Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Identification of Peptide Binders to Truncated Recombinant Chikungunya Virus Envelope Protein 2 Using Phage Display Technology and Their In Silico Characterization

Author(s): Garima Agarwal and Reema Gabrani*

Volume 28, Issue 5, 2021

Published on: 29 October, 2020

Page: [508 - 519] Pages: 12

DOI: 10.2174/0929866527666201029144245

Price: $65

Open Access Journals Promotions 2
Abstract

Aim: To identify and characterize peptide binders to truncated recombinant chikungunya virus envelope protein 2.

Background: Despite extensive research on the chikungunya virus (CHIKV), the specific antiviral treatment’s unavailability has stressed the need for the urgent development of therapeutics. The Envelope protein 2 (E2) of CHIKV that displays putative receptor binding sites and specific epitopes for virus neutralizing antibodies is a critical target for the therapeutic intervention.

Objective: The study aims to identify the unique peptides that can bind to truncated E2 protein of CHIKV and further explore their properties as potential therapeutic candidate.

Methods: A stretch of CHIKV-E2 (rE2), which is prominently exposed on the surface of virion, was used as bait protein to identify peptide binders to the CHIKV-rE2 using a 12-mer phage display peptide library. Three rounds of biopanning yielded several peptide binders to CHIKV-rE2 and their binding affinities were compared by phage ELISA. Additionally, a fully flexible-blind docking simulation investigated the possible binding modes of the selected peptides. Furthermore, the selected peptides were characterized and their ADMET properties were explored in silico.

Results: Five peptides were identified as potential binders based on their robust reactivity to the bait protein. The selected peptides appeared to interact with the crucial residues that were notably exposed on the surface of E1-E2 trimeric structure. The explored in silico studies suggested their non-allergenicity, non-toxicity and likeliness to be antiviral.

Conclusion: The potential binding peptides of CHIKV-rE2 protein were identified using phage display technology and characterized in silico. The selected peptides could be further used for the development of therapeutics against the CHIKV infection.

Keywords: ADMET prediction, biopanning, CHIKV-E2 protein, therapeutic intervention, phage display technology, CHIKV infection.

Graphical Abstract
[1]
Strauss, J.H.; Strauss, E.G. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev., 1994, 58(3), 491-562.
[http://dx.doi.org/10.1128/MMBR.58.3.491-562.1994] [PMID: 7968923]
[2]
Subudhi, B.B.; Chattopadhyay, S.; Mishra, P.; Kumar, A. Current strategies for inhibition of Chikungunya infection. Viruses, 2018, 10(5), 235.
[http://dx.doi.org/10.3390/v10050235] [PMID: 29751486]
[3]
Weber, C.; Büchner, S.M.; Schnierle, B.S. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice. PLoS Negl. Trop. Dis., 2015, 9(4), e0003684.
[http://dx.doi.org/10.1371/journal.pntd.0003684] [PMID: 25905779]
[4]
Voss, J.E.; Vaney, M.C.; Duquerroy, S.; Vonrhein, C.; Girard-Blanc, C.; Crublet, E.; Thompson, A.; Bricogne, G.; Rey, F.A. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 2010, 468(7324), 709-712.
[http://dx.doi.org/10.1038/nature09555] [PMID: 21124458]
[5]
Sahoo, B.; Chowdary, T.K. Conformational changes in Chikungunya virus E2 protein upon heparan sulfate receptor binding explain mechanism of E2-E1 dissociation during viral entry. Biosci. Rep., 2019, 39(6), 1-14.
[http://dx.doi.org/10.1042/BSR20191077] [PMID: 31167876]
[6]
Weger-Lucarelli, J.; Aliota, M.T.; Wlodarchak, N.; Kamlangdee, A.; Swanson, R.; Osorio, J.E. Dissecting the role of E2 protein domains in alphavirus pathogenicity. J. Virol., 2015, 90(5), 2418-2433.
[http://dx.doi.org/10.1128/JVI.02792-15] [PMID: 26676771]
[7]
Cho, B.; Jeon, B.Y.; Kim, J.; Noh, J.; Kim, J.; Park, M.; Park, S. Expression and evaluation of Chikungunya virus E1 and E2 envelope proteins for serodiagnosis of Chikungunya virus infection. Yonsei Med. J., 2008, 49(5), 828-835.
[http://dx.doi.org/10.3349/ymj.2008.49.5.828] [PMID: 18972604]
[8]
Fong, R.H.; Banik, S.S.; Mattia, K.; Barnes, T.; Tucker, D.; Liss, N.; Lu, K.; Selvarajah, S.; Srinivasan, S.; Mabila, M.; Miller, A.; Muench, M.O.; Michault, A.; Rucker, J.B.; Paes, C.; Simmons, G.; Kahle, K.M.; Doranz, B.J. Exposure of epitope residues on the outer face of the chikungunya virus envelope trimer determines antibody neutralizing efficacy. J. Virol., 2014, 88(24), 14364-14379.
[http://dx.doi.org/10.1128/JVI.01943-14] [PMID: 25275138]
[9]
Verma, A.; Chandele, A.; Nayak, K.; Kaja, M.K.; Arulandu, A.; Lodha, R.; Ray, P. High yield expression and purification of Chikungunya virus E2 recombinant protein and its evaluation for serodiagnosis. J. Virol. Methods, 2016, 235, 73-79.
[http://dx.doi.org/10.1016/j.jviromet.2016.05.003] [PMID: 27180040]
[10]
Pal, P.; Dowd, K.A.; Brien, J.D.; Edeling, M.A.; Gorlatov, S.; Johnson, S.; Lee, I.; Akahata, W.; Nabel, G.J.; Richter, M.K.; Smit, J.M.; Fremont, D.H.; Pierson, T.C.; Heise, M.T.; Diamond, M.S. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog., 2013, 9(4), e1003312.
[http://dx.doi.org/10.1371/journal.ppat.1003312] [PMID: 23637602]
[11]
Smith, S.A.; Silva, L.A.; Fox, J.M.; Flyak, A.I.; Kose, N.; Sapparapu, G.; Khomandiak, S.; Ashbrook, A.W.; Kahle, K.M.; Fong, R.H.; Swayne, S.; Doranz, B.J.; McGee, C.E.; Heise, M.T.; Pal, P.; Brien, J.D.; Austin, S.K.; Diamond, M.S.; Dermody, T.S.; Crowe, J.E.Jr. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against Chikungunya virus. Cell Host Microbe, 2015, 18(1), 86-95.
[http://dx.doi.org/10.1016/j.chom.2015.06.009] [PMID: 26159721]
[12]
Castel, G.; Chtéoui, M.; Heyd, B.; Tordo, N. Phage display of combinatorial peptide libraries: application to antiviral research. Molecules, 2011, 16(5), 3499-3518.
[http://dx.doi.org/10.3390/molecules16053499] [PMID: 21522083]
[13]
Wu, C.H.; Liu, I.J.; Lu, R.M.; Wu, H.C. Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci., 2016, 23, 8.
[http://dx.doi.org/10.1186/s12929-016-0223-x] [PMID: 26786672]
[14]
Gupta, S.; Dudha, N.; Appaiahgari, M.B.; Bharati, K.; Gupta, D.; Gupta, Y.; Kumar, K.; Gabrani, R.; Sharma, S.K.; Gupta, A.; Chaudhary, V.K.; Vrati, S. Molecular cloning and characterization of Chikungunya virus genes from Indian isolate of 2006 Outbreak. J. Pharm. Res., 2012, 5, 3860-3863.
[15]
Dudha, N.; Rana, J.; Gabrani, R.; Gupta, A.; Chaudhary, V.K.; Gupta, S. Small scale expression, solubilization, and characterization of Chikungunya virus structural proteins. Asian J. Pharma Clin. Res., 2014, 7(5), 268-271.
[16]
Verma, V.; Kaur, C.; Grover, P.; Gupta, A.; Chaudhary, V.K. Biotin-tagged proteins: reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection. PLoS One, 2018, 13(1), e0191315.
[http://dx.doi.org/10.1371/journal.pone.0191315] [PMID: 29360877]
[17]
Blaszczyk, M.; Kurcinski, M.; Kouza, M.; Wieteska, L.; Debinski, A.; Kolinski, A.; Kmiecik, S. Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 2016, 93, 72-83.
[http://dx.doi.org/10.1016/j.ymeth.2015.07.004] [PMID: 26165956]
[18]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-181.
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[19]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[20]
LLC DeLano Scientific. Introduction to PyMOL (Handbuch). Palo Alto; Kalifornien: USA, 2009.
[21]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press, 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[22]
Jiménez, J.; Škalič, M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model., 2018, 58(2), 287-296.
[http://dx.doi.org/10.1021/acs.jcim.7b00650] [PMID: 29309725]
[23]
Saha, S.; Raghava, G.P.S. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res., 2006, 34(Web Server issue), W202-209.
[http://dx.doi.org/10.1093/nar/gkl343] [PMID: 16844994]
[24]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P. Open Source Drug Discovery Consortium. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[25]
Thakur, N.; Qureshi, A.; Kumar, M. AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res., 2012, 40(Web Server issue), W199-204.
[http://dx.doi.org/10.1093/nar/gks450] [PMID: 22638580]
[26]
Organic Chemistry Portal. 2012. Available at: http://www. organic-chemistry.org/prog/peo/
[27]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[28]
Rogers, S.; Wells, R.; Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science, 1986, 234(4774), 364-368.
[http://dx.doi.org/10.1126/science.2876518] [PMID: 2876518]
[29]
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88(6), 1895-1898.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a133168] [PMID: 7462208]
[30]
Gupta, S.; Kathait, A.; Sharma, V. Computational sequence analysis and structure prediction of jack bean urease. Int. J. Adv. Res. (Indore), 2015, 3, 185-191.
[31]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[32]
Kadam, R.U.; Roy, N. Recent trends in drug-likeness prediction: A comprehensive review of in silico methods. Indian J. Pharm. Sci., 2007, 69, 609-615.
[http://dx.doi.org/10.4103/0250-474X.38464]
[33]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[34]
Lagorce, D.; Douguet, D.; Miteva, M.A.; Villoutreix, B.O. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci. Rep., 2017, 7, 46277.
[http://dx.doi.org/10.1038/srep46277] [PMID: 28397808]
[35]
Yu, Z.; Wu, S.; Zhao, W.; Ding, L.; Shiuan, D.; Zheng, F.; Li, J.; Liu, J. Biological evaluation and interaction mechanism of beta-site APP cleaving enzyme 1 inhibitory pentapeptide from egg albumin. Food Sci. Hum. Wellness, 2020. [Epub ahead of print]
[http://dx.doi.org/10.1016/j.fshw.2020.01.004]
[36]
Li, L.; Jose, J.; Xiang, Y.; Kuhn, R.J.; Rossmann, M.G. Structural changes of envelope proteins during alphavirus fusion. Nature, 2010, 468(7324), 705-708.
[http://dx.doi.org/10.1038/nature09546] [PMID: 21124457]
[37]
Rashad, A.A.; Keller, P.A. Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins. J. Mol. Graph. Model., 2013, 44, 241-252.
[http://dx.doi.org/10.1016/j.jmgm.2013.07.001] [PMID: 23911992]
[38]
Weger-Lucarelli, J.; Aliota, M.T.; Kamlangdee, A.; Osorio, J.E. Identifying the role of E2 domains on alphavirus neutralization and protective immune responses. PLoS Negl. Trop. Dis., 2015, 9(10), e0004163.
[http://dx.doi.org/10.1371/journal.pntd.0004163] [PMID: 26473963]
[39]
de la Guardia, C.; Quijada, M.; Lleonart, R. Phage-displayed peptides selected to bind envelope glycoprotein show antiviral activity against dengue virus serotype 2. Adv. Virol., 2017, 2017, 1827341.
[http://dx.doi.org/10.1155/2017/1827341] [PMID: 29081802]
[40]
Ferrer, M.; Harrison, S.C. Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J. Virol., 1999, 73(7), 5795-5802.
[http://dx.doi.org/10.1128/JVI.73.7.5795-5802.1999] [PMID: 10364331]
[41]
Zu, X.; Liu, Y.; Wang, S.; Jin, R.; Zhou, Z.; Liu, H.; Gong, R.; Xiao, G.; Wang, W. Peptide inhibitor of Japanese encephalitis virus infection targeting envelope protein domain III. Antiviral Res., 2014, 104, 7-14.
[http://dx.doi.org/10.1016/j.antiviral.2014.01.011] [PMID: 24468276]
[42]
Morales-Jadán, D.; Blanco-Salas, J.; Ruiz-Téllez, T.; Centeno, F. Three alkaloids from an apocynaceae species, Aspidosperma spruceanum as antileishmaniasis agents by in silico demo-case studies. Plants (Basel), 2020, 9(8), E983.
[http://dx.doi.org/10.3390/plants9080983] [PMID: 32756456]
[43]
Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res., 2015, 43(W1), W419-24.
[http://dx.doi.org/10.1093/nar/gkv456] [PMID: 25943545]
[44]
Kruger, A.; Maltarollo, V.G.; Wrenger, C.; Kronenberger, T. ADME Profiling in Drug discovery and a new pathe paved on silica. Intechopen, 2019.
[http://dx.doi.org/10.5772/intechopen.86174]
[45]
Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 2018, 10(1), 148-157.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy