Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Role of Forkhead Transcription Factors of the O Class (FoxO) in Development and Progression of Alzheimer’s Disease

Author(s): Shikha Goswami, Ozaifa Kareem, Ramesh K. Goyal, Sayed M. Mumtaz, Rajiv K. Tonk, Rahul Gupta and Faheem H. Pottoo*

Volume 19, Issue 9, 2020

Page: [709 - 721] Pages: 13

DOI: 10.2174/1871527319666201001105553

Price: $65

Open Access Journals Promotions 2
Abstract

In the Central Nervous System (CNS), a specific loss of focal neurons leads to mental and neurological disorders like dementia, Alzheimer’s Disease (AD), Huntington’s disease, Parkinson’s disease, etc. AD is a neurological degenerative disorder, which is progressive and irreversible in nature and is the widely recognized reason for dementia in the geriatric populace. It affects 10% of people above the age of 65 and is the fourth driving reason for death in the United States. Numerous evidence suggests that the neuronal compartment is not the only genesis of AD, but transcription factors also hold significant importance in the occurrence and advancement of the disease. It is the need of the time to find the novel molecular targets and new techniques for treating or slowing down the progression of neurological disorders, especially AD. In this article, we summarised a conceivable association between transcriptional factors and their defensive measures against neurodegeneration and AD. The mammalian forkhead transcription factors of the class O (FoxO) illustrate one of the potential objectives for the development of new methodologies against AD and other neurocognitive disorders. The presence of FoxO is easily noticeable in the “cognitive centers” of the brain, specifically in the amygdala, hippocampus, and the nucleus accumbens. FoxO proteins are the prominent and necessary factors in memory formation and cognitive functions. FoxO also assumes a pertinent role in the protection of multiple cells in the brain by controlling the involving mechanism of autophagy and apoptosis and also modulates the process of phosphorylation of the targeted protein, thus FoxO must be a putative target in the mitigation of AD. This review features the role of FoxO as an important biomarker and potential new targets for the treatment of AD.

Keywords: Alzheimer`s disease, neurological disorders, transcription factors, neurodegeneration, FoxO, biomarkers.

« Previous
Graphical Abstract
[1]
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469(7330): 323-35.
[http://dx.doi.org/10.1038/nature09782] [PMID: 21248839]
[2]
Sharma P, Sharma A, Fayaz F, Wakode S, Pottoo FH. Biological signatures of Alzheimer’s disease. Curr Top Med Chem 2020; 20(9): 770-81.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[3]
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009; 63(3): 287-303.
[4]
Ibrahim AM, Pottoo FH, Dahiya ES, Khan FA, Kumar JBS. Neuron-glia interactions: molecular basis of Alzheimer’s disease and applications of neuroproteomics. Eur J Neurosci 2020; 52(2): 2931-43.
[http://dx.doi.org/10.1111/ejn.14838] [PMID: 32463535]
[5]
Campion D, Dumanchin C, Hannequin D, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999; 65(3): 664-70.
[http://dx.doi.org/10.1086/302553] [PMID: 10441572]
[6]
Mendez MF. Early-onset Alzheimer’s disease: nonamnestic subtypes and type 2 AD. Arch Med Res 2012; 43(8): 677-85.
[http://dx.doi.org/10.1016/j.arcmed.2012.11.009] [PMID: 23178565]
[7]
Akhter Y, Nabi J, Hamid H, Tabassum N, Pottoo FH, Sharma A. Protein quality control in neurodegeneration and neuroprotection. Quality Control of Cellular Protein in Neurodegenerative Disorders 2020; 1-24.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch001]
[8]
Vargas DM, De Bastiani MA, Zimmer ER, Klamt F. Alzheimer’s disease master regulators analysis: search for potential molecular targets and drug repositioning candidates. Alzheimers Res Ther 2018; 10(1): 59.
[http://dx.doi.org/10.1186/s13195-018-0394-7] [PMID: 29935546]
[9]
Theuns J, Van Broeckhoven C. Transcriptional regulation of Alzheimer’s disease genes: implications for susceptibility. Hum Mol Genet 2000; 9(16): 2383-94.
[http://dx.doi.org/10.1093/hmg/9.16.2383] [PMID: 11005793]
[10]
Anand R, Gill K D, Mahdi A A. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 2014; 76(Pt A): 27-50.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.004]
[11]
Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991; 349(6311): 704-6.
[http://dx.doi.org/10.1038/349704a0] [PMID: 1671712]
[12]
Irizarry MC, Deng A, Lleo A, et al. Apolipoprotein E modulates gamma-secretase cleavage of the amyloid precursor protein. J Neurochem 2004; 90(5): 1132-43.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02581.x] [PMID: 15312168]
[13]
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921-3.
[http://dx.doi.org/10.1126/science.8346443]
[14]
Corder EH, Saunders AM, Risch NJ, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7(2): 180-4.
[http://dx.doi.org/10.1038/ng0694-180] [PMID: 7920638]
[15]
Hiltunen M, Lu A, Thomas AV, et al. Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion. J Biol Chem 2006; 281(43): 32240-53.
[http://dx.doi.org/10.1074/jbc.M603106200] [PMID: 16945923]
[16]
Nigar S, Pottoo F, Tabassum N, Verma S, Javed M. Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Med Pharm Sci 2016; 10(1): 1-9.
[http://dx.doi.org/10.9734/JAMPS/2016/24441]
[17]
Dal Prà I, Chiarini A, Gui L, et al. Do astrocytes collaborate with neurons in spreading the “infectious” aβ and Tau drivers of Alzheimer’s disease? Neuroscientist 2015; 21(1): 9-29.
[http://dx.doi.org/10.1177/1073858414529828] [PMID: 24740577]
[18]
Pandey M, Nabi J, Tabassum N, Pottoo FH, Khatik R, Ahmad N. Molecular chaperones in neurodegeneration: mechanisms of regulation in cellular proteostasis. Quality Control of Cellular Protein in Neurodegenerative 2020; 354-79.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch014]
[19]
Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 1997; 18(4): 351-7.
[http://dx.doi.org/10.1016/S0197-4580(97)00056-0] [PMID: 9330961]
[20]
Pandey M, Saleem S, Nautiyal H, Pottoo FH, Javed MN. PINK1/Parkin in neurodegenerative disorders: crosstalk between mitochondrial stress and neurodegeneration. Quality Control of Cellular Protein in Neurodegenerative Disorders 2020; 282-301.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch011]
[21]
Selkoe DJ. Early network dysfunction in Alzheimer’s disease. Science 2019; 365(6453): 540-1.
[22]
Gu L, Guo Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J Neurochem 2013; 126(3): 305-11.
[http://dx.doi.org/10.1111/jnc.12202] [PMID: 23406382]
[23]
Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A β 42(43) and A β 40 in senile plaques with end-specific A β monoclonals: evidence that an initially deposited species is A β 42(43). Neuron 1994; 13(1): 45-53.
[http://dx.doi.org/10.1016/0896-6273(94)90458-8] [PMID: 8043280]
[24]
Andreasen N, Vanmechelen E, Vanderstichele H, Davidsson P, Blennow K. Cerebrospinal fluid levels of total-tau, phospho-tau and Abeta42 predicts development of Alzheimer’s disease in patients with mild cognitive impairment. Acta Neurol Scand 2003; 107(s179): 47-51.
[http://dx.doi.org/10.1034/j.1600-0404.107.s179.9.x]
[25]
Bentahir M, Nyabi O, Verhamme J, et al. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 2006; 96(3): 732-42.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03578.x] [PMID: 16405513]
[26]
De Strooper B. Alzheimer’s disease. Closing in on γ-secretase. Nature 2000; 405(6787): 627-628, 629.
[http://dx.doi.org/10.1038/35015193] [PMID: 10864307]
[27]
Seubert P, Vigo-Pelfrey C, Esch F, et al. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 1992; 359(6393): 325-7.
[http://dx.doi.org/10.1038/359325a0] [PMID: 1406936]
[28]
Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1991; 1(3): 213-6.
[http://dx.doi.org/10.1111/j.1750-3639.1991.tb00661.x] [PMID: 1669710]
[29]
Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician. Neurologist 2012; 18(6): 356-63.
[http://dx.doi.org/10.1097/NRL.0b013e31826a998d] [PMID: 23114667]
[30]
Sabri O, Seibyl J, Rowe C, Barthel H. Beta-amyloid imaging with florbetaben. Clin Transl Imaging 2015; 3(1): 13-26.
[http://dx.doi.org/10.1007/s40336-015-0102-6] [PMID: 25741488]
[31]
Maies K. “FoxO Proteins in the Nervous System,” Analytical cell Patho. 2015; pp. pp. 1-15.
[32]
Hampel H, Bürger K, Teipel SJ, Bokde ALW, Zetterberg H, Blennow K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 2008; 4(1): 38-48.
[http://dx.doi.org/10.1016/j.jalz.2007.08.006] [PMID: 18631949]
[33]
Koola M M, Nikiforuk A, Pillai A, Parsaik A K. Galantamine-memantine combination superior to donepezil-memantine combination in Alzheimer’s disease: critical dissection with an emphasis on kynurenic acid and mismatch negativity J Geriatr care Res 2018; 5(2): 57-67.
[34]
Lao K, Ji N, Zhang X, Qiao W, Tang Z, Gou X. Drug development for Alzheimer’s disease.: review J Drug Target 2019; 27(2): 164-73.
[http://dx.doi.org/10.1080/1061186X.2018.1474361] [PMID: 29732929]
[35]
Dong H, Li J, Huang L, et al. Serum microrna profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease. Dis Markers 2015; 2015625659
[http://dx.doi.org/10.1155/2015/625659] [PMID: 26078483]
[36]
Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer’s disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002; 68(3): 209-45.
[http://dx.doi.org/10.1016/S0301-0082(02)00079-5] [PMID: 12450488]
[37]
Bateman RJ, Xiong C, Benzinger TL, et al. Dominantly inherited Alzheimer network.clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[38]
Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT. Propagation of tau pathology in Alzheimer’s disease: identification of novel therapeutic targets. Alzheimers Res Ther 2013; 5(5): 49.
[http://dx.doi.org/10.1186/alzrt214] [PMID: 24152385]
[39]
Salloway S, Sperling R, Fox NC, et al. Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 322-33.
[http://dx.doi.org/10.1056/NEJMoa1304839] [PMID: 24450891]
[40]
Doody RS, Thomas RG, Farlow M, et al. Alzheimer’s Disease Cooperative Study Steering Committee; Solanezumab Study Group.Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 311-21.
[http://dx.doi.org/10.1056/NEJMoa1312889] [PMID: 24450890]
[41]
Kennedy ME, Stamford AW. Chen1 X, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS -amyloid in animal models and in Alzheimers disease patients. Sci Transl Med 2016; 8(363)363ra150
[http://dx.doi.org/10.1126/scitranslmed.aad9704]
[42]
Perry D, Sperling R, Katz R, et al. Building a roadmap for developing combination therapies for Alzheimer’s disease. Expert Rev Neurother 2015; 15(3): 327-33.
[http://dx.doi.org/10.1586/14737175.2015.996551] [PMID: 25708309]
[43]
Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 2015; 21(6): 394-402.
[http://dx.doi.org/10.1016/j.molmed.2015.03.003] [PMID: 25846560]
[44]
Rosenmann H. Immunotherapy for targeting tau pathology in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2013; 10(3): 217-28.
[http://dx.doi.org/10.2174/1567205011310030001] [PMID: 23534533]
[45]
Buzsáki G, Wang X-J. Mechanisms of gamma oscillations. Annu Rev Neurosci 2012; 35(1): 203-25.
[http://dx.doi.org/10.1146/annurev-neuro-062111-150444] [PMID: 22443509]
[46]
Panza F, Solfrizzi V, Seripa D, et al. Tau-based therapeutics for Alzheimer’s disease: active and passive immunotherapy. Immunotherapy 2016; 8(9): 1119-34.
[http://dx.doi.org/10.2217/imt-2016-0019] [PMID: 27485083]
[47]
Ramirez-Bermudez J. Alzheimer’s disease: critical notes on the history of a medical concept. Arch Med Res 2012; 43(8): 595-9.
[http://dx.doi.org/10.1016/j.arcmed.2012.11.008] [PMID: 23178566]
[48]
Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 2014; 6(9): 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[49]
Ertekin-Taner N. Gene expression endophenotypes: a novel approach for gene discovery in Alzheimer’s disease. Mol Neurodegener 2011; 6(1): 31.
[http://dx.doi.org/10.1186/1750-1326-6-31] [PMID: 21569597]
[50]
Eckert A, Schulz KL, Rhein V, Götz J. Convergence of amyloid-beta and tau pathologies on mitochondria in vivo . Mol Neurobiol 2010; 41(2-3): 107-14.
[http://dx.doi.org/10.1007/s12035-010-8109-5] [PMID: 20217279]
[51]
Theuns J, Brouwers N, Engelborghs S, et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 2006; 78(6): 936-46.
[http://dx.doi.org/10.1086/504044] [PMID: 16685645]
[52]
Lv H, Jia L, Jia J. Promoter polymorphisms which modulate APP expression may increase susceptibility to Alzheimer’s disease. Neurobiol Aging 2008; 29(2): 194-202.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.10.001] [PMID: 17112637]
[53]
De Strooper B, Saftig P, Craessaerts K, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998; 391(6665): 387-90.
[http://dx.doi.org/10.1038/34910] [PMID: 9450754]
[54]
Das HK. Transcriptional regulation of the presenilin-1 gene: implication in Alzheimer’s disease. Front Biosci 2008; 13(13): 822-32.
[http://dx.doi.org/10.2741/2723] [PMID: 17981591]
[55]
Chen X-F, Zhang YW, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer’s disease. Mol Brain 2013; 6(1): 44.
[http://dx.doi.org/10.1186/1756-6606-6-44] [PMID: 24144318]
[56]
Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013; 368(2): 107-16.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[57]
Turnbull IR, Gilfillan S, Cella M, et al. Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 2006; 177(6): 3520-4.
[http://dx.doi.org/10.4049/jimmunol.177.6.3520] [PMID: 16951310]
[58]
Llorens-Marítin M, Jurado J, Hernández F, Ávila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014; 77169337
[http://dx.doi.org/10.3389/fnmol.2014.00046]
[59]
Milano J, McKay J, Dagenais C, et al. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 2004; 82(1): 341-58.
[http://dx.doi.org/10.1093/toxsci/kfh254] [PMID: 15319485]
[60]
Leroy K, Brion J-P. Developmental expression and localization of glycogen synthase kinase-3β in rat brain. J Chem Neuroanat 1999; 16(4): 279-93.
[http://dx.doi.org/10.1016/S0891-0618(99)00012-5] [PMID: 10450875]
[61]
Frame S, Cohen P, Biondi RM. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 2001; 7(6): 1321-7.
[http://dx.doi.org/10.1016/S1097-2765(01)00253-2] [PMID: 11430833]
[62]
Dudek H. Regulation of neuronal survival by the serine-threonine protein kinase akt. Science 1997; 25(5300): 661-5.
[http://dx.doi.org/10.1126/science.275.5300.661]
[63]
Clark KL, Halay ED, Lai E, Burley SK. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 1993; 364(6436): 412-20.
[http://dx.doi.org/10.1038/364412a0] [PMID: 8332212]
[64]
Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14(5): 219-27.
[http://dx.doi.org/10.1016/j.molmed.2008.03.002] [PMID: 18403263]
[65]
Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci 2007; 120(Pt 15): 2479-87.
[http://dx.doi.org/10.1242/jcs.001222] [PMID: 17646672]
[66]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[http://dx.doi.org/10.1517/14728222.2012.719499] [PMID: 22924465]
[67]
Park Y, Nnamani MC, Maziarz J, Wagner GP. Cis-regulatory evolution of forkhead box O1 (FOXO1), a terminal selector gene for decidual stromal cell identity. Mol Biol Evol 2016; 33(12): 3161-9.
[http://dx.doi.org/10.1093/molbev/msw193] [PMID: 27634871]
[68]
Maiese K, Chong ZZ, Hou J, Shang YC. The “O” class: crafting clinical care with FoxO transcription factors. Adv Exp Med Biol 2009; 665: 242-60.
[http://dx.doi.org/10.1007/978-1-4419-1599-3_18] [PMID: 20429429]
[69]
van der Heide LP, Jacobs FMJ, Burbach JPH, Hoekman MFM, Smidt MP. FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochem J 2005; 391(Pt 3): 623-9.
[http://dx.doi.org/10.1042/BJ20050525] [PMID: 15987244]
[70]
Salih DAM, Rashid AJ, Colas D, et al. FoxO6 regulates memory consolidation and synaptic function. Genes Dev 2012; 26(24): 2780-801.
[http://dx.doi.org/10.1101/gad.208926.112] [PMID: 23222102]
[71]
Hou J, Wang S, Shang YC, Chong ZZ, Maiese K. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res 2011; 8(3): 220-35.
[http://dx.doi.org/10.2174/156720211796558069] [PMID: 21722091]
[72]
Peng S, Zhao S, Yan F, et al. HDAC2 selectively regulates FOXO3a-mediated gene transcription during oxidative stress-induced neuronal cell death. J Neurosci 2015; 35(3): 1250-9.
[http://dx.doi.org/10.1523/JNEUROSCI.2444-14.2015] [PMID: 25609639]
[73]
Chamorro ME, Wenker SD, Vota DM, Vittori DC, Nesse AB. Signaling pathways of cell proliferation are involved in the differential effect of erythropoietin and its carbamylated derivative. Biochim Biophys Acta 2013; 1833(8): 1960-8.
[http://dx.doi.org/10.1016/j.bbamcr.2013.04.006] [PMID: 23602701]
[74]
Zeldich E, Chen CD, Colvin TA, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem 2014; 289(35): 24700-15.
[http://dx.doi.org/10.1074/jbc.M114.567321] [PMID: 25037225]
[75]
Rong Z, Pan R, Xu Y, Zhang C, Cao Y, Liu D. Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat. Neuroscience 2013; 255: 292-9.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.030] [PMID: 24076349]
[76]
Neri C. Role and therapeutic potential of the pro-longevity factor FOXO and its regulators in neurodegenerative disease. Front Pharmacol 2012; 3: 15.
[77]
Hoekman MFM, Jacobs FMJ, Smidt MP, Burbach JPH. Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns 2006; 6(2): 134-40.
[http://dx.doi.org/10.1016/j.modgep.2005.07.003] [PMID: 16326148]
[78]
Glenner GG, Wong CW, Quaranta V, Eanes ED. The amyloid deposits in Alzheimer’s disease: their nature and pathogenesis. Appl Pathol 1984; 2(6): 357-69.
[PMID: 6242724]
[79]
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 2014; 76(Pt A): 27-50.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.004] [PMID: 23891641]
[80]
Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 2001; 20(1-2): 27-39.
[http://dx.doi.org/10.1093/emboj/20.1.27] [PMID: 11226152]
[81]
Bullock BP, Habener JF. Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge. Biochemistry 1998; 37(11): 3795-809.
[http://dx.doi.org/10.1021/bi970982t] [PMID: 9521699]
[82]
Bijur GN, Jope RS. Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 β. J Biol Chem 2001; 276(40): 37436-42.
[http://dx.doi.org/10.1074/jbc.M105725200] [PMID: 11495916]
[83]
Qian W, Shi J, Yin X, et al. PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J Alzheimers Dis 2010; 19(4): 1221-9.
[http://dx.doi.org/10.3233/JAD-2010-1317] [PMID: 20308788]
[84]
Alikhani M, Roy S, Graves DT. FOXO1 plays an essential role in apoptosis of retinal pericytes. Mol Vis 2010; 16: 408-15.
[PMID: 20300563]
[85]
Alikhani M, Maclellan CM, Raptis M, Vora S, Trackman PC, Graves DT. Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor. Am J Physiol Cell Physiol 2007; 292(2): C850-6.
[http://dx.doi.org/10.1152/ajpcell.00356.2006] [PMID: 17005604]
[86]
Speckmann B, Walter PL, Alili L, et al. Selenoprotein P expression is controlled through interaction of the coactivator PGC-1alpha with FoxO1a and hepatocyte nuclear factor 4alpha transcription factors. Hepatology 2008; 48(6): 1998-2006.
[http://dx.doi.org/10.1002/hep.22526] [PMID: 18972406]
[87]
Lu Q, Zhai Y, Cheng Q, et al. The Akt-FoxO3a-manganese superoxide dismutase pathway is involved in the regulation of oxidative stress in diabetic nephropathy. Exp Physiol 2013; 98(4): 934-45.
[http://dx.doi.org/10.1113/expphysiol.2012.068361] [PMID: 23159718]
[88]
Smith WW, Norton DD, Gorospe M, et al. Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. J Cell Biol 2005; 169(2): 331-9.
[http://dx.doi.org/10.1083/jcb.200410041] [PMID: 15837797]
[89]
Shang YC, Chong ZZ, Hou J, Maiese K. The forkhead transcription factor FOXO3a controls microglial inflammatory activation and eventual apoptotic injury through Caspase 3. Curr Neurovasc Res 2009; 6(1): 20-31.
[http://dx.doi.org/10.2174/156720209787466064]]
[90]
Chuang PY, Dai Y, Liu R, et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One 2011; 6(8)e23566
[http://dx.doi.org/10.1371/journal.pone.0023566] [PMID: 21858169]
[91]
Li H, Liang J, Castrillon DH, DePinho RA, Olson EN, Liu Z-P. FoxO4 regulates tumor necrosis factor alpha-directed smooth muscle cell migration by activating matrix metalloproteinase 9 gene transcription. Mol Cell Biol 2007; 27(7): 2676-86.
[http://dx.doi.org/10.1128/MCB.01748-06] [PMID: 17242183]
[92]
Yang H, Zhao R, Yang H-Y, Lee M-H. Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and suppresses HER2-mediated tumorigenicity. Oncogene 2005; 24(11): 1924-35.
[http://dx.doi.org/10.1038/sj.onc.1208352] [PMID: 15688030]
[93]
de la Torre-Ubieta L, Gaudillière B, Yang Y, et al. A FOXO-Pak1 transcriptional pathway controls neuronal polarity. Genes Dev 2010; 24(8): 799-813.
[http://dx.doi.org/10.1101/gad.1880510] [PMID: 20395366]
[94]
Kim DH, Perdomo G, Zhang T, et al. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 2011; 60(11): 2763-74.
[http://dx.doi.org/10.2337/db11-0548] [PMID: 21940782]
[95]
Hong M, Lee VM-Y. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 1997; 272(31): 19547-53.
[http://dx.doi.org/10.1074/jbc.272.31.19547] [PMID: 9235959]
[96]
Hu W, Yang Z, Yang W, et al. Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: a panoramic view. Prog Neurobiol 2019; 181101645
[http://dx.doi.org/10.1016/j.pneurobio.2019.101645] [PMID: 31229499]
[97]
Hong YK, Lee S, Park SH, et al. Inhibition of JNK/dFOXO pathway and caspases rescues neurological impairments in Drosophila Alzheimer’s disease model. Biochem Biophys Res Commun 2012; 419(1): 49-53.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.122] [PMID: 22326868]
[98]
Perez FP, Bose D, Maloney B, Nho K, Shah K, Lahiri DK. Late-onset Alzheimer’s disease, heating up and foxed by several proteins: pathomolecular effects of the aging process. J Alzheimers Dis 2014; 40(1): 1-17.
[http://dx.doi.org/10.3233/JAD-131544] [PMID: 24326519]
[99]
Wang H, Quirion R, Little PJ, et al. Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology 2015; 99: 527-37.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.020] [PMID: 26279492]
[100]
Akhter R, Sanphui P, Biswas SC. The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem 2014; 289(15): 10812-22.
[http://dx.doi.org/10.1074/jbc.M113.519355] [PMID: 24567336]
[101]
Saleem S, Biswas SC. Tribbles pseudokinase 3 induces both apoptosis and autophagy in amyloid-β-induced neuronal death. J Biol Chem 2017; 292(7): 2571-85.
[http://dx.doi.org/10.1074/jbc.M116.744730] [PMID: 28011637]
[102]
Fluteau A, Ince PG, Minett T, et al. MRC Cognitive Function Ageing Neuropathology Study Group. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain. Neurosci Lett 2015; 609: 11-7.
[http://dx.doi.org/10.1016/j.neulet.2015.10.001] [PMID: 26455863]
[103]
Kuang X, Chen YS, Wang LF, et al. Klotho upregulation contributes to the neuroprotection of ligustilide in an Alzheimer’s disease mouse model. Neurobiol Aging 2014; 35(1): 169-78.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.07.019] [PMID: 23973442]
[104]
Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 2003; 40(2): 427-46.
[http://dx.doi.org/10.1016/S0896-6273(03)00606-8] [PMID: 14556719]
[105]
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 2008; 118(6): 2190-9.
[http://dx.doi.org/10.1172/JCI33585] [PMID: 18497889]
[106]
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[107]
Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 2010; 143(5): 813-25.
[http://dx.doi.org/10.1016/j.cell.2010.10.007] [PMID: 21111239]
[108]
Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem 2009; 284(41): 28319-31.
[http://dx.doi.org/10.1074/jbc.M109.024406] [PMID: 19696026]
[109]
Webb AE, Brunet A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci 2014; 39(4): 159-69.
[PMID: 24630600]
[110]
Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, Ferrington DA. Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 2004; 421(1): 67-76.
[PMID: 14678786]
[111]
Vilchez D, Boyer L, Morantte I, et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 2012; 489(7415): 304-8.
[http://dx.doi.org/10.1038/nature11468] [PMID: 22972301]
[112]
Kaestner KH, Kno W, Martı DE. Unified nomenclature for the winged helix: forkhead transcription factors. Genes Dev 2000; 14(2): 142-6.
[113]
Van Der Heide LP, Hoekman FM, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380(2): 297-309.
[114]
Nakae J, Park B-C, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem 1999; 274(23): 15982-5.
[http://dx.doi.org/10.1074/jbc.274.23.15982] [PMID: 10347145]
[115]
Rena G, Woods YL, Prescott AR, et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 2002; 21(9): 2263-71.
[http://dx.doi.org/10.1093/emboj/21.9.2263] [PMID: 11980723]
[116]
Rena G, Prescott AR, Guo S, Cohen P, Unterman TG. Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem J 2001; 354(Pt 3): 605-12.
[http://dx.doi.org/10.1042/bj3540605] [PMID: 11237865]
[117]
Huang H, Regan KM, Wang F, et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 2005; 102(5): 1649-54.
[http://dx.doi.org/10.1073/pnas.0406789102] [PMID: 15668399]
[118]
Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA 2003; 100(20): 11285-90.
[http://dx.doi.org/10.1073/pnas.1934283100] [PMID: 13679577]
[119]
Calabuig-Navarro V, Yamauchi J, Lee S, et al. Forkhead box O6 (FoxO6) depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice. J Biol Chem 2015; 290(25): 15581-94.
[http://dx.doi.org/10.1074/jbc.M115.650994] [PMID: 25944898]
[120]
Greer EL, Brunet A. FOXO transcription factors in ageing and cancer. Acta Physiol (Oxf) 2008; 192(1): 19-28.
[http://dx.doi.org/10.1111/j.1748-1716.2007.01780.x] [PMID: 18171426]
[121]
Schinner S, Scherbaum WA, Bornstein SR, Barthel A. Molecular mechanisms of insulin resistance. Diabet Med 2005; 22(6): 674-82.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01566.x] [PMID: 15910615]
[122]
Bellinger FP, He QP, Bellinger MT, et al. Association of selenoprotein p with Alzheimer’s pathology in human cortex. J Alzheimers Dis 2008; 15(3): 465-72.
[http://dx.doi.org/10.3233/JAD-2008-15313] [PMID: 18997300]
[123]
Sompol P, Ittarat W, Tangpong J, et al. A neuronal model of Alzheimer’s disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience 2008; 153(1): 120-30.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.044] [PMID: 18353561]
[124]
Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004; 29(2): 95-102.
[http://dx.doi.org/10.1016/j.tibs.2003.12.004] [PMID: 15102436]
[125]
Liang M-H, Chuang D-M. Differential roles of glycogen synthase kinase-3 isoforms in the regulation of transcriptional activation. J Biol Chem 2006; 281(41): 30479-84.
[http://dx.doi.org/10.1074/jbc.M607468200] [PMID: 16912034]
[126]
Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for Tau Protein Kinase (TPK) I/glycogen synthase kinase-3 β and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol 1996; 92(3): 232-41.
[http://dx.doi.org/10.1007/s004010050513] [PMID: 8870824]
[127]
Ishizawa T, Sahara N, Ishiguro K, et al. Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am J Pathol 2003; 163(3): 1057-67.
[http://dx.doi.org/10.1016/S0002-9440(10)63465-7] [PMID: 12937146]
[128]
Phiel CJ, Wilson CA, Lee VM-Y, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 2003; 423(6938): 435-9.
[http://dx.doi.org/10.1038/nature01640] [PMID: 12761548]
[129]
Kareem O. Ghulam Nabi Bader, Faheem Hyder Pottoo, Mohd Amir, Md. Abul Barkat, Mukesh Pandey. Beclin 1 complex and neurodegenerative disorders. Quality Control of Cellular Protein in Neurodegenerative Disorders 2020; 236-60.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch009]
[130]
Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002; 9(3): 459-70.
[http://dx.doi.org/10.1016/S1097-2765(02)00482-3] [PMID: 11931755]
[131]
Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 2004; 165(2): 523-31.
[http://dx.doi.org/10.1016/S0002-9440(10)63317-2] [PMID: 15277226]
[132]
Rissman RA, Poon WW, Blurton-Jones M, et al. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 2004; 114(1): 121-30.
[http://dx.doi.org/10.1172/JCI200420640] [PMID: 15232619]
[133]
Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003; 39(3): 409-21.
[PMID: 12895417]
[134]
Buteau J, Accili D. Regulation of pancreatic beta-cell function by the forkhead protein FoxO1. Diabetes Obes Metab 2007; 9(s2)(Suppl. 2): 140-6.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00782.x] [PMID: 17919188]
[135]
Martinez SC, Tanabe K, Cras-Méneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA. Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes 2008; 57(4): 846-59.
[http://dx.doi.org/10.2337/db07-0595] [PMID: 18174526]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy