Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

A Review on Computational Approaches for Analyzing Hydrogen- Deuterium (H/D) Exchange of Proteins

Author(s): Thirunavukkarasu Sivaraman*

Volume 28, Issue 4, 2021

Published on: 02 October, 2020

Page: [372 - 381] Pages: 10

DOI: 10.2174/0929866527666201002145859

Price: $65

conference banner
Abstract

Native state Hydrogen-Deuterium (H/D) exchange method has been used to study the structures and the unfolding pathways for quite a number of proteins. The H/D exchange method is generally monitored using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) techniques. NMR-assisted H/D exchange methods primarily monitor the residue level fluctuation of proteins, whereas MS-assisted H/D exchange methods analyze multifold ensemble conformations of proteins. In this connection, quite a large number of computational tools and algorithms have been developed for processing and analyzing huge amount of the H/D exchange data generated from these techniques. In this review, most of the freely available computational tools associated with the H/D exchange of proteins have been comprehensively reviewed and scopes to improve/ develop novel computational approaches for analyzing the H/D exchange data of proteins have also been brought into fore.

Keywords: Computational tools, free energy, H/D exchange, NMR, MS, protein stability and folding pathways.

Graphical Abstract
[1]
Dobson, C.M.; Karplus, M. The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol., 1999, 9(1), 92-101.
[http://dx.doi.org/10.1016/S0959-440X(99)80012-8] [PMID: 10047588]
[2]
Dill, K.A.; MacCallum, J.L. The protein-folding problem, 50 years on. Science, 2012, 338(6110), 1042-1046.
[http://dx.doi.org/10.1126/science.1219021] [PMID: 23180855]
[3]
Uversky, V.N. Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell. Mol. Life Sci., 2003, 60(9), 1852-1871.
[http://dx.doi.org/10.1007/s00018-003-3096-6] [PMID: 14523548]
[4]
Luheshi, L.M.; Crowther, D.C.; Dobson, C.M. Protein misfolding and disease: from the test tube to the organism. Curr. Opin. Chem. Biol., 2008, 12(1), 25-31.
[http://dx.doi.org/10.1016/j.cbpa.2008.02.011] [PMID: 18295611]
[5]
Anfinsen, C.B. Principles that govern the folding of protein chains. Science, 1973, 181(4096), 223-230.
[http://dx.doi.org/10.1126/science.181.4096.223] [PMID: 4124164]
[6]
Levinthal, C. Are there pathways for protein folding? J. Chim. Phys., 1968, 65, 44-45.
[http://dx.doi.org/10.1051/jcp/1968650044]
[7]
Honig, B. Protein folding: from the levinthal paradox to structure prediction. J. Mol. Biol., 1999, 293(2), 283-293.
[http://dx.doi.org/10.1006/jmbi.1999.3006] [PMID: 10550209]
[8]
Radford, S.E. Protein folding: progress made and promises ahead. Trends Biochem. Sci., 2000, 25(12), 611-618.
[http://dx.doi.org/10.1016/S0968-0004(00)01707-2] [PMID: 11116188]
[9]
Brockwell, D.J.; Smith, D.A.; Radford, S.E. Protein folding mechanisms: new methods and emerging ideas. Curr. Opin. Struct. Biol., 2000, 10(1), 16-25.
[http://dx.doi.org/10.1016/S0959-440X(99)00043-3] [PMID: 10679463]
[10]
Englander, S.W.; Downer, N.W.; Teitelbaum, H. Hydrogen exchange. Annu. Rev. Biochem., 1972, 41(1), 903-924.
[http://dx.doi.org/10.1146/annurev.bi.41.070172.004351] [PMID: 4563445]
[11]
Woodward, C.; Simon, I.; Tüchsen, E. Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem., 1982, 48(3), 135-160.
[http://dx.doi.org/10.1007/BF00421225] [PMID: 6757714]
[12]
Baldwin, R.L. Early days of protein hydrogen exchange: 1954-1972. Proteins, 2011, 79(7), 2021-2026.
[http://dx.doi.org/10.1002/prot.23039] [PMID: 21557321]
[13]
Hvidt, A.; Nielsen, S.O. Hydrogen exchange in proteins. Adv. Protein Chem., 1966, 21, 287-386.
[http://dx.doi.org/10.1016/S0065-3233(08)60129-1] [PMID: 5333290]
[14]
Bai, Y.; Milne, J.S.; Mayne, L.; Englander, S.W. Primary Structure Effects Hydrogen Exchange on Peptide Group. Primary structure effects on peptide group hydrogen exchange. Proteins, 1993, 17(1), 75-86.
[http://dx.doi.org/10.1002/prot.340170110] [PMID: 8234246]
[15]
Molday, R.S.; Englander, S.W.; Kallen, R.G. Primary structure effects on peptide group hydrogen exchange. Biochemistry, 1972, 11(2), 150-158.
[http://dx.doi.org/10.1021/bi00752a003] [PMID: 5061873]
[16]
Connelly, G.P.; Bai, Y.; Jeng, M.F.; Englander, S.W. Isotope effects in peptide group hydrogen exchange. Proteins, 1993, 17(1), 87-92.
[http://dx.doi.org/10.1002/prot.340170111] [PMID: 8234247]
[17]
Englander, S.W.; Sosnick, T.R.; Englander, J.J.; Mayne, L. Mechanisms and uses of hydrogen exchange. Curr. Opin. Struct. Biol., 1996, 6(1), 18-23.
[http://dx.doi.org/10.1016/S0959-440X(96)80090-X] [PMID: 8696968]
[18]
Bai, Y.; Milne, J.S.; Mayne, L.; Englander, S.W. Protein stability parameters measured by hydrogen exchange. Proteins, 1994, 20(1), 4-14.
[http://dx.doi.org/10.1002/prot.340200103] [PMID: 7824522]
[19]
Garcia, R.A.; Pantazatos, D.; Villarreal, F.J. Hydrogen/deuterium exchange mass spectrometry for investigating protein-ligand interactions. Assay Drug Dev. Technol., 2004, 2(1), 81-91.
[http://dx.doi.org/10.1089/154065804322966342] [PMID: 15090213]
[20]
Clarke, J.; Itzhaki, L.S. Hydrogen exchange and protein folding. Curr. Opin. Struct. Biol., 1998, 8(1), 112-118.
[http://dx.doi.org/10.1016/S0959-440X(98)80018-3] [PMID: 9519304]
[21]
Huyghues-Despointes, B.M.P.; Pace, C.N.; Englander, S.W.; Scholtz, J.M. Measuring the conformational stability of a protein by hydrogen exchange. Methods Mol. Biol., 2001, 168, 69-92.
[http://dx.doi.org/10.1385/1-59259-193-0:069] [PMID: 11357629]
[22]
Ferraro, D.M.; Lazo, N.; Robertson, A.D. EX1 hydrogen exchange and protein folding. Biochemistry, 2004, 43(3), 587-594.
[http://dx.doi.org/10.1021/bi035943y] [PMID: 14730962]
[23]
Dempsey, C.E. Hydrogen exchange in peptides and proteins using NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc., 2001, 39(2), 135-170.
[http://dx.doi.org/10.1016/S0079-6565(01)00032-2]
[24]
Miranker, A.; Robinson, C.V.; Radford, S.E.; Dobson, C.M. Investigation of protein folding by mass spectrometry. FASEB J., 1996, 10(1), 93-101.
[http://dx.doi.org/10.1096/fasebj.10.1.8566553] [PMID: 8566553]
[25]
Bierzyński, A. Methods of peptide conformation studies. Acta Biochim. Pol., 2001, 48(4), 1091-1099.
[http://dx.doi.org/10.18388/abp.2001_3870] [PMID: 11995971]
[26]
Miranker, A.; Robinson, C.V.; Radford, S.E.; Aplin, R.T.; Dobson, C.M. Detection of transient protein folding populations by mass spectrometry. Science, 1993, 262(5135), 896-900.
[http://dx.doi.org/10.1126/science.8235611] [PMID: 8235611]
[27]
Englander, S.W.; Mayne, L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu. Rev. Biophys. Biomol. Struct., 1992, 21(1), 243-265.
[http://dx.doi.org/10.1146/annurev.bb.21.060192.001331] [PMID: 1525469]
[28]
Wani, A.H.; Udgaonkar, J.B. Mass spectrometry studies of protein folding. Curr. Sci., 2012, 102(2), 245-265.
[29]
Jaswal, S.S. Biological insights from hydrogen exchange mass spectrometry. Biochim. Biophys. Acta, 2013, 1834(6), 1188-1201.
[http://dx.doi.org/10.1016/j.bbapap.2012.10.011] [PMID: 23117127]
[30]
Englander, S.W.; Mayne, L.; Krishna, M.M.G. Protein folding and misfolding: mechanism and principles. Q. Rev. Biophys., 2007, 40(4), 287-326.
[http://dx.doi.org/10.1017/S0033583508004654] [PMID: 18405419]
[31]
Anand, G.S.; Hughes, C.A.; Jones, J.M.; Taylor, S.S.; Komives, E.A. Amide H/2H exchange reveals communication between the cAMP and catalytic subunit-binding sites in the R(I)α subunit of protein kinase A. J. Mol. Biol., 2002, 323(2), 377-386.
[http://dx.doi.org/10.1016/S0022-2836(02)00919-1] [PMID: 12381327]
[32]
Konermann, L.; Vahidi, S.; Sowole, M.A. Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal. Chem., 2014, 86(1), 213-232.
[http://dx.doi.org/10.1021/ac4039306] [PMID: 24304427]
[33]
Katta, V.; Chait, B.T.; Carr, S. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom., 1991, 5(4), 214-217.
[http://dx.doi.org/10.1002/rcm.1290050415] [PMID: 1666528]
[34]
Chalmers, M.J.; Busby, S.A.; Pascal, B.D.; West, G.M.; Griffin, P.R. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Rev. Proteomics, 2011, 8(1), 43-59.
[http://dx.doi.org/10.1586/epr.10.109] [PMID: 21329427]
[35]
Iacob, R.E.; Engen, J.R. Hydrogen exchange mass spectrometry: are we out of the quicksand? J. Am. Soc. Mass Spectrom., 2012, 23(6), 1003-1010.
[http://dx.doi.org/10.1007/s13361-012-0377-z] [PMID: 22476891]
[36]
Wales, T.E.; Eggertson, M.J.; Engen, J.R. Considerations in the analysis of hydrogen exchange mass spectrometry data. Methods Mol. Biol., 2013, 1007, 263-288.
[http://dx.doi.org/10.1007/978-1-62703-392-3_11] [PMID: 23666730]
[37]
Palmblad, M.; Buijs, J.; Håkansson, P. Automatic analysis of hydrogen/deuterium exchange mass spectra of peptides and proteins using calculations of isotopic distributions. J. Am. Soc. Mass Spectrom., 2001, 12(11), 1153-1162.
[http://dx.doi.org/10.1016/S1044-0305(01)00301-4] [PMID: 11720389]
[38]
Hotchko, M.; Anand, G.S.; Komives, E.A.; Ten Eyck, L.F. Automated extraction of backbone deuteration levels from amide H/2H mass spectrometry experiments. Protein Sci., 2006, 15(3), 583-601.
[http://dx.doi.org/10.1110/ps.051774906] [PMID: 16501228]
[39]
Weis, D.D.; Wales, T.E.; Engen, J.R.; Hotchko, M.; Ten Eyck, L.F. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J. Am. Soc. Mass Spectrom., 2006, 17(11), 1498-1509.
[http://dx.doi.org/10.1016/j.jasms.2006.05.014] [PMID: 16875839]
[40]
Anand, G.S.; Hotchko, M.; Brown, S.H.J.; Ten Eyck, L.F.; Komives, E.A.; Taylor, S.S. R-subunit isoform specificity in protein kinase A: distinct features of protein interfaces in PKA types I and II by amide H/2H exchange mass spectrometry. J. Mol. Biol., 2007, 374(2), 487-499.
[http://dx.doi.org/10.1016/j.jmb.2007.09.035] [PMID: 17942118]
[41]
Liao, W.L.; Dodder, N.G.; Mast, N.; Pikuleva, I.A.; Turko, I.V. Steroid and protein ligand binding to cytochrome P450 46A1 as assessed by hydrogen-deuterium exchange and mass spectrometry. Biochemistry, 2009, 48(19), 4150-4158.
[http://dx.doi.org/10.1021/bi900168m] [PMID: 19317426]
[42]
Truhlar, S.M.E.; Cervantes, C.F.; Torpey, J.W.; Kjaergaard, M.; Komives, E.A. Rapid mass spectrometric analysis of 15N-Leu incorporation fidelity during preparation of specifically labeled NMR samples. Protein Sci., 2008, 17(9), 1636-1639.
[http://dx.doi.org/10.1110/ps.036418.108] [PMID: 18567787]
[43]
Kan, Z-Y.; Mayne, L.; Chetty, P.S.; Englander, S.W. ExMS: data analysis for HX-MS experiments. J. Am. Soc. Mass Spectrom., 2011, 22(11), 1906-1915.
[http://dx.doi.org/10.1007/s13361-011-0236-3] [PMID: 21952778]
[44]
Kan, Z-Y.; Walters, B.T.; Mayne, L.; Englander, S.W. Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16438-16443.
[http://dx.doi.org/10.1073/pnas.1315532110] [PMID: 24019478]
[45]
Mayne, L.; Kan, Z-Y.; Chetty, P.S.; Ricciuti, A.; Walters, B.T.; Englander, S.W. Many overlapping peptides for protein hydrogen exchange experiments by the fragment separation-mass spectrometry method. J. Am. Soc. Mass Spectrom., 2011, 22(11), 1898-1905.
[http://dx.doi.org/10.1007/s13361-011-0235-4] [PMID: 21952777]
[46]
Liu, S.; Liu, L.; Uzuner, U.; Zhou, X.; Gu, M.; Shi, W.; Zhang, Y.; Dai, S.Y.; Yuan, J.S. HDX-analyzer: a novel package for statistical analysis of protein structure dynamics. BMC Bioinformatics, 2011, 12(1)(Suppl. 1), S43.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S43] [PMID: 21342575]
[47]
Miller, D.E.; Prasannan, C.B.; Villar, M.T.; Fenton, A.W.; Artigues, A. HDXFinder: automated analysis and data reporting of deuterium/hydrogen exchange mass spectrometry. J. Am. Soc. Mass Spectrom., 2012, 23(2), 425-429.
[http://dx.doi.org/10.1007/s13361-011-0234-5] [PMID: 22083588]
[48]
Pascal, B.D.; Willis, S.; Lauer, J.L.; Landgraf, R.R.; West, G.M.; Marciano, D.; Novick, S.; Goswami, D.; Chalmers, M.J.; Griffin, P.R. HDX workbench: software for the analysis of H/D exchange MS data. J. Am. Soc. Mass Spectrom., 2012, 23(9), 1512-1521.
[http://dx.doi.org/10.1007/s13361-012-0419-6] [PMID: 22692830]
[49]
Pascal, B.D.; Chalmers, M.J.; Busby, S.A.; Mader, C.C.; Southern, M.R.; Tsinoremas, N.F.; Griffin, P.R. The Deuterator: software for the determination of backbone amide deuterium levels from H/D exchange MS data. BMC Bioinformatics, 2007, 8(1), 156.
[http://dx.doi.org/10.1186/1471-2105-8-156] [PMID: 17506883]
[50]
Pascal, B.D.; Chalmers, M.J.; Busby, S.A.; Griffin, P.R.H.D. HD desktop: an integrated platform for the analysis and visualization of H/D exchange data. J. Am. Soc. Mass Spectrom., 2009, 20(4), 601-610.
[http://dx.doi.org/10.1016/j.jasms.2008.11.019] [PMID: 19135386]
[51]
Underbakke, E.S.; Iavarone, A.T.; Marletta, M.A. Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase. Proc. Natl. Acad. Sci. USA, 2013, 110(17), 6777-6782.
[http://dx.doi.org/10.1073/pnas.1301934110] [PMID: 23572573]
[52]
Huang, R.Y-C.; Hudgens, J.W. Effects of desialylation on human α1-acid glycoprotein-ligand interactions. Biochemistry, 2013, 52(40), 7127-7136.
[http://dx.doi.org/10.1021/bi4011094] [PMID: 24041412]
[53]
Lou, X.; Kirchner, M.; Renard, B.Y.; Köthe, U.; Boppel, S.; Graf, C.; Lee, C-T.; Steen, J.A.; Steen, H.; Mayer, M.P.; Hamprecht, F.A. Deuteration distribution estimation with improved sequence coverage for HX/MS experiments. Bioinformatics, 2010, 26(12), 1535-1541.
[http://dx.doi.org/10.1093/bioinformatics/btq165] [PMID: 20439256]
[54]
Renard, B.Y.; Kirchner, M.; Steen, H.; Steen, J.A.J.; Hamprecht, F.A. NITPICK: peak identification for mass spectrometry data. BMC Bioinformatics, 2008, 9(1), 355.
[http://dx.doi.org/10.1186/1471-2105-9-355] [PMID: 18755032]
[55]
Kreshuk, A.; Stankiewicz, M.; Lou, X.; Kirchner, M.; Hamprecht, F.A.; Mayer, M.P. Automated detection and analysis of bimodal isotope peak distributions in H/D exchange mass spectrometry using HeXicon. Int. J. Mass Spectrom., 2011, 302(1-3), 125-131.
[http://dx.doi.org/10.1016/j.ijms.2010.08.025]
[56]
Guttman, M.; Weis, D.D.; Engen, J.R.; Lee, K.K. Analysis of overlapped and noisy hydrogen/deuterium exchange mass spectra. J. Am. Soc. Mass Spectrom., 2013, 24(12), 1906-1912.
[http://dx.doi.org/10.1007/s13361-013-0727-5] [PMID: 24018862]
[57]
Weis, D.D.; Engen, J.R.; Kass, I.J. Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J. Am. Soc. Mass Spectrom., 2006, 17(12), 1700-1703.
[http://dx.doi.org/10.1016/j.jasms.2006.07.025] [PMID: 16931036]
[58]
Chen, S.; Brier, S.; Smithgall, T.E.; Engen, J.R. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding. Protein Sci., 2007, 16(4), 572-581.
[http://dx.doi.org/10.1110/ps.062631007] [PMID: 17327393]
[59]
Chen, S.; O’Reilly, L.P.; Smithgall, T.E.; Engen, J.R. Tyrosine phosphorylation in the SH3 domain disrupts negative regulatory interactions within the c-Abl kinase core. J. Mol. Biol., 2008, 383(2), 414-423.
[http://dx.doi.org/10.1016/j.jmb.2008.08.040] [PMID: 18775435]
[60]
Kjaergaard, M.; Gårdsvoll, H.; Hirschberg, D.; Nielbo, S.; Mayasundari, A.; Peterson, C.B.; Jansson, A.; Jørgensen, T.J.; Poulsen, F.M.; Ploug, M. Solution structure of recombinant somatomedin B domain from vitronectin produced in Pichia pastoris. Protein Sci., 2007, 16(9), 1934-1945.
[http://dx.doi.org/10.1110/ps.072949607] [PMID: 17766387]
[61]
Badireddy, S.; Yunfeng, G.; Ritchie, M.; Akamine, P.; Wu, J.; Kim, C.W.; Taylor, S.S.; Qingsong, L.; Swaminathan, K.; Anand, G.S. Cyclic AMP analog blocks kinase activation by stabilizing inactive conformation: Conformational selection highlights a new concept in allosteric inhibitor design Mol. Cell. Proteomics, 2011, 10(3)
[62]
Orban, T.; Bereta, G.; Miyagi, M.; Wang, B.; Chance, M.R.; Sousa, M.C.; Palczewski, K. Conformational changes in guanylate cyclase-activating protein 1 induced by Ca2+ and N-terminal fatty acid acylation. Structure, 2010, 18(1), 116-126.
[http://dx.doi.org/10.1016/j.str.2009.11.008] [PMID: 20152158]
[63]
Iacob, R.E.; Zhang, J.; Gray, N.S.; Engen, J.R. Allosteric interactions between the myristate- and ATP-site of the Abl kinase. PLoS One, 2011, 6(1), e15929.
[http://dx.doi.org/10.1371/journal.pone.0015929] [PMID: 21264348]
[64]
Seckler, J.M.; Barkley, M.D.; Wintrode, P.L. Allosteric suppression of HIV-1 reverse transcriptase structural dynamics upon inhibitor binding. Biophys. J., 2011, 100(1), 144-153.
[http://dx.doi.org/10.1016/j.bpj.2010.11.004] [PMID: 21190666]
[65]
Slysz, G.W.; Baker, C.A.H.; Bozsa, B.M.; Dang, A.; Percy, A.J.; Bennett, M.; Schriemer, D.C. Hydra: software for tailored processing of H/D exchange data from MS or tandem MS analyses. BMC Bioinformatics, 2009, 10(1), 162.
[http://dx.doi.org/10.1186/1471-2105-10-162] [PMID: 19473537]
[66]
Calmettes, C.; Yu, R.H.; Silva, L.P.; Curran, D.; Schriemer, D.C.; Schryvers, A.B.; Moraes, T.F. Structural variations within the transferrin binding site on transferrin-binding protein B, TbpB. J. Biol. Chem., 2011, 286(14), 12683-12692.
[http://dx.doi.org/10.1074/jbc.M110.206102] [PMID: 21297163]
[67]
Ling, J.M.; Shima, C.H.; Schriemer, D.C.; Schryvers, A.B. Delineating the regions of human transferrin involved in interactions with transferrin binding protein B from Neisseria meningitidis. Mol. Microbiol., 2010, 77(5), 1301-1314.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07289.x] [PMID: 20633231]
[68]
Bennett, M.J.; Barakat, K.; Huzil, J.T.; Tuszynski, J.; Schriemer, D.C. Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. Chem. Biol., 2010, 17(7), 725-734.
[http://dx.doi.org/10.1016/j.chembiol.2010.05.019] [PMID: 20659685]
[69]
Kavan, D.; Man, P. MSTools - Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom., 2011, 302(1-3), 53-58.
[http://dx.doi.org/10.1016/j.ijms.2010.07.030]
[70]
Man, P.; Montagner, C.; Vitrac, H.; Kavan, D.; Pichard, S.; Gillet, D.; Forest, E.; Forge, V. Accessibility changes within diphtheria toxin T domain upon membrane penetration probed by hydrogen exchange and mass spectrometry. J. Mol. Biol., 2011, 414(1), 123-134.
[http://dx.doi.org/10.1016/j.jmb.2011.09.042] [PMID: 21986198]
[71]
Choi, S.H.; Wales, T.E.; Nam, Y.; O’Donovan, D.J.; Sliz, P.; Engen, J.R.; Blacklow, S.C. Conformational locking upon cooperative assembly of notch transcription complexes. Structure, 2012, 20(2), 340-349.
[http://dx.doi.org/10.1016/j.str.2011.12.011] [PMID: 22325781]
[72]
Nikamanon, P.; Pun, E.; Chou, W.; Koter, M.D.; Gershon, P.D. “TOF2H”: a precision toolbox for rapid, high density/high coverage hydrogen-deuterium exchange mass spectrometry via an LC-MALDI approach, covering the data pipeline from spectral acquisition to HDX rate analysis. BMC Bioinformatics, 2008, 9(1), 387.
[http://dx.doi.org/10.1186/1471-2105-9-387] [PMID: 18803853]
[73]
Gershon, P.D. Two tools for applying chromatographic retention data to the mass-based identification of peptides during hydrogen/deuterium exchange experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom., 2010, 24(23), 3373-3379.
[http://dx.doi.org/10.1002/rcm.4750] [PMID: 21072792]
[74]
Chik, J.K.; Vande Graaf, J.L.; Schriemer, D.C. Quantitating the statistical distribution of deuterium incorporation to extend the utility of H/D exchange MS data. Anal. Chem., 2006, 78(1), 207-214.
[http://dx.doi.org/10.1021/ac050988l] [PMID: 16383329]
[75]
Abzalimov, R.R.; Kaltashov, I.A. Extraction of local hydrogen exchange data from HDX CAD MS measurements by deconvolution of isotopic distributions of fragment ions. J. Am. Soc. Mass Spectrom., 2006, 17(11), 1543-1551.
[http://dx.doi.org/10.1016/j.jasms.2006.07.017] [PMID: 16934998]
[76]
Althaus, E.; Canzar, S.; Ehrler, C.; Emmett, M.R.; Karrenbauer, A.; Marshall, A.G.; Meyer-Bäse, A.; Tipton, J.D.; Zhang, H-M. Computing H/D-exchange rates of single residues from data of proteolytic fragments. BMC Bioinformatics, 2010, 11(1), 424.
[http://dx.doi.org/10.1186/1471-2105-11-424] [PMID: 20701784]
[77]
Arrington, C.B.; Teesch, L.M.; Robertson, A.D. Defining protein ensembles with native-state NH exchange: kinetics of interconversion and cooperative units from combined NMR and MS analysis. J. Mol. Biol., 1999, 285(3), 1265-1275.
[http://dx.doi.org/10.1006/jmbi.1998.2338] [PMID: 9887275]
[78]
Arrington, C.B.; Robertson, A.D. Correlated motions in native proteins from MS analysis of NH exchange: evidence for a manifold of unfolding reactions in ovomucoid third domain. J. Mol. Biol., 2000, 300(1), 221-232.
[http://dx.doi.org/10.1006/jmbi.2000.3859] [PMID: 10864511]
[79]
Sivaraman, T.; Kumar, T.K.S.; Tu, Y.T.; Peng, H.J.; Yu, C. Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability. Arch. Biochem. Biophys., 1999, 363(1), 107-115.
[http://dx.doi.org/10.1006/abbi.1998.1057] [PMID: 10049504]
[80]
Sivaraman, T.; Kumar, T.K.S.; Yu, C. Investigation of the structural stability of cardiotoxin analogue III from the Taiwan cobra by hydrogen-deuterium exchange kinetics. Biochemistry, 1999, 38(31), 9899-9905.
[http://dx.doi.org/10.1021/bi9901230] [PMID: 10433696]
[81]
Bai, Y.; Sosnick, T.R.; Mayne, L.; Englander, S.W. Protein folding intermediates: native-state hydrogen exchange. Science, 1995, 269(5221), 192-197.
[http://dx.doi.org/10.1126/science.7618079] [PMID: 7618079]
[82]
Bai, Y.; Englander, S.W. Future directions in folding: the multi-state nature of protein structure. Proteins, 1996, 24(2), 145-151.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO;2-I] [PMID: 8820481]
[83]
Bai, Y. Hidden intermediates and levinthal paradox in the folding of small proteins. Biochem. Biophys. Res. Commun., 2003, 305(4), 785-788.
[http://dx.doi.org/10.1016/S0006-291X(03)00800-3] [PMID: 12767898]
[84]
Bai, Y. Protein folding pathways studied by pulsed- and native-state hydrogen exchange. Chem. Rev., 2006, 106(5), 1757-1768.
[http://dx.doi.org/10.1021/cr040432i] [PMID: 16683753]
[85]
Huang, J.R.; Craggs, T.D.; Christodoulou, J.; Jackson, S.E. Stable intermediate states and high energy barriers in the unfolding of GFP. J. Mol. Biol., 2007, 370(2), 356-371.
[http://dx.doi.org/10.1016/j.jmb.2007.04.039] [PMID: 17512539]
[86]
Huang, J.R.; Hsu, S.T.D.; Christodoulou, J.; Jackson, S.E. The extremely slow-exchanging core and acid-denatured state of green fluorescent protein. HFSP J., 2008, 2(6), 378-387.
[http://dx.doi.org/10.2976/1.2976660] [PMID: 19436495]
[87]
Hodsdon, M.E.; Frieden, C. Intestinal fatty acid binding protein: the folding mechanism as determined by NMR studies. Biochemistry, 2001, 40(3), 732-742.
[http://dx.doi.org/10.1021/bi001518i] [PMID: 11170390]
[88]
Mayo, S.L.; Baldwin, R.L. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science, 1993, 262(5135), 873-876.
[http://dx.doi.org/10.1126/science.8235609] [PMID: 8235609]
[89]
Schanda, P.; Brutscher, B.; Konrat, R.; Tollinger, M. Folding of the KIX domain: characterization of the equilibrium analog of a folding intermediate using 15N/13C relaxation dispersion and fast 1H/2H amide exchange NMR spectroscopy. J. Mol. Biol., 2008, 380(4), 726-741.
[PMID: 8234246]
[90]
Lobanov, M.Y.; Suvorina, M.Y.; Dovidchenko, N.V.; Sokolovskiy, I.V.; Surin, A.K.; Galzitskaya, O.V. A novel web server predicts amino acid residue protection against hydrogen-deuterium exchange. Bioinformatics, 2013, 29(11), 1375-1381.
[http://dx.doi.org/10.1093/bioinformatics/btt168] [PMID: 23620358]
[91]
Best, R.B.; Vendruscolo, M. Structural interpretation of hydrogen exchange protection factors in proteins: characterization of the native state fluctuations of CI2. Structure, 2006, 14(1), 97-106.
[http://dx.doi.org/10.1016/j.str.2005.09.012] [PMID: 16407069]
[92]
Tartaglia, G.G.; Cavalli, A.; Vendruscolo, M. Prediction of local structural stabilities of proteins from their amino acid sequences. Structure, 2007, 15(2), 139-143.
[http://dx.doi.org/10.1016/j.str.2006.12.007] [PMID: 17292832]
[93]
Skinner, J.J.; Lim, W.K.; Bédard, S.; Black, B.E.; Englander, S.W. Protein hydrogen exchange: testing current models. Protein Sci., 2012, 21(7), 987-995.
[http://dx.doi.org/10.1002/pro.2082] [PMID: 22544567]
[94]
Richa, T.; Sivaraman, T. CIntX: A software tool for calculating the intrinsic exchange rates of labile protons in proteins. J. Pharm. Sci. Res., 2012, 4(6), 1852-1858.
[95]
Richa, T.; Sivaraman, T.; One, G. OneG: a computational tool for predicting cryptic intermediates in the unfolding kinetics of proteins under native conditions. PLoS One, 2012, 7(3), e32465.
[http://dx.doi.org/10.1371/journal.pone.0032465] [PMID: 22412877]
[96]
Hilser, V.J.; Freire, E. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J. Mol. Biol., 1996, 262(5), 756-772.
[http://dx.doi.org/10.1006/jmbi.1996.0550] [PMID: 8876652]
[97]
Skinner, J.J.; Lim, W.K.; Bédard, S.; Black, B.E.; Englander, S.W. Protein dynamics viewed by hydrogen exchange. Protein Sci., 2012, 21(7), 996-1005.
[http://dx.doi.org/10.1002/pro.2081] [PMID: 22544544]
[98]
Richa, T.; Sivaraman, T. OneG-Vali: a computational tool for detecting, estimating and validating cryptic intermediates of proteins under native conditions. RSC Advances, 2014, 4(68), 36325-36335.
[http://dx.doi.org/10.1039/C4RA04642K]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy