Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Energy

Amine Structure-Foam Behavior Relationship and Its Predictive Foam Model Used for Amine Selection for Design of Amine-based Carbon Dioxide (CO2) Capture Process

Author(s): Pailin Muchan, Jessica Narku-Tetteh, Teeradet Supap and Raphael Idem*

Volume 1, Issue 1, 2021

Published on: 01 October, 2020

Page: [43 - 57] Pages: 15

DOI: 10.2174/2210298101999201002094601

Open Access Journals Promotions 2
Abstract

Background: The use of an amine solution to capture CO2 from flue gases is one of the methods applied commercially to clean up the exhaust gas stream of a power plant. One of the issues in this process is foaming which should be known in order to select a suitable amine for design.

Objectives: In this work, all possible types of amines used for CO2 capture, namely, alkanolamines, sterically hindered alkanolamines, multi-alkylamines and cyclic amines, were investigated to elucidate their chemical structure–foaming relationships.

Methods: Foam volume produced by each type of 2M amine solution with its equilibrium CO2 loading was measured at 40°C using 94 mL/min of N2 flow.

Results: Amines with a higher number or a longer chain of the alkyl group exhibited higher foam volume because of alkyl group’s ability to decrease the surface tension while increasing the viscosity of the solution. An increase in the number of hydroxyl or amino groups in the amine led to the reduction of foam formation due to the increase in surface tension and a decrease in viscosity of the solution. The predictive foam models for non-cyclic and cyclic-amines developed based on the structural variations, surface tension and viscosity of 29 amines predicted the foam volume very well with average absolute deviations (AAD) of 12.7 and 0.001%, respectively. The model accurately predicted the foam volume of BDEA, which was not used in model development with 13.3 %AD.

Conclusion: This foam model is, therefore, indispensable in selecting a suitable amine for an amine-based CO2 capture plant design and operation.

Keywords: Foam, CO2 absorption, amine structure, prediction model, mine-based CO2 and surface tension.

Graphical Abstract
[1]
Metz B, Davidson O, Bosch P, Dave R, Meyer L. Climate change 2007: Mitigation: contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change: Summary for policymakers and technical summary. Cambridge University Press 2007.
[2]
International Energy Agency (IEA). CO2 emission from fuel combustion 2019: Overview. OECD/IEA 2019.
[3]
Kamarudin KSN, Alias N. Adsorption performance of MCM-41 impregnated with amine for CO2 removal. Fuel Process Technol 2013; 106: 332-7.
[http://dx.doi.org/10.1016/j.fuproc.2012.08.017]
[4]
Song G, Zhu X, Chen R, Liao Q, Ding YD, Chen L. An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem Eng J 2016; 283: 175-83.
[http://dx.doi.org/10.1016/j.cej.2015.07.055]
[5]
Chowdhury FA, Yamada H, Higashi T, Matsuzaki Y, Kazama S. Synthesis and characterization of new absorbents for CO2 capture. Energy Procedia 2013; 37: 265-72.
[http://dx.doi.org/10.1016/j.egypro.2013.05.111]
[6]
Hammond GP, Spargo J. The prospects for coal-fired power plants with carbon capture and storage: a UK perspective. Energy Convers Manage 2014; 86: 476-89.
[http://dx.doi.org/10.1016/j.enconman.2014.05.030]
[7]
Thitakamol B, Veawab A. Foam behavior in CO2 absorption process using aqueous solutions of single and blended alkanolamines. Ind Eng Chem Res 2008; 47: 216-25.
[http://dx.doi.org/10.1021/ie070366l]
[8]
Gondule YA, Dhenge SD, Motghare K. Control of foam formation in the amine gas treating system. IARJSET 2017; 4(4): 183-8.
[9]
Liu Y, Fan W, Wang K, Wang J. Studies of CO2 absorption/regeneration performances of novel aqueous monoethanolamine (MEA)-based solutions. J Clean Prod 2016; 112: 4012-21.
[http://dx.doi.org/10.1016/j.jclepro.2015.08.116]
[10]
Yang H, Xu Z, Fan M, et al. Progress in carbon dioxide separation and capture: a review. J Environ Sci (China) 2008; 20(1): 14-27.
[http://dx.doi.org/10.1016/S1001-0742(08)60002-9 PMID: 18572517]
[11]
Cousins A, Wardhaugh LT, Feron PHM. A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Int J Greenh Gas Control 2011; 5: 605-19.
[http://dx.doi.org/10.1016/j.ijggc.2011.01.002]
[12]
Sema T, Naami A, Liang Z, Idem R, Tontiwachwuthikul P, Shi H. Analysis of reaction kinetics of CO2 absorption into a novel 4-diethylamino-2-butanol solvent. Chem Eng Sci 2012; 81: 251-9.
[http://dx.doi.org/10.1016/j.ces.2012.06.028]
[13]
Li L, Zhao N, Wei W, Sun Y. A review of research progress on CO2 capture storage and utilization in Chinese Academy of Sciences. Fuel 2013; 108: 112-30.
[http://dx.doi.org/10.1016/j.fuel.2011.08.022]
[14]
Idris Z, Eimer DA. Representation of CO2 absorption in sterically hindered amines. Energy Procedia 2014; 51: 247-52.
[http://dx.doi.org/10.1016/j.egypro.2014.07.028]
[15]
Liu H, Liang Z, Sema T, Rongwong W, Li C, Na Y. Kinetics of CO2 absorption into a novel 1-diethylamino-2-propanol solvent using stopped-flow technique. AIChE J 2014.
[http://dx.doi.org/10.1002/aic.14532]
[16]
Monteiro JGMS, Majeed H, Knuutila H, Svendsen HF. Kinetics of CO2 absorption in aqueous blends of N,N-diethylethanolamine (DEEA) and N-methyl-1,3-propane-diamine (MAPA). Chem Eng Sci 2015; 129: 145-55.
[http://dx.doi.org/10.1016/j.ces.2015.02.001]
[17]
Bernhardsen IM, Knuutila HK. A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa. Int J Greenh Gas Control 2017; 61: 27-48.
[http://dx.doi.org/10.1016/j.ijggc.2017.03.021]
[18]
Fatemi M, Shahraki BH. An experimental and theoretical analysis of foam formation in the sour gas sweetening process. IJOGST 2018; 7: 79-89.
[http://dx.doi.org/10.22050/IJOGST.2018.111128.1430]]
[19]
von Phul SA. Control of foaming in amine systems, D-foam incorporated, MPR services, Inc. TX, USA: Dickinson 2007.
[20]
Thomason J. Reclaim gas treating solvent. Hydrocarbon Process 1985; 64(4): 75-8.
[21]
Pauley CR. Face the facts about amine foaming. Chem Eng Prog 1991; 87(1): 33-8.
[22]
Stewart EJ, Lanning RA. Reduce amine plant solvent losses Part1. Hydrocarbon Process 1994; 73(5): 67-81.
[23]
Abdi MA, Golkar MM, Meisen A. Improve contaminant control in amine systems. Hydrocarbon Process 2001; 80(10): 102C-I.
[24]
Thitakamol B, Veawab A. Foaming model for CO2 absorption process using aqueous monoethanolamine solutions. Colloids Surf A Physicochem Eng Asp 2009; 349: 125-36.
[http://dx.doi.org/10.1016/j.colsurfa.2009.08.006]
[25]
MaCarthy J Trebble MA. An experimental invesitigation into the foaming tendency of diethanolamine gas sweetening solutions. Chem Eng Commun 1996; 144: 159-71.
[http://dx.doi.org/10.1080/00986449608936451]
[26]
Nwaoha C, Saiwana C, Supap T, Idem R, Tontiwachwuthikula P, Rongwong W. The carbon dioxide (CO2) capture performance of aqueous tri-solventblends containing 2-amino-2-methyl-1-propanol (AMP) andmethyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA). Int J Greenh Gas Control 2016; 53: 292-304.
[http://dx.doi.org/10.1016/j.ijggc.2016.08.012]
[27]
Luo X, Liu S, Gao H, Liao H, Tontiwachwuthikul P, Liang Z. An improved fast screening method for single and blended amine-based solvents for post-combustion CO2 capture. Separ Purif Tech 2016; 169: 279-88.
[http://dx.doi.org/10.1016/j.seppur.2016.06.018]
[28]
Khan FM, Krishnamoorthi V, Mahmud T. Modelling reactive absorption of CO2 in packed columns for post combustion carbon capture application. Chem Eng Res Des 2011; 89(9): 1600-8.
[http://dx.doi.org/10.1016/j.cherd.2010.09.020]
[29]
Nivaldo JT. Chemistry: A Molecular Approach. 4th ed. Boston: Pearson 2017.
[30]
Al Dhafeeri MA. Identifyng sources key to detailed troubleshooting of amine foaming. Oil Gas J 2007; 105(32): 56-67.
[31]
Walstra P. Principle of foam formation and stability. In: Wilson A, EdFoams: Physics, chemistry and structure. Berlin, Heidelberg: Springer-Verlag 1989; pp. 1-15.
[32]
Adamson AW, Gast AP. Physical chemistry of surfaces. 6th ed. New York: John Wiley and Sons 1997.
[33]
Horwitz W. Association of Official Analytical Chemists (AOAC). Menasha, WI: Methods George Banta Company 1975.
[34]
American Society for Testing and Materials (ASTM) ASTM D892-standard test method for foaming characteristics of lubricating oil. West Conshohocken, PA: ASTM 1999.
[35]
Eugénie SP, Fabrice D, Gérard C, Samir M. Effect of bulk viscosity and surface tension kinetics on structure of foam generated at the pilot scale. Food Hydrocoll 2014; 34: 104-11.
[http://dx.doi.org/10.1016/j.foodhyd.2012.12.001]
[36]
Kadoi K, Nakae H. Relationship between foam stabilization and physical properties of particles on aluminum foam production. Mater Trans 2011; 52(10): 1912-9.
[http://dx.doi.org/10.2320/matertrans.F-M2011817]
[37]
Eberhart JG. The Surface tension of binary liquid mixtures. J Phys Chem 1996; 70(4): 1183-6.
[http://dx.doi.org/10.1021/j100876a035]
[38]
Gooch JW. Surface tension and hansen solubility parameters. In: Gooch JW, Ed. Encyclopedic Dictionary of Polymers. New York: Springer 2011.
[39]
Just S, Sievert F, Thommes M, Breitkreutz J. Improved group contribution parameter set for the application of solubility parameters to melt extrusion. Eur J Pharm Biopharm 2013; 85(3 Pt B): 1191-9.
[http://dx.doi.org/10.1016/j.ejpb.2013.04.006 PMID: 23628829]
[40]
Zhang T, Hu J, Tang S. Densities and surface tensions of ionic liquids/sulfuric acid binary mixtures. Chin J Chem Eng 2018; 26: 1513-21.
[http://dx.doi.org/10.1016/j.cjche.2018.02.001]
[41]
Maham Y, Liew C-N, Mather AE. Viscosities and excess properties of aqueous solution of ethanolamines from 25 to 80 °C. J Solution Chem 2002; 31(9): 743-56.
[http://dx.doi.org/10.1023/A:1021133008053]
[42]
Holden TF, Aceto NC, Schoppet EF. Effects of viscosity and temperature on the foaming characteristics of concentrated whole milk Eastern Regional Research Laboratory: USDA, Philadelphia, Pennsylvania 1964; 359-64.
[http://dx.doi.org/10.3168/jds.S0022-0302(64)88666-5]
[43]
Zhang Y, Fruehan RJ. Effect of the bubble size and chemical reactions on slag foaming. Metal Trans B 1995; 26B: 803-12.
[http://dx.doi.org/10.1007/BF02651727]
[44]
Grayson JW, Evoy E, Song M, Chu Y, Maclean A, Nguyen A. The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic-water particles. Atmos Chem Phys 2017; 17: 850-8524.
[http://dx.doi.org/10.5194/acp-17-8509-2017]

© 2024 Bentham Science Publishers | Privacy Policy