; Miyake, Y. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride. J. Pharm. Pharmacol., 1987, 39(5), 399-400.
[http://dx.doi.org/10.1111/j.2042-7158.1987.tb03407.x] [PMID: 2886592]
[26]
Bouwstra, J.A.; Hofland, H.E.; Spies, F.; Gooris, G.S.; Junginger, H.E. Changes in the structure of the human stratum corneum induced by liposomes. InLiposome Dermatics; Springer: Berlin, Heidelberg, 1992, pp. 121-136.
[27]
Sinico, C.; Manconi, M.; Peppi, M.; Lai, F.; Valenti, D.; Fadda, A.M. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle-skin interaction. J. Control. Release, 2005, 103(1), 123-136.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.020] [PMID: 15710506]
[28]
Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2018, 535(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.046] [PMID: 29111097]
[29]
Verma, S.; Utreja, P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci, 2019, 14(2), 117-129.
[http://dx.doi.org/10.1016/j.ajps.2018.05.007] [PMID: 32104444]
[30]
de Leeuw, J.; Assen, Y.J.; van der Beek, N.; Bjerring, P.; Martino Neumann, H.A. Treatment of vitiligo with khellin liposomes, ultraviolet light and blister roof transplantation. J. Eur. Acad. Dermatol. Venereol., 2011, 25(1), 74-81.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03701.x] [PMID: 20477914]
[31]
Asawanonda, P.; Klahan, S.O. Tetrahydrocurcuminoid cream plus targeted narrowband UVB phototherapy for vitiligo: a preliminary randomized controlled study. Photomed. Laser Surg., 2010, 28(5), 679-684.
[http://dx.doi.org/10.1089/pho.2009.2637] [PMID: 20961233]
[32]
Nimmy, J. K.; Krishnakumar, D. B.; Smitha, K. N. ETHOSOMAL GEL: A REVIEW
[33]
Mishra, K.K.; Kaur, C.D.; Verma, S.; Sahu, A.K.; Dash, D.K.; Kashyap, P.; Mishra, S.P. Transethosomes and nanoethosomes: recent approach on transdermal drug delivery system. InNanomedicines; IntechOpen, 2019.
[34]
Touitou, E. Composition for applying active substances to or through the skin U.S. Patent 5,716,638A, 1998.
[35]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[36]
Chourasia, M.K.; Kang, L.; Chan, S.Y. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results Pharma Sci., 2011, 1(1), 60-67.
[http://dx.doi.org/10.1016/j.rinphs.2011.10.002] [PMID: 25755983]
[37]
Garg, B.J.; Garg, N.K.; Beg, S.; Singh, B.; Katare, O.P. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: formulation optimization, in vitro evaluation and preclinical assessment. J. Drug Target., 2016, 24(3), 233-246.
[http://dx.doi.org/10.3109/1061186X.2015.1070855] [PMID: 26267289]
[38]
Hamdan, A.M. Design, Formulation and Characterization of Liposomal Preparation of Voriconazole (VRC). J. Pharm. Biomed. Sci., 2015, 5(10)
[39]
Zhang, Y.T.; Shen, L.N.; Wu, Z.H.; Zhao, J.H.; Feng, N.P. Comparison of ethosomes and liposomes for skin delivery of psoralen for psoriasis therapy. Int. J. Pharm., 2014, 471(1-2), 449-452.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.001] [PMID: 24907596]
[40]
Lembo, D.; Donalisio, M.; Civra, A.; Argenziano, M.; Cavalli, R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin. Drug Deliv., 2018, 15(1), 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]
[41]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[42]
Wadhwa, S.; Garg, V.; Gulati, M.; Kapoor, B.; Singh, S.K.; Mittal, N. Nanovesicles for Nanomedicine: Theory and Practices. InPharmaceutical Nanotechnology; Humana: New York, NY, 2019, pp. 1-17.
[43]
Shaji, J.; Bajaj, R. Transethosomes: a New Prospect For Enhanced Transdermal Delivery. Int. J. Pharm. Sci. Res., 2018, 9(7), 2681-2685.
[44]
Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A. Transdermal applications of ethosomes - a detailed review. J. Liposome Res., 2019, 29(2), 103-113.
[http://dx.doi.org/10.1080/08982104.2018.1517160] [PMID: 30156120]
[45]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2012, 92, 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[46]
Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S. S.; Iqbal, B.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 755-765.
[47]
Kumar, L.; Utreja, P. Formulation and Characterization of Transethosomes for Enhanced Transdermal Delivery of Propranolol Hydrochloride. Micro Nanosyst., 2020, 12(1), 38-47.
[http://dx.doi.org/10.2174/1876402911666190603093550]
[48]
Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.K.; Singh, B.; Beg, S. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech, 2017, 18(1), 58-71.
[http://dx.doi.org/10.1208/s12249-016-0489-z] [PMID: 26868380]
[49]
Cevc, G.; Blume, G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta, 1992, 1104(1), 226-232.
[http://dx.doi.org/10.1016/0005-2736(92)90154-E] [PMID: 1550849]
[50]
Pirvu, C.D.; Hlevca, C.; Ortan, A.; Prisada, R.Ă. Elastic vesicles as drugs carriers through the skin. Farmacia, 2010, 58(2), 128-135.
[51]
Cevc, G.; Chopra, A. Deformable (Transfersome®) vesicles for improved drug delivery into and through the skin. InPercutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer: Berlin, Heidelberg, 2016, pp. 39-59.
[http://dx.doi.org/10.1007/978-3-662-47862-2_3]
[52]
Firoz, S. A REVIEW ON TRANSFEROSOMES FOR TRANSDERMAL DRUG DELIVERY. Membranes, 14(15), 16.
[53]
El Maghraby, G.M.; Arafa, M.F.; Essa, E.A. Vesicular nanostructures for transdermal deliveryInApplications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing, 2018, pp. 469-490.
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00021-2]
[54]
Vinod, K.R.; Anbazhagan, S.; Kumar, M.S.; Sandhya, S.; Banji, D.; Rani, A.P. Developing ultra deformable vesicular transportation of a bioactive alkaloid in pursuit of vitiligo therapy. Asian Pac. J. Trop. Dis., 2012, 2(4), 301-306.
[http://dx.doi.org/10.1016/S2222-1808(12)60066-8]
[55]
Doppalapudi, S.; Mahira, S.; Khan, W. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. J. Photochem. Photobiol. B, 2017, 174, 44-57.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.07.007] [PMID: 28753523]
[56]
Mahira, S.; Kommineni, N.; Doppalapudi, S.; Khan, W. Edge activated ultradeformable liposomes of psoralen and its derivatives: Development and comparative evaluation for vitiligo therapy. J. Drug Deliv. Sci. Technol., 2019, 52, 83-95.
[http://dx.doi.org/10.1016/j.jddst.2019.02.033]
[57]
Mir-Palomo, S.; Nácher, A.; Ofelia Vila Busó, M.A.; Caddeo, C.; Manca, M.L.; Manconi, M.; Díez-Sales, O. Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids Surf. B Biointerfaces, 2019, 175, 654-662.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.055] [PMID: 30590326]
[58]
Bragagni, M.; Mennini, N.; Maestrelli, F.; Cirri, M.; Mura, P. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv., 2012, 19(7), 354-361.
[http://dx.doi.org/10.3109/10717544.2012.724472] [PMID: 23043648]
[59]
Guo, F.; Wang, J.; Ma, M.; Tan, F.; Li, N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. J. Mater. Sci. Mater. Med., 2015, 26(4), 175.
[http://dx.doi.org/10.1007/s10856-015-5487-2] [PMID: 25825320]
[60]
Ascenso, A.; Raposo, S.; Batista, C.; Cardoso, P.; Mendes, T.; Praça, F.G.; Bentley, M.V.; Simões, S. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int. J. Nanomedicine, 2015, 10, 5837-5851.
[http://dx.doi.org/10.2147/IJN.S86186] [PMID: 26425085]
[61]
Ahmed, T.A. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: Plackett-Burman design and characterization. J. Liposome Res., 2015, 25(1), 1-10.
[http://dx.doi.org/10.3109/08982104.2014.950276] [PMID: 25148294]
[62]
Maestrelli, F.; Capasso, G.; González-Rodríguez, M.L.; Rabasco, A.M.; Ghelardini, C.; Mura, P. Effect of preparation technique on the properties and in vivo efficacy of benzocaine-loaded ethosomes. J. Liposome Res., 2009, 19(4), 253-260.
[PMID: 19863160]
[63]
Wagner, A.; Vorauer-Uhl, K. Liposome technology for industrial purposes. J. Drug Deliv , 2011.
[http://dx.doi.org/10.1155/2011/591325]
[64]
Olson, F.; Hunt, C.A.; Szoka, F.C.; Vail, W.J.; Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta, 1979, 557(1), 9-23.
[http://dx.doi.org/10.1016/0005-2736(79)90085-3] [PMID: 95096]
[65]
Schneider, T.; Sachse, A.; Röbling, G.; Brandl, M. Large-scale production of liposomes of defined size by a new continuous high pressure extrusion device. Drug Dev. Ind. Pharm., 1994, 20(18), 2787-2807.
[http://dx.doi.org/10.3109/03639049409042681]
[66]
Fernández-García, R.; Lalatsa, A.; Statts, L.; Bolás-Fernández, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm., 2020, 573
[http://dx.doi.org/10.1016/j.ijpharm.2019.118817] [PMID: 31678520]
[67]
Davidson, E.M.; Haroutounian, S.; Kagan, L.; Naveh, M.; Aharon, A.; Ginosar, Y. A novel proliposomal ropivacaine oil: Pharmacokinetic–pharmacodynamic studies after subcutaneous administration in pigs. Anesth. Analg., 2016, 122(5), 1663-1672.
[http://dx.doi.org/10.1213/ANE.0000000000001200] [PMID: 27057797]
[68]
Golden, J.P.; Justin, G.A.; Nasir, M.; Ligler, F.S. Hydrodynamic focusing--a versatile tool. Anal. Bioanal. Chem., 2012, 402(1), 325-335.
[http://dx.doi.org/10.1007/s00216-011-5415-3] [PMID: 21952728]
[69]
Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome production by microfluidics: potential and limiting factors. Sci. Rep., 2016, 6, 25876.
[http://dx.doi.org/10.1038/srep25876] [PMID: 27194474]
[70]
Sugiura, S.; Kuroiwa, T.; Kagota, T.; Nakajima, M.; Sato, S.; Mukataka, S.; Walde, P.; Ichikawa, S. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Langmuir, 2008, 24(9), 4581-4588.
[http://dx.doi.org/10.1021/la703509r] [PMID: 18376890]
[71]
Jaafari, M.R.; Khamesipour, A. Topical liposomes compositions for delivering hydrophobic drugs and methods preparing same. U.S. Patent 20,150,147,382 A1, 2015.
[72]
Bodmer, D.; Kissel, T.; Richter, F.; Tiemessen, H. Allylamine-containing liposomes. U.S. Patent 6,623,753 B1, 2003.
[73]
Cvec, G.; Vierl, U. Topical terbinafine formulations and methods of administering same for the treatment of fungal infections. U.S. Patent 7,820,720 B2, 2010.
[74]
Touitou, E. Compositions for applying active substances to or through the skin. EP Patent 0,804,160 B1, 1999.
[75]
Yan, M.G.; Shu, M.; Jianxin, L.D. Ethosome preparation of male hormone medicaments and its preparation method. CN Patent 102,406,605 A, 2012.
[76]
Shu, Z.; Hong, D.; Huaqing, L.; Xiaoling, Z. Progesterone ethosome, and preparation method and application thereof. CN Patent 102,397,255 B, 2013.
[77]
Wen, W.; Yan, X. Acyclovir ethosome and preparation method thereof. CN Patent 102,133,183 B, 2012.
[78]
Man, L.; Yong, L. Clotrimazole ethosomes for preventing and curing weaning rabbit dermatomycosis and preparation method thereof. CN Patent 104,873,465 A, 2015.
[79]
Jianping, T.; Lixin, J.; Zhiwen, Z. Bullatacin ethosome gel and preparation method thereof. CN Patent 102,552,147 B, 2013.
[80]
Maalawy, M. Transdermal composition for treating pain. WO Patent 2,015,123,750 A1, 2015.
[81]
Shaaban, M.; Nasr, M.; Tawfik, A.A.; Fadel, M.; Sammour, O. Novel bergamot oil nanospanlastics combined with PUVB therapy as a clinically translatable approach for vitiligo treatment. Drug Deliv. Transl. Res., 2019, 9(6), 1106-1116.
[http://dx.doi.org/10.1007/s13346-019-00653-y] [PMID: 31187447]
[82]
Zhang, Y.T.; Shen, L.N.; Zhao, J.H.; Feng, N.P. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int. J. Nanomedicine, 2014, 9, 669-678.
[http://dx.doi.org/10.2147/IJN.S57314] [PMID: 24489470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy