Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Mini-Review Article

Hepatoprotective Evidence of Hydroxytyrosol Against Non-Alcoholic Fatty Liver in Animal Models

Author(s): Maria M. Quetglas-Llabrés, Clara Reynés-Capó, Margalida Monserrat-Mesquida and Antoni Sureda*

Volume 2, Issue 2, 2021

Published on: 26 October, 2020

Page: [117 - 126] Pages: 10

DOI: 10.2174/2665978601999201026202507

Open Access Journals Promotions 2
Abstract

Non-alcoholic fatty liver (NAFLD) is a metabolic disorder characterized by an excessive accumulation of fat in hepatocytes. It is a condition directly related to being overweight and is considered as a manifestation of metabolic syndrome. The progressive increase in its incidence due to the global increase in obesity, together with the absence of effective pharmacological treatment, makes it necessary to find new strategies to reduce or reverse its development and progression. In this sense, natural compounds can be potential targets for their remarkable biological activity and low toxicity. Hydroxytyrosol (HT) is a phenolic compound mainly found in olive oil and olive leaves with antioxidant, anti-inflammatory and cardiovascular properties, among others.

This document analyses the available information on the potential beneficial effects of the administration of HT against NAFLD.

Studies with animal models have shown promising results by reducing the degree of steatosis, oxidative stress, inflammation, and improving liver function. The effects of HT derive from its direct antioxidant and anti-inflammatory activity, but also from regulating the activity of various signalling pathways.

The consumption of HT, preferably associated with virgin olive oil, combined with an adequate diet and a healthy lifestyle, may be a strategy to consider preventing or reversing liver steatosis. However, well-designed clinical trials are still necessary to determine their real effectiveness in human patients.

Keywords: phenolic compounds, obesity, olive oil, steatosis, liver, hydroxytyrosol.

Graphical Abstract
[1]
Mathur, P.; Pillai, R. Overnutrition: Current scenario & combat strategies. Indian J. Med. Res., 2019, 149(6), 695-705.
[http://dx.doi.org/10.4103/ijmr.IJMR_1703_18] [PMID: 31496522]
[2]
Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser., 1995, 854, 1-452.
[PMID: 8594834]
[3]
World Health Organization. Fact sheet—obesity and overweight.. 2018.
[4]
Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome., Obes. Lipotoxicity, Adv. Exp. Med. Biol. Adv. Exp. Med. Biol., 2017, 960..
[5]
Wang, Y.C.; McPherson, K.; Marsh, T.; Gortmaker, S.L.; Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet, 2011, 378(9793), 815-825.
[http://dx.doi.org/10.1016/S0140-6736(11)60814-3] [PMID: 21872750]
[6]
Li, L.; Liu, D.W.; Yan, H.Y.; Wang, Z.Y.; Zhao, S.H.; Wang, B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes. Rev., 2016, 17(6), 510-519.
[http://dx.doi.org/10.1111/obr.12407] [PMID: 27020692]
[7]
Maurice, J.; Manousou, P. Non-alcoholic fatty liver disease. Clin. Med. J. R. Coll. Physicians London, 2018, 18(3), 245-250.
[http://dx.doi.org/10.7861/clinmedicine.18-3-245] [PMID: 29858436]
[8]
Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism, 2019, 92, 82-97.
[http://dx.doi.org/10.1016/j.metabol.2018.11.014] [PMID: 30502373]
[9]
Neuschwander-Tetri, B.A. Non-alcoholic fatty liver disease. BMC Med., 2017, 15(1), 45.
[http://dx.doi.org/10.1186/s12916-017-0806-8] [PMID: 28241825]
[10]
Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol., 2017, 42(2), 92-108.
[PMID: 27711029]
[11]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[12]
Moctezuma-Velázquez, C. Current treatment for non-alcoholic fatty liver disease. Rev. Gastroenterol. Mex., 2018, 83(2), 125-133.
[PMID: 29655574]
[13]
Singh, S.; Osna, N.A.; Kharbanda, K.K. Treatment options for alcoholic and non-alcoholic fatty liver disease: A review. World J. Gastroenterol., 2017, 23(36), 6549-6570.
[http://dx.doi.org/10.3748/wjg.v23.i36.6549] [PMID: 29085205]
[14]
Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res., 2018, 130, 213-240.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[15]
Abenavoli, L.; Milanović, M.; Milić, N.; Luzza, F.; Giuffrè, A.M. Olive oil antioxidants and non-alcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol., 2019, 13(8), 739-749.
[http://dx.doi.org/10.1080/17474124.2019.1634544] [PMID: 31215262]
[16]
Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; Beccari, T.; Michelini, S. Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol., 2020, 309, 29-33.
[http://dx.doi.org/10.1016/j.jbiotec.2019.12.016] [PMID: 31884046]
[17]
Tejada, S.; Pinya, S.; del Mar Bibiloni, M.; Tur, J.A.; Pons, A.; Sureda, A. Cardioprotective Effects of the Polyphenol Hydroxytyrosol from Olive Oil. Curr. Drug Targets, 2017. 18(13),1477-1486
[PMID: 27719659]
[18]
Peyrol, J.; Riva, C.; Amiot, M.J. Hydroxytyrosol in the prevention of the metabolic syndrome and related disorders. Nutrients, 2017, 9(3), 306.
[http://dx.doi.org/10.3390/nu9030306] [PMID: 28335507]
[19]
López-Miranda, J.; Pérez-Jiménez, F.; Ros, E.; De Caterina, R.; Badimón, L.; Covas, M.I.; Escrich, E.; Ordovás, J.M.; Soriguer, F.; Abiá, R.; de la Lastra, C.A.; Battino, M.; Corella, D.; Chamorro-Quirós, J.; Delgado-Lista, J.; Giugliano, D.; Esposito, K.; Estruch, R.; Fernandez-Real, J.M.; Gaforio, J.J.; La Vecchia, C.; Lairon, D.; López-Segura, F.; Mata, P.; Menéndez, J.A.; Muriana, F.J.; Osada, J.; Panagiotakos, D.B.; Paniagua, J.A.; Pérez-Martinez, P.; Perona, J.; Peinado, M.A.; Pineda-Priego, M.; Poulsen, H.E.; Quiles, J.L.; Ramírez-Tortosa, M.C.; Ruano, J.; Serra-Majem, L.; Solá, R.; Solanas, M.; Solfrizzi, V.; de la Torre-Fornell, R.; Trichopoulou, A.; Uceda, M.; Villalba-Montoro, J.M.; Villar-Ortiz, J.R.; Visioli, F.; Yiannakouris, N. Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr. Metab. Cardiovasc. Dis., 2010, 20(4), 284-294.
[http://dx.doi.org/10.1016/j.numecd.2009.12.007] [PMID: 20303720]
[20]
de la Torre-Carbot, K.; Chávez-Servín, J.L.; Jaúregui, O.; Castellote, A.I.; Lamuela-Raventós, R.M.; Fitó, M.; Covas, M.I.; Muñoz-Aguayo, D.; López-Sabater, M.C. Presence of virgin olive oil phenolic metabolites in human low density lipoprotein fraction: determination by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Anal. Chim. Acta, 2007, 583(2), 402-410.
[http://dx.doi.org/10.1016/j.aca.2006.10.029] [PMID: 17386573]
[21]
Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int., 2018, 105, 654-667.
[http://dx.doi.org/10.1016/j.foodres.2017.11.053] [PMID: 29433260]
[22]
Esti, M.; Cinquanta, L.; La Notte, E.; La Notte, E. Phenolic Compounds in Different Olive Varieties. J. Agric. Food Chem., 1998, 46(1), 32-35.
[http://dx.doi.org/10.1021/jf970391+] [PMID: 10554192]
[23]
Okogeri, O.; Tasioula-Margari, M. Changes occurring in phenolic compounds and α-tocopherol of virgin olive oil during storage. J. Agric. Food Chem., 2002, 50(5), 1077-1080.
[http://dx.doi.org/10.1021/jf010895e] [PMID: 11853484]
[24]
Romero, C.; Brenes, M.; Yousfi, K.; García, P.; García, A.; Garrido, A. Effect of cultivar and processing method on the contents of polyphenols in table olives. J. Agric. Food Chem., 2004, 52(3), 479-484.
[http://dx.doi.org/10.1021/jf030525l] [PMID: 14759136]
[25]
Borges, T.H.; Serna, A.; López, L.C.; Lara, L.; Nieto, R.; Seiquer, I. Composition and antioxidant properties of Spanish extra virgin olive oil regarding cultivar, harvest year and crop stage. Antioxidants, 2019, 8(7), 217.
[http://dx.doi.org/10.3390/antiox8070217] [PMID: 31373316]
[26]
Tripoli, E.; Giammanco, M.; Tabacchi, G.; Di Majo, D.; Giammanco, S.; La Guardia, M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr. Res. Rev., 2005, 18(1), 98-112.
[http://dx.doi.org/10.1079/NRR200495] [PMID: 19079898]
[27]
Charoenprasert, S.; Mitchell, A. Factors influencing phenolic compounds in table olives (Olea europaea). J. Agric. Food Chem., 2012, 60(29), 7081-7095.
[http://dx.doi.org/10.1021/jf3017699] [PMID: 22720792]
[28]
Pérez-Bonilla, M.; Salido, S.; van Beek, T.A.; Altarejos, J. Radical-scavenging compounds from olive tree (Olea europaea L.) wood. J. Agric. Food Chem., 2014, 62(1), 144-151.
[http://dx.doi.org/10.1021/jf403998t] [PMID: 24328093]
[29]
Visioli, F.; Caruso, D.; Plasmati, E.; Patelli, R.; Mulinacci, N.; Romani, A.; Galli, G.; Galli, C. Hydroxytyrosol, as a component of olive mill waste water, is dose- dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radic. Res., 2001, 34(3), 301-305.
[http://dx.doi.org/10.1080/10715760100300271] [PMID: 11264904]
[30]
Minuti, L.; Pellegrino, R.M.; Tesei, I. Simple extraction method and gas chromatography-mass spectrometry in the selective ion monitoring mode for the determination of phenols in wine. J. Chromatogr. A, 2006, 1114(2), 263-268.
[http://dx.doi.org/10.1016/j.chroma.2006.02.068] [PMID: 16545822]
[31]
Fernández-Mar, M.I.; Mateos, R.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem., 2012, 130, 797-813.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.023]
[32]
Tuck, K.L.; Freeman, M.P.; Hayball, P.J.; Stretch, G.L.; Stupans, I. The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. J. Nutr., 2001, 131(7), 1993-1996.
[http://dx.doi.org/10.1093/jn/131.7.1993] [PMID: 11435519]
[33]
Karković Marković, A.; Torić, J.; Barbarić, M.; Jakobušić Brala, C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules, 2019, 24(10), 24.
[http://dx.doi.org/10.3390/molecules24102001] [PMID: 31137753]
[34]
Domínguez-Perles, R.; Auñón, D.; Ferreres, F.; Gil-Izquierdo, A. Gender differences in plasma and urine metabolites from Sprague-Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. Eur. J. Nutr., 2017, 56(1), 215-224.
[http://dx.doi.org/10.1007/s00394-015-1071-2] [PMID: 26463517]
[35]
Corona, G.; Tzounis, X.; Assunta Dessì, M.; Deiana, M.; Debnam, E.S.; Visioli, F.; Spencer, J.P.E. The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic. Res., 2006, 40(6), 647-658.
[http://dx.doi.org/10.1080/10715760500373000] [PMID: 16753843]
[36]
Manna, C.; Galletti, P.; Maisto, G.; Cucciolla, V.; D’Angelo, S.; Zappia, V. Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells. FEBS Lett., 2000, 470(3), 341-344.
[http://dx.doi.org/10.1016/S0014-5793(00)01350-8] [PMID: 10745093]
[37]
Vissers, M.N.; Zock, P.L.; Roodenburg, A.J.C.; Leenen, R.; Katan, M.B. Olive oil phenols are absorbed in humans. J. Nutr., 2002, 132(3), 409-417.
[http://dx.doi.org/10.1093/jn/132.3.409] [PMID: 11880564]
[38]
Covas, M.I.; de la Torre, R.; Fitó, M. Virgin olive oil: a key food for cardiovascular risk protection. Br. J. Nutr., 2015, 113(Suppl. 2), S19-S28.
[http://dx.doi.org/10.1017/S0007114515000136] [PMID: 26148918]
[39]
Visioli, F.; Galli, C.; Bornet, F.; Mattei, A.; Patelli, R.; Galli, G.; Caruso, D. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett., 2000, 468(2-3), 159-160.
[http://dx.doi.org/10.1016/S0014-5793(00)01216-3] [PMID: 10692578]
[40]
Suárez, M.; Valls, R.M.; Romero, M.P.; Macià, A.; Fernández, S.; Giralt, M.; Solà, R.; Motilva, M.J. Bioavailability of phenols from a phenol-enriched olive oil. Br. J. Nutr., 2011, 106(11), 1691-1701.
[http://dx.doi.org/10.1017/S0007114511002200] [PMID: 21736768]
[41]
Mosele, J.I.; Martín-Peláez, S.; Macià, A.; Farràs, M.; Valls, R.M.; Catalán, Ú.; Motilva, M.J. Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches. Mol. Nutr. Food Res., 2014, 58(9), 1809-1819.
[http://dx.doi.org/10.1002/mnfr.201400124] [PMID: 24990102]
[42]
López de las Hazas, M.C.; Piñol, C.; Macià, A.; Romero, M.P.; Pedret, A.; Solà, R.; Rubió, L.; Motilva, M.J. Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. J. Funct. Foods, 2016, 22, 52-63.
[http://dx.doi.org/10.1016/j.jff.2016.01.030]
[43]
de Bock, M.; Thorstensen, E.B.; Derraik, J.G.B.; Henderson, H.V.; Hofman, P.L.; Cutfield, W.S. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol. Nutr. Food Res., 2013, 57(11), 2079-2085.
[http://dx.doi.org/10.1002/mnfr.201200795] [PMID: 23766098]
[44]
Alemán-Jiménez, C.; Domínguez-Perles, R.; Medina, S.; Prgomet, I.; López-González, I.; Simonelli-Muñoz, A.; Campillo-Cano, M.; Auñón, D.; Ferreres, F.; Gil-Izquierdo, Á. Pharmacokinetics and bioavailability of hydroxytyrosol are dependent on the food matrix in humans. Eur. J. Nutr., 2020.
[http://dx.doi.org/10.1007/s00394-020-02295-0] [PMID: 32524230]
[45]
Serra, A.; Rubió, L.; Borràs, X.; Macià, A.; Romero, M.P.; Motilva, M.J. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Mol. Nutr. Food Res., 2012, 56(3), 486-496.
[http://dx.doi.org/10.1002/mnfr.201100436] [PMID: 22183818]
[46]
Visioli, F.; Galli, C.; Grande, S.; Colonnelli, K.; Patelli, C.; Galli, G.; Caruso, D. Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administration. J. Nutr., 2003, 133(8), 2612-2615.
[http://dx.doi.org/10.1093/jn/133.8.2612] [PMID: 12888646]
[47]
Rodríguez-Morató, J.; Boronat, A.; Kotronoulas, A.; Pujadas, M.; Pastor, A.; Olesti, E.; Pérez-Mañá, C.; Khymenets, O.; Fitó, M.; Farré, M.; de la Torre, R. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol. Drug Metab. Rev., 2016, 48(2), 218-236.
[http://dx.doi.org/10.1080/03602532.2016.1179754] [PMID: 27186796]
[48]
Auñon-Calles, D.; Canut, L.; Visioli, F. Toxicological evaluation of pure hydroxytyrosol. Food Chem. Toxicol., 2013, 55, 498-504.
[http://dx.doi.org/10.1016/j.fct.2013.01.030] [PMID: 23380205]
[49]
Soni, M.G.; Burdock, G.A.; Christian, M.S.; Bitler, C.M.; Crea, R. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem. Toxicol., 2006, 44(7), 903-915.
[http://dx.doi.org/10.1016/j.fct.2006.01.008] [PMID: 16530907]
[50]
Heilman, J.; Anyangwe, N.; Tran, N.; Edwards, J.; Beilstein, P.; López, J. Toxicological evaluation of an olive extract, H35: Subchronic toxicity in the rat. Food Chem. Toxicol., 2015, 84, 18-28.
[http://dx.doi.org/10.1016/j.fct.2015.07.007] [PMID: 26184542]
[51]
Zwane, R.E.; Parker, A.; Kudanga, T.; Davids, L.M.; Burton, S.G. Novel, biocatalytically produced hydroxytyrosol dimer protects against ultraviolet-induced cell death in human immortalized keratinocytes. J. Agric. Food Chem., 2012, 60(46), 11509-11517.
[http://dx.doi.org/10.1021/jf300883h] [PMID: 23072558]
[52]
Hydroxytyrosol, O.A. Inhibition of Peroxynitrite Dependent Dna Base Modification., 1999, 26, 762-769.
[53]
Granados-Principal, S.; El-Azem, N.; Pamplona, R.; Ramirez-Tortosa, C.; Pulido-Moran, M.; Vera-Ramirez, L.; Quiles, J.L.; Sanchez-Rovira, P.; Naudí, A.; Portero-Otin, M.; Perez-Lopez, P.; Ramirez-Tortosa, M. Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer. Biochem. Pharmacol., 2014, 90(1), 25-33.
[http://dx.doi.org/10.1016/j.bcp.2014.04.001] [PMID: 24727461]
[54]
Sarsour, E.H.; Kumar, M.G.; Kalen, A.L.; Goswami, M.; Buettner, G.R.; Goswami, P.C. MnSOD activity regulates hydroxytyrosol-induced extension of chronological lifespan. Age (Omaha), 2012, 34(1), 95-109.
[http://dx.doi.org/10.1007/s11357-011-9223-7] [PMID: 21384152]
[55]
Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J., 2003, 17(10), 1195-1214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[56]
D’Angelo, S.; Ingrosso, D.; Migliardi, V.; Sorrentino, A.; Donnarumma, G.; Baroni, A.; Masella, L.; Tufano, M.A.; Zappia, M.; Galletti, P. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells. Free Radic. Biol. Med., 2005, 38(7), 908-919.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.12.015] [PMID: 15749387]
[57]
González-Correa, J.A.; Navas, M.D.; Lopez-Villodres, J.A.; Trujillo, M.; Espartero, J.L.; De La Cruz, J.P. Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia-reoxygenation. Neurosci. Lett., 2008, 446(2-3), 143-146.
[http://dx.doi.org/10.1016/j.neulet.2008.09.022] [PMID: 18809463]
[58]
Muñoz-Marín, J.; De La Cruz, J.P.; Guerrero, A.; López-Leiva, I.; López-Villodres, J.A.; Reyes, J.J.; Espartero, J.L.; Madrona, A.; Labajos, M.T.; González-Correa, J.A. Cytoprotective effect of hydroxytyrosyl alkyl ether derivatives after oral administration to rats in a model of glucose-oxygen deprivation in brain slices. J. Agric. Food Chem., 2012, 60(31), 7659-7664.
[http://dx.doi.org/10.1021/jf3007097] [PMID: 22809331]
[59]
González-Santiago, M.; Martín-Bautista, E.; Carrero, J.J.; Fonollá, J.; Baró, L.; Bartolomé, M.V.; Gil-Loyzaga, P.; López-Huertas, E. One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status and reduces atherosclerosis development. Atherosclerosis, 2006, 188(1), 35-42.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.10.022] [PMID: 16300770]
[60]
Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.L.; Ochoa-Herrera, J.; Perez-Lopez, P.; Pulido-Moran, M.; Ramirez-Tortosa, M.C. Squalene ameliorates atherosclerotic lesions through the reduction of CD36 scavenger receptor expression in macrophages. Mol. Nutr. Food Res., 2012, 56(5), 733-740.
[http://dx.doi.org/10.1002/mnfr.201100703] [PMID: 22648620]
[61]
Jemai, H.; Bouaziz, M.; Fki, I.; El Feki, A.; Sayadi, S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem. Biol. Interact., 2008, 176(2-3), 88-98.
[http://dx.doi.org/10.1016/j.cbi.2008.08.014] [PMID: 18823963]
[62]
Poudyal, H.; Campbell, F.; Brown, L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J. Nutr., 2010, 140(5), 946-953.
[http://dx.doi.org/10.3945/jn.109.117812] [PMID: 20335636]
[63]
de Bock, M.; Derraik, J.G.B.; Brennan, C.M.; Biggs, J.B.; Morgan, P.E.; Hodgkinson, S.C.; Hofman, P.L.; Cutfield, W.S. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PLoS One, 2013, 8(3)e57622
[http://dx.doi.org/10.1371/journal.pone.0057622] [PMID: 23516412]
[64]
Zhang, X.; Cao, J.; Zhong, L. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 379(6), 581-586.
[http://dx.doi.org/10.1007/s00210-009-0399-7] [PMID: 19198806]
[65]
Fitó, M.; Cladellas, M.; de la Torre, R.; Martí, J.; Muñoz, D.; Schröder, H.; Alcántara, M.; Pujadas-Bastardes, M.; Marrugat, J.; López-Sabater, M.C.; Bruguera, J.; Covas, M.I. SOLOS Investigators. Anti-inflammatory effect of virgin olive oil in stable coronary disease patients: a randomized, crossover, controlled trial. Eur. J. Clin. Nutr., 2008, 62(4), 570-574.
[http://dx.doi.org/10.1038/sj.ejcn.1602724] [PMID: 17375118]
[66]
Medina, E.; de Castro, A.; Romero, C.; Brenes, M. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: correlation with antimicrobial activity. J. Agric. Food Chem., 2006, 54(14), 4954-4961.
[http://dx.doi.org/10.1021/jf0602267] [PMID: 16819902]
[67]
Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol., 1999, 51(8), 971-974.
[http://dx.doi.org/10.1211/0022357991773258] [PMID: 10504039]
[68]
Kyriazis, J.D.; Aligiannis, N.; Polychronopoulos, P.; Skaltsounis, A.L.; Dotsika, E. Leishmanicidal activity assessment of olive tree extracts. Phytomedicine, 2013, 20(3-4), 275-281.
[http://dx.doi.org/10.1016/j.phymed.2012.11.013] [PMID: 23273752]
[69]
Visioli, F.; Bellomo, G.; Galli, C. Free radical-scavenging properties of olive oil polyphenols. Biochem. Biophys. Res. Commun., 1998, 247(1), 60-64.
[http://dx.doi.org/10.1006/bbrc.1998.8735] [PMID: 9636654]
[70]
López de Las Hazas, M.C.; Piñol, C.; Macià, A.; Motilva, M.J. Hydroxytyrosol and the Colonic Metabolites Derived from Virgin Olive Oil Intake Induce Cell Cycle Arrest and Apoptosis in Colon Cancer Cells. J. Agric. Food Chem., 2017, 65(31), 6467-6476.
[http://dx.doi.org/10.1021/acs.jafc.6b04933] [PMID: 28071050]
[71]
Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C. Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr. Rev., 2010, 68(4), 191-206.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00278.x] [PMID: 20416016]
[72]
Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med., 2002, 346(16), 1221-1231.
[http://dx.doi.org/10.1056/NEJMra011775] [PMID: 11961152]
[73]
Pan, M.H.; Lai, C.S.; Tsai, M.L.; Ho, C.T. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Mol. Nutr. Food Res., 2014, 58(1), 147-171.
[http://dx.doi.org/10.1002/mnfr.201300522] [PMID: 24302567]
[74]
Hashimoto, E.; Taniai, M.; Tokushige, K. Characteristics and diagnosis of NAFLD/NASH. J. Gastroenterol. Hepatol., 2013, 28(Suppl. 4), 64-70.
[http://dx.doi.org/10.1111/jgh.12271] [PMID: 24251707]
[75]
Sookoian, S.; Castaño, G.O.; Scian, R.; Fernández Gianotti, T.; Dopazo, H.; Rohr, C.; Gaj, G.; San Martino, J.; Sevic, I.; Flichman, D.; Pirola, C.J. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am. J. Clin. Nutr., 2016, 103(2), 422-434.
[http://dx.doi.org/10.3945/ajcn.115.118695] [PMID: 26791191]
[76]
VanWagner, L.B.; Rinella, M.E. Extrahepatic Manifestations of Nonalcoholic Fatty Liver Disease. Curr. Hepatol. Rep., 2016, 15(2), 75-85.
[http://dx.doi.org/10.1007/s11901-016-0295-9] [PMID: 27218012]
[77]
Tana, C.; Ballestri, S.; Ricci, F.; Di Vincenzo, A.; Ticinesi, A.; Gallina, S.; Giamberardino, M.A.; Cipollone, F.; Sutton, R.; Vettor, R.; Fedorowski, A.; Meschi, T. Cardiovascular risk in non-alcoholic fatty liver disease: Mechanisms and therapeutic implications. Int. J. Environ. Res. Public Health, 2019, 16(17), 16.
[http://dx.doi.org/10.3390/ijerph16173104] [PMID: 31455011]
[78]
Marcuccilli, M.; Chonchol, M. NAFLD and chronic kidney disease. Int. J. Mol. Sci., 2016, 17(4), 562.
[http://dx.doi.org/10.3390/ijms17040562] [PMID: 27089331]
[79]
Bhatt, H.B.; Smith, R.J. Fatty liver disease in diabetes mellitus. Hepatobiliary Surg. Nutr., 2015, 4(2), 101-108.
[PMID: 26005676]
[80]
Finck, B.N. Targeting metabolism, insulin resistance, and diabetes to treat nonalcoholic steatohepatitis. Diabetes, 2018, 67(12), 2485-2493.
[http://dx.doi.org/10.2337/dbi18-0024] [PMID: 30459251]
[81]
Sureda, A.; Martorell, M.; Capó, X.; Monserrat-Mesquida, M.; Quetglas-Llabrés, M.M.; Rasekhian, M.; Nabavi, S.M.; Tejada, S. Antitumor effects of triterpenes in hepatocellular carcinoma. Curr. Med. Chem., 2020, 27.
[http://dx.doi.org/10.2174/0929867327666200602132000] [PMID: 32484765]
[82]
Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur. J. Sport Sci., 2019, 19(7), 994-1003.
[http://dx.doi.org/10.1080/17461391.2019.1571114] [PMID: 30732555]
[83]
Sumida, Y.; Niki, E.; Naito, Y.; Yoshikawa, T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic. Res., 2013, 47(11), 869-880.
[http://dx.doi.org/10.3109/10715762.2013.837577] [PMID: 24004441]
[84]
Asrih, M.; Jornayvaz, F.R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol. Cell. Endocrinol., 2015, 418(Pt 1), 55-65.
[http://dx.doi.org/10.1016/j.mce.2015.02.018] [PMID: 25724480]
[85]
Moller, D.E.; Flier, J.S.; Flier, J.S. Insulin resistance--mechanisms, syndromes, and implications. N. Engl. J. Med., 1991, 325(13), 938-948.
[http://dx.doi.org/10.1056/NEJM199109263251307] [PMID: 1881419]
[86]
Smith, B.W.; Adams, L.A. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat. Rev. Endocrinol., 2011, 7(8), 456-465.
[http://dx.doi.org/10.1038/nrendo.2011.72] [PMID: 21556019]
[87]
Tarantino, G.; Caputi, A. JNKs, insulin resistance and inflammation: A possible link between NAFLD and coronary artery disease. World J. Gastroenterol., 2011, 17(33), 3785-3794.
[http://dx.doi.org/10.3748/wjg.v17.i33.3785] [PMID: 21987620]
[88]
Schwabe, R.F.; Uchinami, H.; Qian, T.; Bennett, B.L.; Lemasters, J.J.; Brenner, D.A. Differential requirement for c-Jun NH2-terminal kinase in TNFalpha- and Fas-mediated apoptosis in hepatocytes. FASEB J., 2004, 18(6), 720-722.
[http://dx.doi.org/10.1096/fj.03-0771fje] [PMID: 14766793]
[89]
Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology, 2010, 52(5), 1836-1846.
[http://dx.doi.org/10.1002/hep.24001] [PMID: 21038418]
[90]
Abenavoli, L.D.I.; Renzo, L.; Guzzi, P.H.; Pellicano, R.; Milic, N.D.E.; Lorenzo, A. Non-alcoholic fatty liver disease severity, central fat mass and adinopectin: a close relationship. Clujul Med., 2015, 88(4), 489-493.
[PMID: 26733747]
[91]
M, M.; V, R.; M, D.; AG, G.; A, A.; C, L.; A, F.; M, P. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid. Med. Cell. Longev.,. 2018.
[92]
Gutteridge, J.M.C.; Halliwell, B. Comments on review of free radicals in biology and medicineby Barry Halliwell and John M.C. Gutteridge. Free Radic. Biol. Med, second edition; , 1992, 12, pp. 93-94..
[93]
Alkhouri, N.; Dixon, L.J.; Feldstein, A.E. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol., 2009, 3(4), 445-451.
[http://dx.doi.org/10.1586/egh.09.32] [PMID: 19673631]
[94]
Ashraf, N.U.; Sheikh, T.A. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic. Res., 2015, 49(12), 1405-1418.
[http://dx.doi.org/10.3109/10715762.2015.1078461] [PMID: 26223319]
[95]
Aronis, A.; Madar, Z.; Tirosh, O. Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol. Med., 2005, 38(9), 1221-1230.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.01.015] [PMID: 15808420]
[96]
Yasutake, K.; Kohjima, M.; Kotoh, K.; Nakashima, M.; Nakamuta, M.; Enjoji, M. Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J. Gastroenterol., 2014, 20(7), 1756-1767.
[http://dx.doi.org/10.3748/wjg.v20.i7.1756] [PMID: 24587653]
[97]
Trovato, F.M.; Catalano, D.; Martines, G.F.; Pace, P.; Trovato, G.M. Mediterranean diet and non-alcoholic fatty liver disease: the need of extended and comprehensive interventions. Clin. Nutr., 2015, 34(1), 86-88.
[http://dx.doi.org/10.1016/j.clnu.2014.01.018] [PMID: 24529325]
[98]
Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; Del Ben, M. Adherence to Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: Effect on Insulin Resistance. Am. J. Gastroenterol., 2017, 112(12), 1832-1839.
[http://dx.doi.org/10.1038/ajg.2017.371] [PMID: 29063908]
[99]
Aller, R.; Izaola, O.; de la Fuente, B.; de Luis, D. La dieta mediterránea se asocia con la histología hepática en pacientes con enfermedad del hígado graso no alcohólico. Nutr. Hosp., 2015, 32, 2518-2524.
[PMID: 26667698]
[100]
Gelli, C.; Tarocchi, M.; Abenavoli, L.; Di Renzo, L.; Galli, A.; De Lorenzo, A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J. Gastroenterol., 2017, 23(17), 3150-3162.
[http://dx.doi.org/10.3748/wjg.v23.i17.3150] [PMID: 28533672]
[101]
Cueto-Galán, R.; Barón, F.J.; Valdivielso, P.; Pintó, X.; Corbella, E.; Gómez-Gracia, E.; Wärnberg, J. los investigadores del Estudio PREDIMED. Changes in fatty liver index after consuming a Mediterranean diet: 6-year follow-up of the PREDIMED-Malaga trial. Med. Clin. (Barc.), 2017, 148(10), 435-443.
[PMID: 28126231]
[102]
Abenavoli, L.; Greco, M.; Milic, N.; Accattato, F.; Foti, D.; Gulletta, E.; Luzza, F. Effect of mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: A randomized study. Nutrients, 2017, 9(8), 9.
[http://dx.doi.org/10.3390/nu9080870] [PMID: 28805669]
[103]
Ji, H-F.; Sun, Y.; Shen, L. Effect of vitamin E supplementation on aminotransferase levels in patients with NAFLD, NASH, and CHC: results from a meta-analysis. Nutrition, 2014, 30(9), 986-991.
[http://dx.doi.org/10.1016/j.nut.2014.01.016] [PMID: 24976430]
[104]
Gutierrez, V.R.; de la Puerta, R.; Catalá, A. The effect of tyrosol, hydroxytyrosol and oleuropein on the non-enzymatic lipid peroxidation of rat liver microsomes. Mol. Cell. Biochem., 2001, 217(1-2), 35-41.
[http://dx.doi.org/10.1023/A:1007219931090] [PMID: 11269663]
[105]
Priore, P.; Siculella, L.; Gnoni, G.V. Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes. J. Nutr. Biochem., 2014, 25(7), 683-691.
[http://dx.doi.org/10.1016/j.jnutbio.2014.01.009] [PMID: 24742469]
[106]
Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 251-262.
[http://dx.doi.org/10.1038/nrm3311] [PMID: 22436748]
[107]
Pirozzi, C.; Lama, A.; Simeoli, R.; Paciello, O.; Pagano, T.B.; Mollica, M.P.; Di Guida, F.; Russo, R.; Magliocca, S.; Canani, R.B.; Raso, G.M.; Calignano, A.; Meli, R. Hydroxytyrosol prevents metabolic impairment reducing hepatic inflammation and restoring duodenal integrity in a rat model of NAFLD. J. Nutr. Biochem., 2016, 30, 108-115.
[http://dx.doi.org/10.1016/j.jnutbio.2015.12.004] [PMID: 27012627]
[108]
Lemonakis, N.; Poudyal, H.; Halabalaki, M.; Brown, L.; Tsarbopoulos, A.; Skaltsounis, A.L.; Gikas, E. The LC-MS-based metabolomics of hydroxytyrosol administration in rats reveals amelioration of the metabolic syndrome. Technol. Biomed. Life Sci., 2017, 1041-1042, 45-59.
[http://dx.doi.org/10.1016/j.jchromb.2016.12.020] [PMID: 28012379]
[109]
Santos-López, J.A.; Garcimartín, A.; López-Oliva, M.E.; Bautista-Ávila, M.; González-Muñoz, M.J.; Bastida, S.; Benedí, J.; Sánchez-Muniz, F.J. Chia Oil-Enriched Restructured Pork Effects on Oxidative and Inflammatory Status of Aged Rats Fed High Cholesterol/High Fat Diets. J. Med. Food, 2017, 20(5), 526-534.
[http://dx.doi.org/10.1089/jmf.2016.0161] [PMID: 28294699]
[110]
Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M.Á.; Ortiz, M.; Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct., 2017, 8(4), 1526-1537.
[http://dx.doi.org/10.1039/C7FO00090A] [PMID: 28386616]
[111]
Valenzuela, R.; Echeverria, F.; Ortiz, M.; Rincón-Cervera, M.Á.; Espinosa, A.; Hernandez-Rodas, M.C.; Illesca, P.; Valenzuela, A.; Videla, L.A. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice. Lipids Health Dis., 2017, 16(1), 64.
[http://dx.doi.org/10.1186/s12944-017-0450-5] [PMID: 28395666]
[112]
Dagla, I.; Benaki, D.; Baira, E.; Lemonakis, N.; Poudyal, H.; Brown, L.; Tsarbopoulos, A.; Skaltsounis, A.L.; Mikros, E.; Gikas, E. Alteration in the liver metabolome of rats with metabolic syndrome after treatment with Hydroxytyrosol. A Mass Spectrometry And Nuclear Magnetic Resonance - based metabolomics study. Talanta, 2018, 178, 246-257.
[http://dx.doi.org/10.1016/j.talanta.2017.09.029] [PMID: 29136819]
[113]
Wang, N.; Liu, Y.; Ma, Y.; Wen, D. Hydroxytyrosol ameliorates insulin resistance by modulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice. J. Nutr. Biochem., 2018, 57, 180-188.
[http://dx.doi.org/10.1016/j.jnutbio.2018.03.018] [PMID: 29747118]
[114]
F, E.; R, V.; A, B.; D, Á.; M, O.; SA, S.-A.; P, M.; A, C.; LA, V. Attenuation of High-Fat Diet-Induced Rat Liver Oxidative Stress and Steatosis by Combined Hydroxytyrosol- (HT-) Eicosapentaenoic Acid Supplementation Mainly Relies on HT. Oxid. Med. Cell. Longev., 2018.
[115]
Echeverría, F.; Valenzuela, R.; Espinosa, A.; Bustamante, A.; Álvarez, D.; Gonzalez-Mañan, D.; Ortiz, M.; Soto-Alarcon, S.A.; Videla, L.A. Reduction of high-fat diet-induced liver proinflammatory state by eicosapentaenoic acid plus hydroxytyrosol supplementation: involvement of resolvins RvE1/2 and RvD1/2. J. Nutr. Biochem., 2019, 63, 35-43.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.012] [PMID: 30321750]
[116]
Echeverría, F.; Valenzuela, R.; Bustamante, A.; Álvarez, D.; Ortiz, M.; Espinosa, A.; Illesca, P.; Gonzalez-Mañan, D.; Videla, L.A. High-fat diet induces mouse liver steatosis with a concomitant decline in energy metabolism: attenuation by eicosapentaenoic acid (EPA) or hydroxytyrosol (HT) supplementation and the additive effects upon EPA and HT co-administration. Food Funct., 2019, 10(9), 6170-6183.
[http://dx.doi.org/10.1039/C9FO01373C] [PMID: 31501836]
[117]
Soto-Alarcón, S.A.; Ortiz, M.; Orellana, P.; Echeverría, F.; Bustamante, A.; Espinosa, A.; Illesca, P.; Gonzalez-Mañán, D.; Valenzuela, R.; Videla, L.A. Docosahexaenoic acid and hydroxytyrosol co-administration fully prevents liver steatosis and related parameters in mice subjected to high-fat diet: A molecular approach. Biofactors, 2019, 45(6), 930-943.
[http://dx.doi.org/10.1002/biof.1556] [PMID: 31454114]
[118]
Lee, Y.Y.; Crauste, C.; Wang, H.; Leung, H.H.; Vercauteren, J.; Galano, J.M.; Oger, C.; Durand, T.; Wan, J.M.F.; Lee, J.C.Y. Extra Virgin Olive Oil Reduced Polyunsaturated Fatty Acid and Cholesterol Oxidation in Rodent Liver: Is This Accounted for Hydroxytyrosol-Fatty Acid Conjugation? Chem. Res. Toxicol., 2016, 29(10), 1689-1698.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00214] [PMID: 27588434]
[119]
Barrera, C.; Valenzuela, R.; Rincón, M.Á.; Espinosa, A.; Echeverria, F.; Romero, N.; Gonzalez-Mañan, D.; Videla, L.A. Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration. Free Radic. Biol. Med., 2018, 126, 313-321.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.030] [PMID: 30153476]
[120]
Nobili, V.; Alisi, A.; Mosca, A.; Crudele, A.; Zaffina, S.; Denaro, M.; Smeriglio, A.; Trombetta, D. The Antioxidant Effects of Hydroxytyrosol and Vitamin E on Pediatric Nonalcoholic Fatty Liver Disease, in a Clinical Trial: A New Treatment? Antioxid. Redox Signal., 2019, 31(2), 127-133.
[http://dx.doi.org/10.1089/ars.2018.7704] [PMID: 30588836]

© 2024 Bentham Science Publishers | Privacy Policy