Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Substituted 6,7-dimethoxy-5-oxo-2,3,5,9b-tetrahydrothiazolo[2,3-a]isoindole- 3-1,1-dioxide Derivatives with Antimicrobial Activity and Docking Assisted Prediction of the Mechanism of their Antibacterial and Antifungal Properties

Author(s): Athina Geronikaki*, Victor Kartsev, Phaedra Eleftheriou, Anthi Petrou, Jasmina Glamočlija, Anna Ciric and Marina Soković

Volume 20, Issue 29, 2020

Page: [2681 - 2691] Pages: 11

DOI: 10.2174/1568026620666200922114735

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Although a great number of the targets of antimicrobial therapy have been achieved, it remains among the first fields of pharmaceutical research, mainly because of the development of resistant strains. Docking analysis may be an important tool in the research for the development of more effective agents against specific drug targets or multi-target agents 1-3.

Methods: In the present study, based on docking analysis, ten tetrahydrothiazolo[2,3-a]isoindole derivatives were chosen for the evaluation of the antimicrobial activity.

Results: All compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species being, in some cases, more potent than ampicillin and streptomycin against all species. The most sensitive bacteria appeared to be S. aureus and En. Cloacae, while M. flavus, E. coli and P. aeruginosa were the most resistant ones. The compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited good antifungal activity better than reference drugs bifonazole (1.4 – 41 folds) and ketoconazole (1.1 – 406 folds) against all fungal species. In order to elucidate the mechanism of action, docking studies on different antimicrobial targets were performed.

Conclusion: According to docking analysis, the antifungal activity can be explained by the inhibition of the CYP51 enzyme for most compounds with a better correlation of the results obtained for the P.v.c. strain (linear regression between estimated binding Energy and log(1/MIC) with R 2 =0.867 and p=0.000091 or R 2 = 0.924, p= 0.000036, when compound 3 is excluded.

Keywords: Antimicrobial activity, Molecular docking studies, Strains, Drug, Antifungul activity, E. coli.

Graphical Abstract
[1]
Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; Huang, J.; Jones, E.; Jones, J.; Brown, K.K.; Lewis, C.J.; May, E.W.; Saunders, M.R.; Singh, O.; Spitzfaden, C.E.; Shen, C.; Shillings, A.; Theobald, A.J.; Wohlkonig, A.; Pearson, N.D.; Gwynn, M.N. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010, 466(7309), 935-940.
[http://dx.doi.org/10.1038/nature09197] [PMID: 20686482]
[2]
Phillips, J.W.; Goetz, M.A.; Smith, S.K.; Zink, D.L.; Polishook, J.; Onishi, R.; Salowe, S.; Wiltsie, J.; Allocco, J.; Sigmund, J.; Dorso, K.; Lee, S.; Skwish, S.; de la Cruz, M.; Martín, J.; Vicente, F.; Genilloud, O.; Lu, J.; Painter, R.E.; Young, K.; Overbye, K.; Donald, R.G.; Singh, S.B. Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem. Biol., 2011, 18(8), 955-965.
[http://dx.doi.org/10.1016/j.chembiol.2011.06.011] [PMID: 21867911]
[3]
Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science, 2009, 325(5944), 1089-1093.
[http://dx.doi.org/10.1126/science.1176667] [PMID: 19713519]
[4]
Maillard, L.T.; Bertout, S.; Quinonéro, O.; Akalin, G.; Turan-Zitouni, G.; Fulcrand, P.; Demirci, F.; Martinez, J.; Masurier, N. Synthesis and anti-Candida activity of novel 2-hydrazino-1,3-thiazole derivatives. Bioorg. Med. Chem. Lett., 2013, 23(6), 1803-1807.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.039] [PMID: 23403080]
[5]
Varshney, V.; Mishra, N.N.; Shukla, P.K.; Sahu, D.P. Synthesis and antibacterial evaluation of isoxazolinyl oxazolidinones: Search for potent antibacterial. Bioorg. Med. Chem. Lett., 2009, 19(13), 3573-3576.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.133] [PMID: 19447611]
[6]
Aragade, P.; Maddi, V.; Khode, S.; Palkar, M.; Ronad, P.; Mamledesai, S.; Satyanarayana, D. Synthesis and antibacterial activity of a new series of 3-[3-(substituted phenyl)-1-isonicotinoyl-1H-pyrazol-5-yl]-2H-chromen-2-one derivatives. Arch. Pharm. (Weinheim), 2009, 342(6), 361-366.
[http://dx.doi.org/10.1002/ardp.200800156] [PMID: 19475595]
[7]
Haroun, M.; Tratrat, C.; Tsolaki, E.; Geronikaki, A. Thiazole-based thiazolidinones as potent antimicrobial agents. design, synthesis and biological evaluation. Comb. Chem. High Throughput Screen., 2016, 19(1), 51-57.
[http://dx.doi.org/10.2174/1386207319666151203002348] [PMID: 26632442]
[8]
Omar, K.; Geronikaki, A.; Zoumpoulakis, P.; Camoutsis, C.; Soković, M.; Cirić, A.; Glamoclija, J. Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg. Med. Chem., 2010, 18(1), 426-432.
[http://dx.doi.org/10.1016/j.bmc.2009.10.041] [PMID: 19914077]
[9]
Zablotskaya, A.; Segal, I.; Geronikaki, A.; Eremkina, T.; Belyakov, S.; Petrova, M.; Shestakova, I.; Zvejniece, L.; Nikolajeva, V. Synthesis, physicochemical characterization, cytotoxicity, antimicrobial, anti-inflammatory and psychotropic activity of new N-[1,3-(benzo)thiazol-2-yl]-ω-[3,4-dihydroisoquinolin-2(1H)-yl]alkanamides. Eur. J. Med. Chem., 2013, 70, 846-856.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.008] [PMID: 24262377]
[10]
Gohel, J.N.; Lunagariya, K.S.; Kapadiya, K.M.; Khunt, R.C. One pot Synthesis of Novel Thiazole Derivatives as Potential antimicrobial agents. Chem. Biol. Interact., 2019, 9(1), 32-37.
[11]
Ngono-Bikobo, S.D.; Vodnar, D.; Stana, A.; Tiperciuc, B.; Nastasă, C.; Douchet, M.; Oniga, O. Synthesis of 2-phenylamino-thiazole derivatives as antimicrobial agents. J. Saudi Chem. Soc., 2017, 21(7), 861-868.
[http://dx.doi.org/10.1016/j.jscs.2017.04.007]
[12]
El-Sayed, E.H.; Fadda, A.A. Synthetic routes to electroactive organic discotic aromatic triazatruxenes. J. Heterocycl. Chem., 2018, 55(10), 2251-2260.
[http://dx.doi.org/10.1002/jhet.3276]
[13]
Mostafa, M.S.; Abd El-Salam, N.M. Synthesis and biological evaluation of 3-methyl –pyrazolin-5-one derivatives containing thiazole and indole moieties. Pharma Chem., 2013, 5, 1-7.
[14]
Lino, C.I.; Gonçalves de Souza, I.; Borelli, B.M.; Silvério Matos, T.T.; Santos Teixeira, I.N.; Ramos, J.P.; Maria de Souza Fagundes, E.; de Oliveira Fernandes, P.; Maltarollo, V.G.; Johann, S.; de Oliveira, R.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem., 2018, 151, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.083] [PMID: 29626797]
[15]
Geronikaki, A.; Vicini, P.; Theophilidis, G.; Lagunin, A.; Poroikov, V.; Dabarakis, N.; Modarresi, H.; Dearden, J.C. Evaluation the local anaesthetic activity of derivatives of 3-amino-[d]benzoisothiazoles on sciatic nerve of rat. Eur. J. Med. Chem., 2009, 44(2), 473-481.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.006] [PMID: 18534720]
[16]
Apostolidis, I.; Liaras, K.; Geronikaki, A.; Hadjipavlou-Litina, D.; Gavalas, A.; Soković, M.; Glamočlija, J.; Ćirić, A. Synthesis and biological evaluation of some 5-arylidene-2-(1,3-thiazol-2-ylimino)-1,3-thiazolidin-4-ones as dual anti-inflammatory/antimicrobial agents. Bioorg. Med. Chem., 2013, 21(2), 532-539.
[http://dx.doi.org/10.1016/j.bmc.2012.10.046] [PMID: 23219856]
[17]
Helal, M.H.; Salem, M.A.; El-Gaby, M.S.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 65, 517-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005] [PMID: 23787438]
[18]
Thore, S.N.; Gupta, S.; Kamalkishor, V.; Baheti, G. Docking, synthesis, and pharmacological investigation of novel substituted thiazole derivatives as non-carboxylic, anti-inflammatory, and analgesic agents. Med. Chem. Res., 2013, 22(8), 3802-3811.
[http://dx.doi.org/10.1007/s00044-012-0382-6]
[19]
Saravanan, G.; Alagarsamy, V.; Prakash, C.R.; Kumar, P.D.; Selvam, T.P. Synthesis of novel thiazole derivatives as analgesic agents. Asian J. Res. Pharm. Sci., 2011, 1(4), 134-138.
[20]
Pitta, E.; Geronikaki, A.; Surmava, S.; Eleftheriou, P.; Mehta, V.P.; Van der Eycken, E.V. Synthesis and HIV-1 RT inhibitory action of novel (4/6-substituted benzo[d]thiazol -2-yl)thiazolidin-4-ones. Divergence from the non-competitive inhibition mechanism. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 113-122.
[http://dx.doi.org/10.3109/14756366.2011.636362] [PMID: 22380777]
[21]
Hassan, S.; Channar, P.A.; Larik, F.A.; Saeed, A.; Shah, H.S.; Lecka, J.; Sévigny, J.; Iqbal, J. Synthesis of novel (E)-1-(2-(2-(4(dimethylamino) benzylidene) hydrazinyl)-4-methylthiazol-5-yl)ethanone derivatives as ecto-5′-nucleotidase inhibitors. R. Soc. Open Sci., 2018, 5(9)180837
[http://dx.doi.org/10.1098/rsos.180837] [PMID: 30839737]
[22]
Khatik, G.L.; Datusalia, A.K.; Ahsan, W.; Kaur, P.; Vyas, M.; Mittal, A.; Nayak, S.K. A retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Curr. Drug Discov. Technol., 2018, 15(3), 163-177.
[http://dx.doi.org/10.2174/1570163814666170915134018] [PMID: 28914188]
[23]
T.de Santana, M.O; Barbosa, P.A.T.M; Gomes, A.C.N.; da Cruz,, T.G.; da Silva, A.C.L; Leite, and Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040]
[24]
Liu, Z.Y.; Wang, Y.M.; Li, Z.R.; Jiang, J.D.; Boykin, D.W. Synthesis and anticancer activity of novel 3,4-diarylthiazol-2(3H)-ones (imines). Bioorg. Med. Chem. Lett., 2009, 19(19), 5661-5664.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.025] [PMID: 19713108]
[25]
Luzina, E.L.; Popov, A.V. Synthesis and anticancer activity evaluation of 3,4-mono- and bicyclosubstituted N-(het)aryl trifluoromethyl succinimides. Eur. J. Med. Chem., 2009, 44, 4944-4953.
[http://dx.doi.org/10.1016/j.ejmech.2009.08.007] [PMID: 19740574]
[26]
Abdel-Wahab, B.F.; Mohamed, S.F.; Amr, A.E.G.E.; Abdalla, M.M. synthesized various pyrazoline incorporated thiazole derivatives (7a-d) and screened for antibacterial and antifungal activity against Escherichia coli and Aspergillus niger. Monatsh. Chem., 2008, 139, 1083-1090.
[http://dx.doi.org/10.1007/s00706-008-0896-2]
[27]
Gupta, V. A review on biological activity of imidazole and thiazole moieties and their derivatives. Science International., 2013, 1, 253-260.
[http://dx.doi.org/10.17311/sciintl.2013.253.260]
[28]
Geronikaki, A.A.; Pitta, E.P.; Liaras, K.S. Thiazoles and thiazolidinones as antioxidants. Curr. Med. Chem., 2013, 20(36), 4460-4480.
[http://dx.doi.org/10.2174/09298673113209990143] [PMID: 23834182]
[29]
Narsimha, S.; Battula, K.N; and V. Reddy, Design, synthesis, and biological evaluation of novel substituted imidazo[2,1-a]isoindole derivatives as antibacterial agents. Synth. Commun., 2017, 47(9), 928-933.
[http://dx.doi.org/10.1080/00397911.2017.1296960]
[30]
Csende, F.; Porkoláb, A. A Review on antibacterial activity of some new isoindole derivatives. Pharma Chem., 2018, 10(6), 43-50.
[31]
Sipos, A.; Török, Z.; Rőth, E.; Kiss-Szikszai, A.; Batta, G.; Bereczki, I.; Fejes, Z.; Borbás, A.; Ostorházi, E.; Rozgonyi, F.; Naesens, L.; Herczegh, P. Synthesis of isoindole and benzoisoindole derivatives of teicoplanin pseudoaglycon with remarkable antibacterial and antiviral activities. Bioorg. Med. Chem. Lett., 2012, 22(23), 7092-7096.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.079] [PMID: 23099097]
[32]
Bala, S.; Saini, M.; Kamboj, S.; Saini, V. Synthesis of 2-[4-(substituted benzylidene)-5-Oxo-4, 5-dihydro-oxazol-2-ylmethyl]-isoindole-1, 3-dione derivatives as novel potential antimicrobial agents. Iranian J. Pharmaco. Therap., 2012, 11(2), 45-52.
[33]
Lamie, P.F. Synthesis and anti-microbial activity of some novel isoindoline-1,3-dione derivatives. J. Advan. Chem., 2014, 8(2), 1660-1666.
[http://dx.doi.org/10.24297/jac.v8i2.5570]
[34]
Breytenbach, J.C.; van Dyk, S.; van Den Heever, I.; Allin, S.M.; Hodkinson, C.C.; Northfield, C.J.; Page, M.I. Synthesis and antimicrobial activity of some isoindolin-1-ones derivatives. Bioorg. Med. Chem. Lett., 2000, 10(15), 1629-1631.
[http://dx.doi.org/10.1016/S0960-894X(00)00306-1] [PMID: 10937711]
[35]
Tratrat, C.; Haroun, M.; Xenikakis, I.; Liaras, K.; Tsolaki, E.; Eleftheriou, P.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Venugopala, K.N.; Harsha, S.; Elsewedy, H.S.; Geronikaki, A.; Soković, M. Design, synthesis, evaluation of antimicrobial activity and docking studies of new thiazole-based chalcones. Curr. Top. Med. Chem., 2019, 19(5), 356-375.
[http://dx.doi.org/10.2174/1568026619666190129121933] [PMID: 30706816]
[36]
Ziegelin, G.; Linderoth, N.A.; Calendar, R.; Lanka, E. Domain structure of phage P4 α protein deduced by mutational analysis. J. Bacteriol., 1995, 177(15), 4333-4341.
[http://dx.doi.org/10.1128/JB.177.15.4333-4341.1995] [PMID: 7635818]
[37]
Soares, A.; Estevão, M.S.; Marques, M.M.B.; Kovalishyn, V.; Latino, D.A.R.S.; Aires-de-Sousa, J.; Ramos, J.; Viveiros, M.; Martins, F. Synthesis and biological evaluation of hybrid 1,5- and 2,5-disubstituted indoles as potentially new antitubercular agents. Med. Chem., 2017, 13(5), 439-447.
[http://dx.doi.org/10.2174/1573406413666170209144003] [PMID: 28185538]
[38]
Ganou, C.A.; Eleftheriou, P.T.; Theodosis-Nobelos, P.; Fesatidou, M.; Geronikaki, A.A.; Lialiaris, T.; Rekka, E.A. Docking analysis targeted to the whole enzyme: an application to the prediction of inhibition of PTP1B by thiomorpholine and thiazolyl derivatives. SAR QSAR Environ. Res., 2018, 29(2), 133-149.
[http://dx.doi.org/10.1080/1062936X.2017.1414874] [PMID: 29347844]
[39]
Fesatidou, M.; Zagaliotis, P.; Camoutsis, C.; Petrou, A.; Eleftheriou, P.; Tratrat, C.; Haroun, M.; Geronikaki, A.; Ciric, A.; Sokovic, M. 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg. Med. Chem., 2018, 26(16), 4664-4676.
[http://dx.doi.org/10.1016/j.bmc.2018.08.004] [PMID: 30107969]
[40]
Andres, C.J.; Bronson, J.J.; D’Andrea, S.V.; Deshpande, M.S.; Falk, P.J.; Grant-Young, K.A.; Harte, W.E.; Ho, H.T.; Misco, P.F.; Robertson, J.G.; Stock, D.; Sun, Y.; Walsh, A.W. 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg. Med. Chem. Lett., 2000, 10(8), 715-717.
[http://dx.doi.org/10.1016/S0960-894X(00)00073-1] [PMID: 10782671]
[41]
Gjorgjieva, M.; Tomašič, T.; Barančokova, M.; Katsamakas, S.; Ilaš, J.; Tammela, P.; Peterlin Mašič, L.; Kikelj, D. Discovery of benzothiazole scaffold-based dna gyrase b inhibitors. J. Med. Chem., 2016, 59(19), 8941-8954.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00864] [PMID: 27541007]
[42]
Ahmed, S.; Zayed, M.F.; El-Messery, S.M.; Al-Agamy, M.H.; Abdel-Rahman, H.M. Design, synthesis, antimicrobial evaluation and molecular modeling study of 1,2,4-triazole-based 4-thiazolidinones. Molecules, 2016, 21(5), 568-585.
[http://dx.doi.org/10.3390/molecules21050568] [PMID: 27144547]
[43]
Khomami, A.; Rahimi, M.; Tabei, A.; Saniee, P.; Mahboubi, A.; Foroumadi, A.; Koopaei, N.N.; Almasirad, A. Synthesis and docking study of novel 4-thiazolidinone derivatives as anti-gram-positive and anti-h. pylori agents. Mini Rev. Med. Chem., 2019, 19(3), 239-249.
[http://dx.doi.org/10.2174/1389557518666181017142630] [PMID: 30332951]
[44]
Zhang, J.; Li, L.; Lv, Q.; Yan, L.; Wang, Y.; Jiang, Y. The fungal cyp51s: their functions, structures, related drug resistance, and inhibitors. Front. Microbiol., 2019, 10, 691.
[http://dx.doi.org/10.3389/fmicb.2019.00691] [PMID: 31068906]
[45]
Eleftheriou, P.; Petrou, A.; Geronikaki, A.; Liaras, K.; Dirnali, S.; Anna, M. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors. SAR QSAR Environ. Res., 2015, 26(7-9), 557-576.
[http://dx.doi.org/10.1080/1062936X.2015.1074939] [PMID: 26294069]
[46]
Booth, C. Fungal Culture Media In: Methods in Microbiology; Academic Press, London and New York,, 1971, pp. 49-94.
[47]
Tsukatani, T.; Suenaga, H.; Shiga, M.; Noguchi, K.; Ishiyama, M.; Ezoe, T.; Matsumoto, K. Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. J. Microbiol. Methods, 2012, 90(3), 160-166.
[http://dx.doi.org/10.1016/j.mimet.2012.05.001] [PMID: 22642794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy