[3]
I. Guyon, and A. Elisseeff, "An introduction to vsariable and feature selection", J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar 2003.
[5]
SR, "An approach to preprocess data in the diagnosis of Alzheimer’s disease", Proceedings of 2014 International Conference on Cloud Computing and Internet of Things, 2014pp. 135-139
[10]
M.M. Dessouky, M.A. Elrashidy, and H.M. Abdelkader, "Selecting and extracting effective features for automated diagnosis of Alzheimer’s disease", Int. J. Comput. Appl., vol. 81, no. 4, pp. 17-24, 2013.
[12]
S.K. Aruna, and S. Chitra, "Machine learning approach for identifying dementia from MRI Images. World academy of science, engineering and technology, international journal of computer, electrical, automation", Cont. Informat. Eng., vol. 9, no. 3, pp. 881-888, 2016.
[13]
J.A. Williams, A. Weakley, D.J. Cook, and M. Schmitter-Edgecombe, Machine learning techniques for diagnostic differentiation of mild cognitive impairment and dementiaWorkshops at the twenty-seventh AAAI conference on artificial intelligence, 2013, pp. 71-76.
[18]
C. Geetha, and D. Pugazhenthi, "Classification of alzheimer's disease subjects from MRI using fuzzy neural network with feature extraction using discrete wavelet transform", Biomed. Res. (Aligarh), 2018.
[21]
D. Bansal, K. Khanna, R. Chhikara, R.K. Dua, and R. Malhotra, A study on dementia using machine learning techniquesProceedings of the 2nd International Conference on Communication and Computing Systems (ICCCS 2018), Gurgaon, India, 2019, p. 414.
[23]
T. Sergios, Feature Selectionin Pattern Recognition, Fourth Edition Academic Press, 2009, p. Ch. 5, 261-289-110.
[24]
E.L. Lehmann, and H.J. D’Abrera, "Nonparametrics: statistical methods based on ranks", J. Am. Stat. Assoc., vol. 73, no. 364, p. 892, 1978.
[26]
M. de Figueiredo, C. Cordella, D. J. R. Bouveresse, X. Archer, J. M. Bégué, and D. Rutledge, The area under the ROC curve as a variable selection criterion for multiclass classification problems, 2018.
[28]
K. Kira, and L.A. Rendell, The feature selection problem: Traditional methods and a new algorithmIn Aaai, pp. 129-134, 1992.
[29]
A. Bhattacharyya, "On a measure of divergence between two multinomial populations", Sankhya, pp. 401-406, 1946.
[30]
K. Selvakuberan, M. Indradevi, and R. Rajaram, "Combined Feature Selection and classification–A novel approach for the categorization of web pages", J. Informat. Comput. Sci., vol. 3, no. 2, pp. 083-089, 2008.
[31]
ClassifierAttributeEval, http://weka.sourceforge.net/doc.packages/classifierBasedAttributeSelection/weka/attributeSelection/Classifier-AttributeEval.html
[32]
S. Gnanambal, M. Thangaraj, V.T. Meenatchi, and V. Gayathri, "Classification Algorithms with Attribute Selection: An evaluation study using WEKA", Int. J. Adv. Netw. Appl., vol. 9, no. 6, pp. 3640-3644, 2018.
[33]
OneRAttributeEval, http://weka.sourceforge.net/doc.dev/weka/attributeSelection/OneRAttributeEval.html
[34]
S.B. Kotsiantis, I. Zaharakis, and P. Pintelas, "Supervised machine learning: A review of classification techniques", Emerg. Art. Intell. Appl. Comput. Eng., vol. 160, no. 1, pp. 3-24, 2007.
[36]
T. Mitchell, Machine Learning., MacGraw-Hill Companies. Inc.: Boston, 1997.
[38]
ADNI, Alzheimer’s Disease Neuroimaging Initiative..http://adni.loni.usc.edu/
[44]
A.A. Farid, G. Selim, and H. Khater, Applying Artificial Intelligence Techniques for Prediction of Neurodegenerative Disorders: A Comparative Case-Study on Clinical Tests and Neuroimaging Tests with Alzheimer’s Disease., Preprints, 2020.