Review Article

Progress in Detection of Insomnia Sleep Disorder: A Comprehensive Review

Author(s): Md Belal Bin Heyat, Faijan Akhtar, M.A. Ansari, Asif Khan, Fahed Alkahtani, Haroon Khan* and Dakun Lai*

Volume 22, Issue 6, 2021

Published on: 27 October, 2020

Page: [672 - 684] Pages: 13

DOI: 10.2174/1389450121666201027125828

Price: $65

Open Access Journals Promotions 2
Abstract

Lack of adequate sleep is a major source of many harmful diseases related to heart, brain, psychological changes, high blood pressure, diabetes, weight gain, etc. 40 to 50% of the world’s population is suffering from poor or inadequate sleep. Insomnia is a sleep disorder in which an individual complaint of difficulties in starting/continuing sleep at least four weeks regularly. It is estimated that 70% of heart diseases are generated during insomnia sleep disorder. The main objective of this study is to determine all work conducted on insomnia detection and to make a database. We used two procedures including network visualization techniques on two databases including PubMed and Web of Science to complete this study. We found 169 and 36 previous publications of insomnia detection in the PubMed and the Web of Science databases, respectively. We analyzed 10 datasets, 2 databases, 21 genes, and 23 publications with 30105 subjects of insomnia detection. This work has revealed the future way and gap so far directed on insomnia detection and has also tried to provide objectives for the future work to be proficient in a scientific and significant manner.

Keywords: Insomnia, detection, diagnostic, machine learning, prognostic, pubmed, network visualization, sleep, sleep disorder, web of science.

Graphical Abstract
[1]
Hasan YM, Heyat B. Bin, Siddiqui MM, Azad S, Akhtar F. An Overview of Sleep and Stages of Sleep. Int J Adv Res Comput Commun Eng 2015; 4(12): 505-7.
[2]
Downs CT, Awuah A, Jordaan M, et al. Too hot to sleep? Sleep behaviour and surface body temperature of Wahlberg’s Epauletted Fruit Bat. PLoS One 2015; 10(3): e0119419.
[http://dx.doi.org/10.1371/journal.pone.0119419] [PMID: 25775371]
[3]
Rechtschaffen A. A manual for standardized terminology, techniques and scoring system for sleep stages in human subjects. JAMA 1968; 20(2): 246-47.
[4]
Grigg-Damberger MM. The AASM Scoring Manual four years later. J Clin Sleep Med 2012; 8(3): 323-32.
[http://dx.doi.org/10.5664/jcsm.1928] [PMID: 22701392]
[5]
Anderer P, Moreau A, Woertz M, et al. Computer-assisted sleep classification according to the standard of the American Academy of Sleep Medicine: validation study of the AASM version of the Somnolyzer 24 × 7. Neuropsychobiology 2010; 62(4): 250-64.
[http://dx.doi.org/10.1159/000320864] [PMID: 20829636]
[6]
Mahowald MW, Schenck CH. Non-rapid eye movement sleep parasomnias. Neurol Clin 2005; 23(4): 1077-106.
[http://dx.doi.org/10.1016/j.ncl.2005.06.001] [PMID: 16243617]
[7]
Bliwise D, Coleman R, Bergmann B, Wincor MZ, Pivik RT, Rechtschaffen A. Facial muscle tonus during REM and NREM sleep. Psychophysiology 1974; 11(4): 497-508.
[http://dx.doi.org/10.1111/j.1469-8986.1974.tb00578.x] [PMID: 4368714]
[8]
Miwa H, Sasahara SI, Matsui T. Roll-over detection and sleep quality measurement using a wearable sensor. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings.
[http://dx.doi.org/10.1109/IEMBS.2007.4352587]
[9]
Gordon HW. Differential effects of addictive drugs on sleep and sleep stages. Journal of addiction research (OPAST Group) 2019; 3(2)
[10]
Gagnon JF, Postuma RB, Mazza S, Doyon J, Montplaisir J. Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases. Lancet Neurol 2006; 5(5): 424-32.
[http://dx.doi.org/10.1016/S1474-4422(06)70441-0] [PMID: 16632313]
[11]
Golub S. Rapid eye movement sleep. Nurs Outlook 1967; 15(2): 56-8.
[PMID: 5180255]
[12]
Casson AJ, Smith S, Duncan JS, Rodriguez-Villegas E. Wearable EEG: What is it, why is it needed and what does it entail? Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’08 - “Personalized Healthcare through Technology.
[http://dx.doi.org/10.1109/IEMBS.2008.4650549]
[13]
Stranges S, Tigbe W, Gómez-Olivé FX, Thorogood M, Kandala N-B. Sleep problems: an emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep (Basel) 2012; 35(8): 1173-81.
[http://dx.doi.org/10.5665/sleep.2012] [PMID: 22851813]
[14]
Wells ME, Vaughn BV. Poor sleep challenging the health of a Nation. Neurodiagn J 2012; 52(3): 233-49.
[PMID: 23019761]
[15]
Abdulghani HM, Alrowais NA, Bin-Saad NS, Al-Subaie NM, Haji AMA, Alhaqwi AI. Sleep disorder among medical students: relationship to their academic performance. Med Teach 2012; 34(1)(Suppl. 1): S37-41.
[http://dx.doi.org/10.3109/0142159X.2012.656749] [PMID: 22409189]
[16]
Tempesta D, Couyoumdjian A, Curcio G, et al. Lack of sleep affects the evaluation of emotional stimuli. Brain Res Bull 2010; 82(1-2): 104-8.
[http://dx.doi.org/10.1016/j.brainresbull.2010.01.014] [PMID: 20117179]
[17]
Barnes CM, Schaubroeck J, Huth M, Ghumman S. Lack of sleep and unethical conduct. Organ Behav Hum Decis Process 2011; 115(2): 169-80.
[http://dx.doi.org/10.1016/j.obhdp.2011.01.009]
[18]
Bin Heyat B, Akhtar F, Singh SK, Siddiqui MM. Hamming Window are used in the Prognostic of Insomnia.
[19]
Baglioni C, Regen W, Teghen A, et al. Sleep changes in the disorder of insomnia: a meta-analysis of polysomnographic studies. Sleep Med Rev 2014; 18(3): 195-213.
[http://dx.doi.org/10.1016/j.smrv.2013.04.001] [PMID: 23809904]
[20]
Zammit GK. The prevalence, morbidities, and treatments of insomnia. CNS Neurol Disord Drug Targets 2007; 6(1): 3-16.
[http://dx.doi.org/10.2174/187152707779940754] [PMID: 17305550]
[21]
Bb H, Akhtar F, Mehdi A, Azad S, Azad S, Azad S. Normalized Power are used in the Diagnosis of Insomnia Medical Sleep Syndrome through EMG1-EMG2 Channel. Austin J Sleep Disord 2017; 4(1): 2-4.
[22]
Bin Heyat MB, Akhtar F, Sikandar M, Siddiqui H, Azad S. An Overview of Dalk Therapy and Treatment of Insomnia in Dalk Therapy Abstract- Treatment of Insomnia in Dalk Therapy
[23]
Bin Heyat MB, Akhtar F, Ammar M, Hayat B, Azad S. Power Spectral Density are used in the Investigation of insomnia neurological disorder. ISSA. 45-60.
[24]
Heyat MB. Bin. Insomnia: Medical Sleep Disorder & Diagnosis.Hamburg, Germany: Anchor Academic Publishing 2016.
[25]
Riemann D, Voderholzer U. Primary insomnia: a risk factor to develop depression? J Affect Disord 2003; 76(1-3): 255-9.
[http://dx.doi.org/10.1016/S0165-0327(02)00072-1] [PMID: 12943956]
[26]
Culpepper L. Secondary insomnia in the primary care setting: review of diagnosis, treatment, and management. Curr Med Res Opin 2006; 22(7): 1257-68.
[http://dx.doi.org/10.1185/030079906X112589] [PMID: 16834824]
[27]
Somi N, Merenda E, Bruessel T. Anaesthetic implications of restless legs syndrome: A review.Australasian Anaesthesia. 2019; p. 227.
[28]
DeMartinis NA, Winokur A. Effects of psychiatric medications on sleep and sleep disorders. CNS Neurol Disord Drug Targets 2007; 6(1): 17-29.
[http://dx.doi.org/10.2174/187152707779940835] [PMID: 17305551]
[29]
Dauvilliers Y. Insomnia in patients with neurodegenerative conditions. Sleep Med 2007; 8(Suppl. 4): S27-34.
[http://dx.doi.org/10.1016/S1389-9457(08)70006-6] [PMID: 18346674]
[30]
Akhtar F, et al. Potential of Blockchain Technology in Digital Currency: A Review
[http://dx.doi.org/10.1109/ICCWAMTIP47768.2019.9067546]
[31]
Ding Y, Rousseau R, Wolfram D. Measuring scholarly impact. Springer International Pu 2016.
[32]
van Eck NJ, Waltman L. Visualizing Bibliometric Networks. Measuring Scholarly Impact 2014; 285-320.
[33]
Waltman L, van Eck NJ, Noyons ECM. A unified approach to mapping and clustering of bibliometric networks. J Informetrics 2010; 4(4): 629-35.
[http://dx.doi.org/10.1016/j.joi.2010.07.002]
[34]
Canese K, Weis S. PubMed: the bibliographic database. NCBI Handbook 2013; 20: 2-1.
[35]
Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J 2008; 22(2): 338-42.
[http://dx.doi.org/10.1096/fj.07-9492LSF] [PMID: 17884971]
[36]
Birkle C, Pendlebury DA, Schnell J, Adams J. Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 2020; 1(1): 363-76.
[http://dx.doi.org/10.1162/qss_a_00018]
[37]
Harzing AW, Alakangas S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics 2016; 106(2): 787-804.
[http://dx.doi.org/10.1007/s11192-015-1798-9]
[38]
Shadbolt N, Berners-Lee T. Web science emerges. Sci Am 2008; 299(4): 76-81.
[http://dx.doi.org/10.1038/scientificamerican1008-76] [PMID: 18847088]
[39]
Hendler J, Shadbolt N, Hall W, Berners-Lee T, Weitzner D. Web science: an interdisciplinary approach to understanding the web. Commun ACM 2008; 51(7): 60-9.
[http://dx.doi.org/10.1145/1364782.1364798]
[40]
Mongeon P, Paul-Hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 2016; 106(1): 213-28.
[http://dx.doi.org/10.1007/s11192-015-1765-5]
[41]
Lai D, Heyat MB. Bin, Khan FI, Zhang Y. Prognosis of Sleep Bruxism Using Power Spectral Density Approach Applied on EEG Signal of Both EMG1-EMG2 and ECG1-ECG2 Channels. IEEE Access 2019; 7: 82553-62.
[http://dx.doi.org/10.1109/ACCESS.2019.2924181]
[42]
Lai D, Zhang Y, Zhang X, Su Y, Bin Heyat MB. An automated strategy for early risk identification of sudden cardiac death by using machine learning approach on measurable arrhythmic risk markers. IEEE Access 2019; 7: 94701-16.
[http://dx.doi.org/10.1109/ACCESS.2019.2925847]
[43]
Heyat B. Bin, Hasan YM, Siddiqui MM. EEG signals and wireless transfer of EEG Signals. Int J Adv Res Comput Commun Eng 2015; 4(12): 10-2.
[44]
Bin Heyat M, Siddiqui MM. Recording of EEG, ECG. EMG Signal 2015; 5(10): 813-5.
[45]
Imtiaz SA, Rodriguez-Villegas E. Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems. thesis 2015.
[46]
Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000; 101(23): E215-20.
[http://dx.doi.org/10.1161/01.CIR.101.23.e215] [PMID: 10851218]
[47]
Costa M, Moody GB, Henry I, Goldberger AL. PhysioNet: an NIH research resource for complex signals. J Electrocardiol 2003; 36(Suppl.): 139-44.
[http://dx.doi.org/10.1016/j.jelectrocard.2003.09.038] [PMID: 14716615]
[48]
Moody GB, Mark RG, Goldberger AL. PhysioNet: Physiologic signals, time series and related open source software for basic, clinical, and applied research. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE. 8327-30.
[49]
Soldatos CR, Dikeos DG, Paparrigopoulos TJ. The diagnostic validity of the Athens Insomnia Scale. J Psychosom Res 2003; 55(3): 263-7.
[http://dx.doi.org/10.1016/S0022-3999(02)00604-9] [PMID: 12932801]
[50]
Ohayon MM, Reynolds CF III. Epidemiological and clinical relevance of insomnia diagnosis algorithms according to the DSM-IV and the International Classification of Sleep Disorders (ICSD). Sleep Med 2009; 10(9): 952-60.
[http://dx.doi.org/10.1016/j.sleep.2009.07.008] [PMID: 19748312]
[51]
Morin CM, Belleville G, Bélanger L, Ivers H. The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep (Basel) 2011; 34(5): 601-8.
[http://dx.doi.org/10.1093/sleep/34.5.601] [PMID: 21532953]
[52]
Aydın S, Saraoǧlu HM, Kara S. Singular spectrum analysis of sleep EEG in insomnia. J Med Syst 2011; 35(4): 457-61.
[http://dx.doi.org/10.1007/s10916-009-9381-7] [PMID: 20703545]
[53]
Israel B, Buysse DJ, Krafty RT, Begley A, Miewald J, Hall M. Short-term stability of sleep and heart rate variability in good sleepers and patients with insomnia: for some measures, one night is enough. Sleep (Basel) 2012; 35(9): 1285-91.
[http://dx.doi.org/10.5665/sleep.2088] [PMID: 22942507]
[54]
Gemignani A, Laurino M, Provini F, et al. Thalamic contribution to Sleep Slow Oscillation features in humans: a single case cross sectional EEG study in Fatal Familial Insomnia. Sleep Med 2012; 13(7): 946-52.
[http://dx.doi.org/10.1016/j.sleep.2012.03.007] [PMID: 22609023]
[55]
Kaplan RF, Wang Y, Loparo KA, Kelly MR, Bootzin RR. Performance evaluation of an automated single-channel sleep-wake detection algorithm. Nat Sci Sleep 2014; 6: 113-22.
[http://dx.doi.org/10.2147/NSS.S71159] [PMID: 25342922]
[56]
Siddiqui MM, Srivastava G, Saeed SH. Diagnosis of insomnia sleep disorder using short time frequency analysis of PSD approach applied on EEG signal using channel ROC-LOC. Sleep Sci 2016; 9(3): 186-91.
[http://dx.doi.org/10.1016/j.slsci.2016.07.002] [PMID: 28123658]
[57]
Seugnet L, Suzuki Y, Thimgan M, et al. Identifying sleep regulatory genes using a Drosophila model of insomnia. J Neurosci 2009; 29(22): 7148-57.
[http://dx.doi.org/10.1523/JNEUROSCI.5629-08.2009] [PMID: 19494137]
[58]
Miller NL, Shattuck LG, Matsangas P. Longitudinal study of sleep patterns of United States Military Academy cadets. Sleep 2010; 33(12): 1623-31.
[http://dx.doi.org/10.1093/sleep/33.12.1623] [PMID: 21120124]
[59]
Mysliwiec V, O’Reilly B, Polchinski J, Kwon HP, Germain A, Roth BJ. Trauma associated sleep disorder: A proposed parasomnia encompassing disruptive nocturnal behaviors, nightmares, and REM without atonia in trauma survivors. J Clin Sleep Med 2015; 16: 65.
[http://dx.doi.org/10.1016/j.sleep.2015.02.163] [PMID: 25317096]
[60]
Vgontzas AN, Kales A, Bixler EO, Manfredi RL, Vela-Bueno A. Usefulness of polysomnographic studies in the differential diagnosis of insomnia. Int J Neurosci 1995; 82(1-2): 47-60.
[http://dx.doi.org/10.3109/00207459508994289] [PMID: 7591515]
[61]
Edinger JD, Fins AI, Goeke JM, et al. The empirical identification of insomnia subtypes: a cluster analytic approach. Sleep 1996; 19(5): 398-411.
[PMID: 8843531]
[62]
Nowell PD, Buysse DJ, Reynolds CF III, et al. Clinical factors contributing to the differential diagnosis of primary insomnia and insomnia related to mental disorders. Am J Psychiatry 1997; 154(10): 1412-6.
[http://dx.doi.org/10.1176/ajp.154.10.1412] [PMID: 9326824]
[63]
Smith S, Trinder J. Detecting insomnia: comparison of four self-report measures of sleep in a young adult population. J Sleep Res 2001; 10(3): 229-35.
[http://dx.doi.org/10.1046/j.1365-2869.2001.00262.x] [PMID: 11696076]
[64]
Aydın S. Computer based synchronization analysis on sleep EEG in insomnia. J Med Syst 2011; 35(4): 517-20.
[http://dx.doi.org/10.1007/s10916-009-9387-1] [PMID: 20703539]
[65]
Alsaadi SM, McAuley JH, Hush JM, et al. Detecting insomnia in patients with low back pain: accuracy of four self-report sleep measures. BMC Musculoskelet Disord 2013; 14(1): 196.
[http://dx.doi.org/10.1186/1471-2474-14-196] [PMID: 23805978]
[66]
Severson CA, Tsai WH, Ronksley PE, Pendharkar SR. Identification of insomnia in a sleep center population using electronic health data sources and the insomnia severity index. J Clin Sleep Med 2013; 9(7): 655-60.
[http://dx.doi.org/10.5664/jcsm.2830] [PMID: 23853558]
[67]
Navarro B, López-Torres J, Andrés F, Latorre JM, Montes MJ, Párraga I. Validation of the Insomnia in the Elderly Scale for the detection of insomnia in older adults. Geriatr Gerontol Int 2013; 13(3): 646-53.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00958.x] [PMID: 23171440]
[68]
Rajna P, Takács J. Diagnosis of primary insomnia by actigraphy--improved results by data selection. Ideggyogy Sz 2014; 67(1-2): 43-51.
[PMID: 24654446]
[69]
Sassoon SA, de Zambotti M, Colrain IM, Baker FC. Association between personality traits and DSM-IV diagnosis of insomnia in peri- and postmenopausal women. Menopause 2014; 21(6): 602-11.
[http://dx.doi.org/10.1097/GME.0000000000000192] [PMID: 24448105]
[70]
Ben Hamida ST, Ahmed B, Penzel T. A novel insomnia identification method based on Hjorth parameters 2015 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2015.
[71]
Gill JM, Lee H, Baxter T, et al. A Diagnosis of Insomnia Is Associated With Differential Expression of Sleep-Regulating Genes in Military Personnel. Biol Res Nurs 2015; 17(4): 384-92.
[http://dx.doi.org/10.1177/1099800415575343] [PMID: 25767060]
[72]
Kay DB, Buysse DJ, Germain A, Hall M, Monk TH. Subjective-objective sleep discrepancy among older adults: associations with insomnia diagnosis and insomnia treatment. J Sleep Res 2015; 24(1): 32-9.
[http://dx.doi.org/10.1111/jsr.12220] [PMID: 25219802]
[73]
Ben Hamida ST, Glos M, Penzel T, Ahmed B. How many sleep stages do we need for an efficient automatic insomnia diagnosis? Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
[http://dx.doi.org/10.1109/EMBC.2016.7591221]
[74]
Shahin M, Ahmed B, Hamida ST, Mulaffer FL, Glos M, Penzel T. Deep Learning and Insomnia: Assisting Clinicians With Their Diagnosis. IEEE J Biomed Health Inform 2017; 21(6): 1546-53.
[http://dx.doi.org/10.1109/JBHI.2017.2650199] [PMID: 28092583]
[75]
Mulaffer L, Shahin M, Glos M, Penzel T, Ahmed B. Comparing two insomnia detection models of clinical diagnosis techniques Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
[http://dx.doi.org/10.1109/EMBC.2017.8037672]
[76]
Doghramji K, Tanielian M, Certa K, Zhan T. Severity, prevalence, predictors, and rate of identification of insomnia symptoms in a sample of hospitalized psychiatric patients. J Nerv Ment Dis 2018; 206(10): 765-9.
[http://dx.doi.org/10.1097/NMD.0000000000000888] [PMID: 30273272]
[77]
Shahin M, Mulaffer L, Penzel T, Ahmed B. A Two Stage Approach for the Automatic Detection of Insomnia Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
[http://dx.doi.org/10.1109/EMBC.2018.8512360]
[78]
Liu B, Lin W, Chen S, et al. Gut Microbiota as an Objective Measurement for Auxiliary Diagnosis of Insomnia Disorder. Front Microbiol 2019; 10: 1770.
[http://dx.doi.org/10.3389/fmicb.2019.01770] [PMID: 31456757]
[79]
Felder JN, Hartman AR, Epel ES, Prather AA. Pregnant Patient Perceptions of Provider Detection and Treatment of Insomnia. Behav Sleep Med 2019; 8: 1-10.
[http://dx.doi.org/10.1080/15402002.2019.1688153] [PMID: 31694403]
[80]
Saus E, Soria V, Escaramís G, et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 2010; 19(20): 4017-25.
[http://dx.doi.org/10.1093/hmg/ddq316] [PMID: 20656788]
[81]
Tian C, Liu D, Sun QL, et al. Comparative analysis of gene expression profiles between cortex and thalamus in Chinese fatal familial insomnia patients. Mol Neurobiol 2013; 48(1): 36-48.
[http://dx.doi.org/10.1007/s12035-013-8426-6] [PMID: 23430483]
[82]
Tylee DS, Kawaguchi DM, Glatt SJ. On the outside, looking in: a review and evaluation of the comparability of blood and brain "-omes". Am J Med Genet B Neuropsychiatr Genet 2013; 162B(7): 595-603.
[http://dx.doi.org/10.1002/ajmg.b.32150] [PMID: 24132893]
[83]
Amari S ichi. Machine Learning. In: applied mathematical sciences (Switzerland) 2016; 194: 231-78.
[84]
Arthur L. Samuel: Pioneer in Machine Learning. ICGA J 1991; 14(1): 19-20.
[http://dx.doi.org/10.3233/ICG-1991-14105]
[85]
Javaheri S, Redline S. Insomnia and risk of cardiovascular disease. Chest 2017; 152(2): 435-44.
[http://dx.doi.org/10.1016/j.chest.2017.01.026] [PMID: 28153671]
[86]
Sofi F, Cesari F, Casini A, Macchi C, Abbate R, Gensini GF. Insomnia and risk of cardiovascular disease: a meta-analysis. Eur J Prev Cardiol 2014; 21(1): 57-64.
[http://dx.doi.org/10.1177/2047487312460020] [PMID: 22942213]
[87]
Bragazzi NL, Guglielmi O, Garbarino S. SleepOMICS: How big data can revolutionize sleep science. Int J Environ Res Public Health 2019; 16(2): 291.
[http://dx.doi.org/10.3390/ijerph16020291] [PMID: 30669659]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy