Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Nanotechnology

Solidifying Essential Balm into Electrospun Core-sheath Nanofibers for Prolonged Release

Author(s): Kun Zhao, Yao-Yao Yang*, Shi-Xiong Kang and Deng-Guang Yu*

Volume 1, Issue 1, 2021

Published on: 12 October, 2020

Page: [122 - 131] Pages: 10

DOI: 10.2174/2210298101666201012121522

Open Access Journals Promotions 2
Abstract

Background: Essential Balm (EB) is a commonly used medicine with high volatility and short shelf-life during storage.

Objective: Slowing down the volatilization rate of EB and exploring the effect of fiber on the volatilization rate of EB.

Methods: In this study, electrospinning technology was used to convert the liquid EB into solid EB in order to improve the balm’s storage and longevity.

Results: Specifically, core-sheath nanofibers coated with EB were prepared by traditional coaxial electrospinning technology, in which polyvinylpyrrolidone K90 was used as polymer sheath to reduce the volatilization of EB in the core layer. Scanning electron microscopy images showed that the core-sheath flow rate ratio is proportional to the sizes and number of spindles. EB was successfully placed into the fibers and showed good compatibility with the carriers. Infrared spectroscopy indicated the presence of a hydrogen bond between them. Volatility tests showed that all prepared composites could delay the volatility of EB and improve its physical stability.

Conclusion: This methodology can be applied toward increasing the shelf-life of liquid drugs by using core-sheath nanofibers. The core-sheath fibers with good morphology are more propitious to delay the volatilization rate of EB.

Keywords: coaxial electrospinning, essential balm, core-sheath nanofiber, morphology, structure, volatility.

Graphical Abstract
[1]
Chaúque EFC, Ngila JC, Ray SC, Ndlwana L. Degradation of methyl orange on Fe/Ag nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelating agents. J Environ Manage 2019; 236: 481-9.
[http://dx.doi.org/10.1016/j.jenvman.2019.02.023] [PMID: 30771668]
[2]
Wang ML, Yu DG, Li XY, Williams GR. The development and bio-applications of multifluid electrospinning. Mater Highlights 2020.
[http://dx.doi.org/10.2991/mathi.k.200521.001]
[3]
Zhao L, Duan G, Zhang G, Yang H, He S, Jiang S. Electrospun functional materials toward food packaging applications: a review. Nanomaterials (Basel) 2020; 10(1): 150.
[http://dx.doi.org/10.3390/nano10010150] [PMID: 31952146]
[4]
Husmann S, Budak Ö, Quade A, Frank A, Kruth A, Scheu C. Electrospun vanadium sulfide/carbon hybrid fibers obtained via one-step thermal sulfidation for use as lithium-ion battery electrodes. J Power Sources 2020; 450227674
[http://dx.doi.org/10.1016/j.jpowsour.2019.227674]
[5]
Chen M, Li W, Kumar A, et al. Covalent atomic bridges enable unidirectional enhancement of electronic transport in aligned carbon nanotubes. ACS Appl Mater Interfaces 2019; 11(21): 19315-23.
[http://dx.doi.org/10.1021/acsami.9b01400] [PMID: 31083961]
[6]
Fu C, Oviedo MB, Zhu Y, et al. Confined lithium-sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity. ACS Nano 2018; 12(10): 9775-84.
[http://dx.doi.org/10.1021/acsnano.7b08778] [PMID: 30247879]
[7]
Li G, Fu C, Oviedo MB, et al. Giant raman response to the encapsulation of sulfur in narrow diameter single-walled carbon nanotubes. J Am Chem Soc 2016; 138(1): 40-3.
[http://dx.doi.org/10.1021/jacs.5b10598] [PMID: 26675065]
[8]
Feng C, Khulbe KC, Matsuura T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J Appl Polym Sci 2010; 115(2): 756-76.
[http://dx.doi.org/10.1002/app.31059]
[9]
Huang Y, Song J, Yang C, Long Y, Wu H. Scalable manufacturing and applications of nanofibers. Mater Today 2019; 28: 98-113.
[http://dx.doi.org/10.1016/j.mattod.2019.04.018]
[10]
Yang Y, Chang S, Bai Y, Du Y, Yu DG. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr Polym 2020; 243116477
[http://dx.doi.org/10.1016/j.carbpol.2020.116477] [PMID: 32532400]
[11]
Wang M, Wang K, Yang Y, Liu Y, Yu DG. Electrospun environment remediation nanofibers using unspinnable liquids as the sheath fluids: A review. Polymers (Basel) 2020; 12(1): 103.
[http://dx.doi.org/10.3390/polym12010103] [PMID: 31947986]
[12]
Zaarour B, Zhu L, Huang C, Jin X. A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications. Polym Adv Technol 2020; 31(7): 1449-62.
[http://dx.doi.org/10.1002/pat.4876]
[13]
Li JJ, Yang YY, Yu DG, Du Q, Yang XL. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers. Eur J Pharm Sci 2018; 122: 195-204.
[http://dx.doi.org/10.1016/j.ejps.2018.07.002] [PMID: 30008429]
[14]
Hai T, Wan X, Yu DG, Wang K, Yang Y, Liu ZP. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile. Mater Des 2019; 162: 70-9.
[http://dx.doi.org/10.1016/j.matdes.2018.11.036]
[15]
Yu DG, Li HP, Yang C, Li JJ, Wang Q, Williams GR. Double-pulsatile release core-sheath fibers fabricated using modified tri-axial electrospinning. J Control Release 2017; 259: e24-5.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.077]
[16]
Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 2017; 112: 1-17.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.010] [PMID: 27865991]
[17]
Han D, Steckl AJ. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 2013; 5(16): 8241-5.
[http://dx.doi.org/10.1021/am402376c] [PMID: 23924226]
[18]
Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers (Basel) 2019; 11(12)E2008
[http://dx.doi.org/10.3390/polym11122008] [PMID: 31817133]
[19]
Chen J, Duan H, Pan H, Yang X, Pan W. Two types of core/shell fibers based on carboxymethyl chitosan and sodium carboxymethyl cellulose with self-assembled liposome for buccal delivery of carvedilol across TR146 cell culture and porcine buccal mucosa. Int J Biol Macromol 2019; 128: 700-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.143] [PMID: 30695727]
[20]
Sedghi R, Shaabani A. Electrospun biocompatible core/sheath polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer (Guildf) 2016; 101: 151-7.
[http://dx.doi.org/10.1016/j.polymer.2016.08.060]
[21]
Yu DG, Wang M, Li X, Liu X, Zhu LM, Annie Bligh SW. Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019.
[http://dx.doi.org/10.1002/wnan.1601] [PMID: 31692241]
[22]
Wang K, Wang P, Wang M, Yu DG, Wan F, Bligh SWA. Comparative study of electrospun crystal-based and composite-based drug nano depots. Mater Sci Eng C 2020; 113110988
[http://dx.doi.org/10.1016/j.msec.2020.110988] [PMID: 32487398]
[23]
Yang Y, Li W, Yu DG, Wang G, Williams GR, Zhang Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr Polym 2019; 203: 228-37.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.061] [PMID: 30318208]
[24]
Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 2018; 11(8): 1165-88.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.015]
[25]
Bi H, Feng T, Li B, Han Y. In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing. Polymers (Basel) 2020; 12(4)E839
[http://dx.doi.org/10.3390/polym12040839] [PMID: 32268612]
[26]
Wen P, Zhu DH, Wu H, Zong MH, Jing YR, Han SY. Encapsulation of cinnamon essential oil in electrospun nano fibrous film for active food packaging. Food Control 2016; 59: 366-76.
[http://dx.doi.org/10.1016/j.foodcont.2015.06.005]
[27]
Amiri S, Rahimi A. Poly(ε-caprolactone) electrospun nanofibers containing cinnamon essential oil nanocapsules: A promising technique for controlled release and high solubility. J Ind Text 2018; 48(10): 1527-44.
[http://dx.doi.org/10.1177/1528083718764911]
[28]
Antunes MD, Dannenberg GD, Fiorentini AM, et al. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int J Biol Macromol 2017; 104(A): 874-2.
[29]
Cui H, Bai M, Lin L. Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr Polym 2018; 179: 360-9.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.011] [PMID: 29111062]
[30]
Cui H, Bai M, Rashed MMA, Lin L. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int J Food Microbiol 2018; 266: 69-78.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.11.019] [PMID: 29179098]
[31]
Wen P, Zhu DH, Feng K, et al. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 2016; 196: 996-1004.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.043] [PMID: 26593582]
[32]
Yoon J, Yang HS, Lee BS, Yu WR. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications. Adv Mater 2018; 30(42)e1704765
[http://dx.doi.org/10.1002/adma.201704765] [PMID: 30152180]
[33]
Huang CK, Zhang K, Gong Q, et al. Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning. Int J Biol Macromol 2020; 152: 68-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.239] [PMID: 32097744]
[34]
Zhao K, Wang W, Yang Y, Wang K, Yu DG. From Taylor cone to solid nanofiber in tri-axial electrospinning: size relationships. Results Phys 2019; 15102770
[http://dx.doi.org/10.1016/j.rinp.2019.102770]
[35]
Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019; 119(8): 5298-415.
[http://dx.doi.org/10.1021/acs.chemrev.8b00593] [PMID: 30916938]
[36]
Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S. Electrospun nanofiber reinforced composites: a review. Polym Chem 2018; 9(20): 2685-720.
[http://dx.doi.org/10.1039/C8PY00378E]
[37]
Jian S, Zhu J, Jiang S, Chen S, Fang H, Song Y. Nanofibers with diameter below one nanometer from electrospinning. RSC Advances 2018; 8(9): 4794-802.
[http://dx.doi.org/10.1039/C7RA13444D]
[38]
Liu ZP, Zhang LL, Yang YY, Wu D, Jiang G, Yu DG. Preparing composite nanoparticles for immediate drug release by modifying electrohydrodynamic interfaces during electrospraying. Powder Technol 2018; 327: 179-87.
[http://dx.doi.org/10.1016/j.powtec.2017.12.066]
[39]
Wang K, Wen HF, Yu DG, Yang Y, Zhang DF. Electrosprayed hydrophilic nanocomposites coated with sheathac for colon-specific delayed drug delivery. Mater Des 2018; 143: 248-55.
[http://dx.doi.org/10.1016/j.matdes.2018.02.016]
[40]
Liu X, Yang Y, Yu DG, Zhu MJ, Zhao M, Williams GR. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J 2019; 356: 886-94.
[http://dx.doi.org/10.1016/j.cej.2018.09.096]
[41]
Li J, Pan H, Ye Q, Shi C, Zhang X, Pan W. Carvedilol-loaded polyvinylpyrrolidone electrospun nanofiber film for sublingual delivery. J Drug Deliv Sci Technol 2020; 58101726
[http://dx.doi.org/10.1016/j.jddst.2020.101726]
[42]
Yu DG, Li JJ, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292: 91-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.016] [PMID: 30118788]
[43]
Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NHM, Razak SIA. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydr Res 2020; 491107978
[http://dx.doi.org/10.1016/j.carres.2020.107978] [PMID: 32163784]
[44]
Chen Y, Qiu Y, Chen W, Wei Q. Electrospun thymol-loaded porous cellulose acetate fibers with potential biomedical applications. Mater Sci Eng C 2020; 109110536
[http://dx.doi.org/10.1016/j.msec.2019.110536] [PMID: 32228971]
[45]
Konwarh R, Karak N, Misra M. Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol Adv 2013; 31(4): 421-37.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.002] [PMID: 23318668]
[46]
Chang SY, Wang ML, Zhang FY, et al. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Mater Des 2020; 192108782
[http://dx.doi.org/10.1016/j.matdes.2020.108782]
[47]
Jiang S, Duan G, Zussman E, Greiner A, Agarwal S. Highly flexible and tough concentric triaxial polystyrene fibers. ACS Appl Mater Interfaces 2014; 6(8): 5918-23.
[http://dx.doi.org/10.1021/am500837s] [PMID: 24684423]

© 2024 Bentham Science Publishers | Privacy Policy