Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Nanoscale Drug Delivery Systems for Glaucoma: Experimental and In Silico Advances

Author(s): Smriti Sharma and Vinayak Bhatia*

Volume 21, Issue 2, 2021

Published on: 22 September, 2020

Page: [115 - 125] Pages: 11

DOI: 10.2174/1568026620666200922114210

Price: $65

Open Access Journals Promotions 2
Abstract

In this review, nanoscale-based drug delivery systems, particularly in relevance to the antiglaucoma drugs, have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery is an ideal option to target tumours, and the drug can be released in areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood-retinal barrier, corneal epithelium and the blood-aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us understand the existing queries and evidence gaps and will pave the way for the effective design of novel ocular drug delivery systems.

Keywords: Drug delivery, Anti-glaucoma drugs, Ocular drugs, Ocular drug delivery, Posterior eye segment, Computational drug delivery, In silico.

Next »
Graphical Abstract
[1]
Opara, E.C. Controlled Drug Delivery Systems; CRC Press: Boca Raton, 2020.
[http://dx.doi.org/10.1201/9780429197833]
[2]
Homayun, B.; Lin, X.; Choi, H. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 2019, 11(3), 129.
[http://dx.doi.org/10.3390/pharmaceutics11030129]
[3]
Sharma, S.; Bhatia, V. Phytochemicals for drug discovery in Alzheimer’s disease : In silico advances. Curr. Pharm. Des., 2021, 27, 1-13.
[http://dx.doi.org/10.2174/1381612826666200928161721]]
[4]
Goyal, G.; Garg, T.; Rath, G.; Goyal, A.K. Current nanotechnological strategies for treating glaucoma. Crit. Rev. Ther. Drug Carrier Syst., 2014, 31(5), 365-405.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014010123] [PMID: 25271557]
[5]
Zarbin, M.A.; Montemagno, C.; Leary, J.F.; Ritch, R. Nanotechnology in ophthalmology. Can. J. Ophthalmol., 2010, 45(5), 457-476.
[http://dx.doi.org/10.3129/i10-090] [PMID: 20871642]
[6]
Lee, V.H.; Robinson, J.R. Topical ocular drug delivery: recent developments and future challenges. J. Ocul. Pharmacol., 2009, 2(1), 67-108.
[7]
Maurice, D.M.; Mishima, S. Ocular pharmacokinetics.Pharmacology of the Eye; Springer: Berlin, 1984, pp. 19-116.
[8]
Tomi, J. Ocular absorption following topical delivery. Adv. Drug Deliv. Rev., 1995, 16(95), 3-19.
[9]
Geroski, D.H.; Edelhauser, H.F. Drug delivery for posterior segment eye disease. Invest. Ophthalmol. Vis. Sci., 2000, 41(5), 961-964.
[PMID: 10752928]
[10]
Eljarrat-Binstock, E.; Pe’er, J.; Domb, A.J. New techniques for drug delivery to the posterior eye segment. Pharm. Res., 2010, 27(4), 530-543.
[http://dx.doi.org/10.1007/s11095-009-0042-9] [PMID: 20155388]
[11]
Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet, 2012, 379(9827), 1728-1738.
[http://dx.doi.org/10.1016/S0140-6736(12)60282-7] [PMID: 22559899]
[12]
Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res., 2011, 30(5), 343-358.
[http://dx.doi.org/10.1016/j.preteyeres.2011.05.002] [PMID: 21635964]
[13]
Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet, 2006, 368(9549), 1795-1809.
[http://dx.doi.org/10.1016/S0140-6736(06)69740-7] [PMID: 17113430]
[14]
Wunner, G. Nanomaterials for drug delivery Science (80-. ) 2012, 337, 303-306.
[15]
Davies, A.E.; Williams, R.L.; Lugano, G.; Pop, S.R.; Kearns, V.R.; Kearns, V.R. In vitro and computational modelling of drug delivery across the outer blood-retinal barrier. Interface Focus, 2020, 10(2)20190132
[http://dx.doi.org/10.1098/rsfs.2019.0132] [PMID: 32194934]
[16]
Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 2014, 121(11), 2081-2090.
[http://dx.doi.org/10.1016/j.ophtha.2014.05.013] [PMID: 24974815]
[17]
Review, C. Glaucoma and its treatment : A review; Am. Soc. Heal. Pharma- Cist, 2005, Vol. 62, pp. 691-699.
[18]
Hughes, E.; Spry, P.; Diamond, J. 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. J. Glaucoma, 2003, 12(3), 232-236.
[http://dx.doi.org/10.1097/00061198-200306000-00009] [PMID: 12782841]
[19]
Golubnitschaja, O.; Yeghiazaryan, K.; Flammer, J. Key molecular pathways affected by glaucoma pathology: is predictive diagnosis possible? EPMA J., 2010, 1(2), 237-244.
[http://dx.doi.org/10.1007/s13167-010-0031-4] [PMID: 23199062]
[20]
Izzotti, A.; Bagnis, A.; Saccà, S.C. The role of oxidative stress in glaucoma. Mutat. Res., 2006, 612(2), 105-114.
[http://dx.doi.org/10.1016/j.mrrev.2005.11.001] [PMID: 16413223]
[21]
Lotery, A.J. Glutamate excitotoxicity in glaucoma: truth or fiction? Eye (Lond.), 2005, 19(4), 369-370.
[http://dx.doi.org/10.1038/sj.eye.6701623] [PMID: 15806116]
[22]
Wiggs, J.L. Genetic etiologies of glaucoma. Arch. Ophthalmol., 2007, 125(1), 30-37.
[http://dx.doi.org/10.1001/archopht.125.1.30] [PMID: 17210849]
[23]
Mayro, E.L.; Wang, M.; Elze, T.; Pasquale, L.R. The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye (Lond.), 2020, 34(1), 1-11.
[http://dx.doi.org/10.1038/s41433-019-0577-x] [PMID: 31541215]
[24]
Hu, H.; Ni, Y.; Montana, V.; Haddon, R.C.; Parpura, V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett., 2004, 4(3), 507-511.
[25]
Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release, 2020, 321, 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.057] [PMID: 32027938]
[26]
Singh, K.; Nair, A.B.; Kumar, A.; Kumria, R. Novel approaches in formulation and drug delivery using contact lenses. J. Basic Clin. Pharm., 2011, 2(2), 87-101.
[PMID: 24826007]
[27]
Haddish-Berhane, N.; Rickus, J.L.; Haghighi, K. The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems. Int. J. Nanomedicine, 2007, 2(3), 315-331.
[PMID: 18019831]
[28]
Jennings, A.; Tennant, M. Discovery strategies in a pharmaceutical setting: the application of computational techniques. Expert Opin. Drug Discov., 2006, 1(7), 709-721.
[http://dx.doi.org/10.1517/17460441.1.7.709] [PMID: 23495995]
[29]
Maas, J.; Kamm, W.; Hauck, G. An integrated early formulation strategy--from hit evaluation to preclinical candidate profiling. Eur. J. Pharm. Biopharm., 2007, 66(1), 1-10.
[http://dx.doi.org/10.1016/j.ejpb.2006.09.011] [PMID: 17123801]
[30]
Cao, B.; Adutwum, L.A.; Oliynyk, A.O.; Luber, E.J.; Olsen, B.C.; Mar, A.; Buriak, J.M. How to optimize materials and devices via design of experiments and machine learning: Demonstration using organic photovoltaics. ACS Nano, 2018, 12(8), 7434-7444.
[http://dx.doi.org/10.1021/acsnano.8b04726] [PMID: 30027732]
[31]
Xiang, T.X.; Anderson, B.D. Liposomal drug transport: a molecular perspective from molecular dynamics simulations in lipid bilayers. Adv. Drug Deliv. Rev., 2006, 58(12-13), 1357-1378.
[http://dx.doi.org/10.1016/j.addr.2006.09.002] [PMID: 17092601]
[32]
Sharma, S.; Bhatia, V. Treatment of Type 2 diabetes mellitus (T2DM): Can GLP-1 Receptor Agonists fill in the gaps? Chem. Biol. Lett., 2020, 7(4), 215-224.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[33]
Lee, V.H.L.; Robinson, J.R. Topical ocular drug delivery: recent developments and future challenges. J. Ocul. Pharmacol., 1986, 2(1), 67-108.
[http://dx.doi.org/10.1089/jop.1986.2.67] [PMID: 3332284]
[34]
Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2007, 6, 1-6.
[35]
Hughes, G.A. Nanostructure-mediated drug delivery. Nanomedicine, 2005, 1(1), 22-30.
[http://dx.doi.org/10.1016/j.nano.2004.11.009] [PMID: 17292054]
[36]
De Jong, W.H. Drug delivery and nanoparticles : Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[37]
Cascone, M.G.; Lazzeri, L.; Carmignani, C. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J. Mater. Sci. Mater. Med., 2002, 13(5), 523-526.
[38]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[39]
Bull, M. Design and application of magnetic-based theranostic nanoparticle systems. Bone, 2008, 23(1), 1-7.
[http://dx.doi.org/10.1038/jid.2014.371]
[40]
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5), 889-896.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[41]
Kakran, M.; Li, L. Carbon nanomaterials for drug delivery. Key Eng. Mater., 2012, 508, 76-80.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.508.76]
[42]
Singh, N.; Joshi, A.; Toor, A.P.; Verma, G. Drug delivery: advancements and challenges; Elsevier Inc.: Amsterdam, 2017.
[43]
Bahri, S.; Sharma, S.; Sushma, B.; Sharma, N. Influence of silver nanoparticles on seedlings of Vigna radiata (L.) R. Wilczek. DU Wilczek DU J. Undergrad. Res. Innov., 2016, 2(1), 142-148.
[44]
Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J., 2016, 20(1), 1-11.
[45]
Li, X.; Wang, L.; Fan, Y.; Feng, Q.; Cui, F. Biocompatibility and toxicity of nanoparticles and nanotubes. J. Nanomaterials, 2012, 4.
[http://dx.doi.org/10.1155/2012/548389]
[46]
Webster, D.M.; Sundaram, P.; Byrne, M.E. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur. J. Pharm. Biopharm., 2013, 84(1), 1-20.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.009] [PMID: 23313176]
[47]
De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119), 535-539.
[http://dx.doi.org/10.1126/science.1222453] [PMID: 23372006]
[48]
Avouris, P. Nanotubes Electronics, 2000.
[49]
Lalwani, G. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules, 2013, 14(3), 900-909.
[http://dx.doi.org/10.1021/bm301995s]
[50]
Chahine, N.O.; Collette, N.M.; Thomas, C. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering : effects of carbon nanotube surface functionalization. Tissue Eng., 2014, 20(17-18)
[http://dx.doi.org/10.1089/ten.tea.2013.0328]
[51]
Zanello, L.P.; Zhao, B.; Hu, H.; Haddon, R.C. Bone cell proliferation on carbon nanotubes. Nano Lett., 2006, 6(3), 562-567.
[http://dx.doi.org/10.1021/nl051861e]
[52]
Dalton, A.B.; Collins, S.; Razal, J.M.; Howard, V. Super-tough carbon-nanotube fibres. Nature, 2003, 423, 703.
[53]
Feng, M.; Han, H.; Zhang, J.; Tachikawa, H. Electrochemical sensors based on carbon nanotubes.Electrochemical Sensors, Biosensors and their Biomedical Applications; Academic Press: London, 2008, pp. 458-501.
[http://dx.doi.org/10.1016/B978-012373738-0.50017-9]
[54]
Yan, B.J.; Zhou, H.; Yu, P.; Su, L.; Mao, L. Rational functionalization of carbon nanotubes leading to electrochemical devices with striking applications. Adv. Mater., 2008, 20(15), 2899-2906.
[http://dx.doi.org/10.1002/adma.200800674]
[55]
Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-covalent functiona-lization of carbon nanotubes for electrochemical biosensor development. Sensors (Basel), 2019, 19(2)E392
[http://dx.doi.org/10.3390/s19020392] [PMID: 30669367]
[56]
Kakkar, R.; Sharma, S.; Badhani, B. Density functional study of functionalization of carbon nanotubes with carbenes. Can. Chem. Trans., 2014, 2(4), 434-449.
[http://dx.doi.org/10.13179/canchemtrans.2014.02.04.0132]
[57]
Kakkar, R.; Sharma, S. DFT study of interactions of carbenes with boron nitride nanotubes. Chem. J., 2011, 1(1), 9-20.
[58]
Dyke, C.A.; Tour, J.M. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chemistry, 2004, 10, 812-817.
[59]
Kushwaha, S.K.S.; Ghoshal, S.; Rai, A.K.; Singh, S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: A review. Braz. J. Pharm. Sci., 2013, 49(4), 629-643.
[http://dx.doi.org/10.1590/S1984-82502013000400002]
[60]
Singh, B.; Lohan, S.; Sandhu, P.S.; Jain, A.; Mehta, S.K. Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics; Elsevier Inc.: Amsterdam, 2016.
[http://dx.doi.org/10.1016/B978-0-323-41736-5.00015-7]
[61]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[62]
Li, J.; Tian, S.; Tao, Q.; Zhao, Y.; Gui, R.; Yang, F.; Zang, L.; Chen, Y.; Ping, Q.; Hou, D. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int. J. Nanomedicine, 2018, 13, 3975-3987.
[http://dx.doi.org/10.2147/IJN.S162306] [PMID: 30022821]
[63]
Chen, F.; Gerion, D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett., 2004, 4(10), 1827-1832.
[http://dx.doi.org/10.1021/nl049170q]
[64]
Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev., 2010, 39(11), 4326-4354.
[http://dx.doi.org/10.1039/b915139g] [PMID: 20697629]
[65]
Qi, L.; Gao, X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv., 2008, 5(3), 263-267.
[http://dx.doi.org/10.1517/17425247.5.3.263] [PMID: 18318649]
[66]
Getz, T.; Qin, J.; Medintz, I.L.; Delehanty, J.B.; Susumu, K.; Dawson, P.E.; Dawson, G. Quantum dot-mediated delivery of siRNA to inhibit sphingomyelinase activities in brain-derived cells. J. Neurochem., 2016, 139(5), 872-885.
[http://dx.doi.org/10.1111/jnc.13841] [PMID: 27622309]
[67]
Gao, X.; Yang, L.; Petros, J.A.; Marshall, F.F.; Simons, J.W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005, 16(1), 63-72.
[http://dx.doi.org/10.1016/j.copbio.2004.11.003]
[68]
Singh, R.; Lillard, J.W., Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[69]
Ghaderi, S.; Ramesh, B.; Seifalian, A. M. luorescence nanoparticles ‘ quantum dots ’ as drug delivery system and their toxicity: a review 2011, 19, 475-486.
[http://dx.doi.org/10.3109/1061186X.2010.526227]
[70]
Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 1645184945]
[71]
Fang, M.; Peng, C.W.; Pang, D.W.; Li, Y. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol. Med., 2012, 9(3), 151-163.
[PMID: 23691472]
[72]
Chan, J.M.; Valencia, P.M.; Zhang, L.; Langer, R.; Farokhzad, O.C. Polymeric nanoparticles for drug delivery. Methods Mol. Biol., 2010, 624, 163-75.
[73]
Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Singh, B.; Yadav, S.C. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf. B Biointerfaces, 2010, 80(2), 184-192.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.002] [PMID: 20598513]
[74]
Cuenca, A.G.; Hochwald, S.N.; Delano, M.; Cance, W.G.; Grobmyer, S.R. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006, 107(3), 459-466.
[http://dx.doi.org/10.1002/cncr.22035]
[75]
Allen, T.M. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci., 1994, 15(7), 215-220.
[http://dx.doi.org/10.1016/0165-6147(94)90314-X] [PMID: 7940982]
[76]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[77]
Tam, Y.Y.C.; Chen, S.; Cullis, P.R. Advances in lipid nanoparticles for sirna delivery. Pharmaceutics, 2013, 5(3), 498-507.
[http://dx.doi.org/10.3390/pharmaceutics5030498]
[78]
Al-jamal, W.T.; Kostarelos, K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 2011, 44(10), 1094-1104.
[http://dx.doi.org/10.1021/ar200105p]
[79]
Bozzuto, G. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[80]
Wei, M.; Xu, Y.; Zou, Q.; Tu, L.; Tang, C.; Xu, T.; Deng, L.; Wu, C. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur. J. Pharm. Sci., 2012, 46(3), 131-141.
[http://dx.doi.org/10.1016/j.ejps.2012.02.007] [PMID: 22369856]
[81]
Jung, E.; Sonveaux, P.; Porporato, P.E.; Danhier, P.; Gallez, B.; Batinic-haberle, I. NADPH oxidase-mediated reactive oxygen species via the ERK pathway after hyperthermia treatment. Proceedings of the National Academy of Sciences, 2010, 107(47), 20477-20482.
[82]
Coimbra, M.; Isacchi, B.; van Bloois, L.; Torano, J.S.; Ket, A.; Wu, X.; Broere, F.; Metselaar, J.M.; Rijcken, C.J.; Storm, G.; Bilia, R.; Schiffelers, R.M. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int. J. Pharm., 2011, 416(2), 433-442.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.056] [PMID: 21291975]
[83]
Shum, P.; Kim, J.; Thompson, D.H. Phototriggering of liposomal drug delivery systems. Adv. Drug Deliv. Rev., 2001, 53(3), 273-284.
[84]
Zhang, J. A. Development and characterization of a novel Cremophor w EL free liposome-based paclitaxel ( LEP-ETU ) formulation 2005, 59, 177-187.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.009]
[85]
Sreekanth, C.N.; Bava, S.V.; Sreekumar, E.; Anto, R.J. Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene, 2011, 30(28), 3139-3152.
[http://dx.doi.org/10.1038/onc.2011.23] [PMID: 21317920]
[86]
Sharma, S.; Bhatia, V. Appraisal of the role of in silico methods in pyrazole based drug design. Mini-Reviews. Med. Chem., 2020, 20(1), 1-13.
[http://dx.doi.org/10.1146/annurev-physchem-032210-103338]]
[87]
Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature, 2012, 490(7419), 192-200.
[http://dx.doi.org/10.1038/nature11458] [PMID: 23060189]
[88]
Yu, M.; Wang, A.; Tian, F. Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery. Nanoscale, 2015, 7(12), 5292-5298.
[89]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[90]
Liu, G.; Shen, H.; Mao, J.; Zhang, L.; Jiang, Z.; Sun, T.; Lan, Q.; Zhang, Z. Transferrin modified graphene oxide for glioma-targeted drug delivery: in vitro and in vivo evaluations. ACS Appl. Mater. Interfaces, 2013, 5, 15.
[91]
Depan, D.; Shah, J.; Misra, R.D.K. Controlled release of drug from folate-decorated and graphene mediated drug delivery system : Synthesis, loading ef fi ciency, and drug release response. Mater. Sci. Eng. C, 2011, 31(7), 1305-1312.
[http://dx.doi.org/10.1016/j.msec.2011.04.010]
[92]
Chem, J.M. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem., 2011, 21, 7736-7741.
[http://dx.doi.org/10.1039/c1jm10341e]
[93]
Pan, Y.; Bao, H.; Sahoo, N.G.; Wu, T.; Li, L. Water-soluble poly (n -isopropylacrylamide)– graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater., 2011, 21(14), 2745-2763.
[http://dx.doi.org/10.1002/adfm.201100078]
[94]
Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11), 1569-1578.
[http://dx.doi.org/10.1002/smll.201100191]
[95]
Ratemi, E.; Sultana Shaik, A.; Al Faraj, A.; Halwani, R. Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin. Exp. Allergy, 2016, 46(8), 1033-1042.
[http://dx.doi.org/10.1111/cea.12771] [PMID: 27404025]
[96]
Gramatikoff, K. Liposomes Under Creat. commons; , 2019. Available from. https://commons.wikimedia.org/wiki/File: Lipo-some.JPG
[97]
Eric Wieser; Nanotubes.In: A multi-walled armchair carbon Nanotube; , 2010. Available from. https://commons.wikimedia.org/wiki/File:Multi-wall
[98]
Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L-W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science, 2014, 344(6190), 1380-1384.
[99]
Lukin, O. Dendrimers; , 2007. Available from. https://commons. wikimedia.org/wiki/File:Graphs.jpg
[100]
Sharma, D.; Maheshwari, D.; Philip, G.; Rana, R.; Bhatia, S.; Singh, M.; Gabrani, R.; Sharma, S.K.; Ali, J.; Sharma, R.K.; Dang, S. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. BioMed Res. Int., 2014, 2014156010
[101]
Chen, J.; Patil, S.; Seal, S.; Mcginnis, J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol., 2006, 1, 142-150.
[http://dx.doi.org/10.1038/nnano.2006.91]
[102]
Cai, X.; Conley, S.; Naash, M. Nanoparticle applications in ocular gene therapy. Vision Res., 2008, 48(3), 319-324.
[http://dx.doi.org/10.1016/j.visres.2007.07.012] [PMID: 17825344]
[103]
Mehta, P.; Al-Kinani, A.A.; Haj-Ahmad, R.; Arshad, M.S.; Chang, M.W.; Alany, R.G.; Ahmad, Z. Electrically atomised formulations of timolol maleate for direct and on-demand ocular lens coatings. Eur. J. Pharm. Biopharm., 2017, 119, 170-184.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.016] [PMID: 28625688]
[104]
Zhao, R.; Li, J.; Wang, J.; Yin, Z.; Zhu, Y.; Liu, W. Development of timolol-loaded galactosylated chitosan nanoparticles and evaluation of their potential for ocular drug delivery. AAPS PharmSciTech, 2017, 18(4), 997-1008.
[http://dx.doi.org/10.1208/s12249-016-0669-x] [PMID: 28101726]
[105]
Ibrahim, K.A.; El-Eswed, B.I.; Abu-Sbeih, K.A.; Arafat, T.A.; Al Omari, M.M.; Darras, F.H.; Badwan, A.A. Preparation of chito-oligomers by hydrolysis of chitosan in the presence of zeolite as adsorbent. Mar. Drugs, 2016, 14(8), 1-13.
[http://dx.doi.org/10.3390/md14080043] [PMID: 27455287]
[106]
Mehta, P.; Al-Kinani, A.A.; Arshad, M.S.; Singh, N.; van der Merwe, S.M.; Chang, M.W.; Alany, R.G.; Ahmad, Z. Engineering and development of chitosan-based nanocoatings for ocular contact lenses. J. Pharm. Sci., 2019, 108(4), 1540-1551.
[http://dx.doi.org/10.1016/j.xphs.2018.11.036] [PMID: 30513319]
[107]
Samadi, N.; Abbadessa, A.; Di Stefano, A.; van Nostrum, C.F.; Vermonden, T.; Rahimian, S.; Teunissen, E.A.; van Steenbergen, M.J.; Amidi, M.; Hennink, W.E. The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles. J. Control. Release, 2013, 172(2), 436-443.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.034] [PMID: 23751568]
[108]
Salama, H.A.; Ghorab, M.; Mahmoud, A.A.; Abdel Hady, M. PLGA nanoparticles as subconjunctival injection for management of glaucoma. AAPS PharmSciTech, 2017, 18(7), 2517-2528.
[http://dx.doi.org/10.1208/s12249-017-0710-8] [PMID: 28224390]
[109]
Caprioli, J.; Sears, M. Forskolin lowers intraocular pressure in rabbits, monkeys, and man. Lancet, 1983, 1(8331), 958-960.
[http://dx.doi.org/10.1016/S0140-6736(83)92084-6] [PMID: 6132271]
[110]
Khan, N.; Ameeduzzafar, K. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: Statistical design, characterization and in vivo studies. Int. J. Biol. Macromol., 2017, 116, 648-663.
[111]
Tseng, C.L.; Chen, K.H.; Su, W.Y.; Lee, Y.H.; Wu, C.C.; Lin, F.H. Cationic gelatin nanoparticles for drug delivery to the ocular surface: In vitro and in vivo evaluation. J. Nanomater., 2013, 2013238351
[http://dx.doi.org/10.1155/2013/238351]
[112]
Shokry, M.; Hathout, R.M.; Mansour, S. Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: Augmented in-vivo efficacy and safe histological profile. Int. J. Pharm., 2018, 545(1-2), 229-239.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.059] [PMID: 29709617]
[113]
Liao, Y.T.; Lee, C.H.; Chen, S.T.; Lai, J.Y.; Wu, K.C.W. Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(34), 7008-7013.
[http://dx.doi.org/10.1039/C7TB01217A] [PMID: 32263891]
[114]
Jung, H.J.; Abou-Jaoude, M.; Carbia, B.E.; Plummer, C.; Chauhan, A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J. Control. Release, 2013, 165(1), 82-89.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.010] [PMID: 23123188]
[115]
Hsu, K.; Gause, S.; Chauhan, A. Review of ophthalmic drug delivery by contact lenses. J. Drug Deliv. Sci. Technol., 2014, 24(2), 123-135.
[http://dx.doi.org/10.1016/S1773-2247(14)50021-4]
[116]
Carvalho, I.M.; Marques, C.S.; Oliveira, R.S.; Coelho, P.B.; Costa, P.C.; Ferreira, D.C. Sustained drug release by contact lenses for glaucoma treatment-a review. J. Control. Release, 2015, 202, 76-82.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.023] [PMID: 25617723]
[117]
Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci., 2009, 66(17), 2873-2896.
[http://dx.doi.org/10.1007/s00018-009-0053-z] [PMID: 19499185]
[118]
Jung, H.J.; Chauhan, A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials, 2012, 33(7), 2289-2300.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.076] [PMID: 22182750]
[119]
Xu, J.; Ge, Y.; Bu, R.; Zhang, A.; Feng, S.; Wang, J.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; Tang, X. Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma. J. Control. Release, 2019, 305(May), 18-28.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.025] [PMID: 31103677]
[120]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[121]
Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol., 2014, 32(1), 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[122]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[123]
Lindsley, C.W. New statistics on the cost of new drug development and the trouble with CNS drugs. ACS Chem. Neurosci., 2014, 5(12), 1142-1142.
[http://dx.doi.org/10.1021/cn500298z] [PMID: 25515636]
[124]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[125]
Durrant, J.D.; Mccammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9, 71.
[http://dx.doi.org/10.1186/1741-7007-9-71]
[126]
Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the Monte Carlo method is so important today. Wiley Interdiscip. Rev. Comput. Stat., 2014, 6(6), 386-392.
[127]
Huynh, L.; Neale, C.; Pomès, R.; Allen, C. Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery. Nanomedicine (Lond.), 2012, 8(1), 20-36.
[http://dx.doi.org/10.1016/j.nano.2011.05.006] [PMID: 21669300]
[128]
Kavousanakis, M.E.; Kalogeropoulos, N.G.; Hatziavramidis, D.T. Computational modeling of drug delivery to the posterior eye. Chem. Eng. Sci., 2014, 108, 203-212.
[http://dx.doi.org/10.1016/j.ces.2014.01.005]
[129]
Ramsay, E.; Ruponen, M.; Picardat, T.; Tengvall, U.; Tuomainen, M.; Auriola, S.; Toropainen, E.; Urtti, A.; Del Amo, E.M. Impact of chemical structure on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for construction of in silico model Eva. J. Pharm. Sci., 2017, 106(9), 2463-2471.
[http://dx.doi.org/10.1016/j.xphs.2017.04.061] [PMID: 28479360]
[130]
Cholkar, K.; Trinh, H.M.; Pal, D.; Mitra, A.K. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin. Drug Discov., 2015, 10(3), 293-313.
[http://dx.doi.org/10.1517/17460441.2015.1000857] [PMID: 25575654]
[131]
Tang, M.; Fu, Y.; Fan, Y.; Fu, M.S.; Zheng, Z.; Xu, X. In-silico design of novel myocilin inhibitors for glaucoma therapy. Trop. J. Pharm. Res., 2017, 16(10), 2527-2533.
[http://dx.doi.org/10.4314/tjpr.v16i10.29]
[132]
Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: a review. JAMA, 2014, 311(18), 1901-1911.
[http://dx.doi.org/10.1001/jama.2014.3192] [PMID: 24825645]
[133]
Stjernschantz, J.W. From PGF (2 alpha)-isopropylester to latanoprost: a review of the development of xalatan: The Proctor lecture. Invest. Ophthalmol. Vis. Sci., 2001, 42, 1134-1145.
[134]
Mubarak, K.K. A review of prostaglandin analogs in the management of patients with pulmonary arterial hypertension. Respir. Med., 2010, 104(1), 9-21.
[http://dx.doi.org/10.1016/j.rmed.2009.07.015] [PMID: 19683911]
[135]
Hsu, J. Effect of adjuvant topical dorzolamide-timolol vs placebo in neovascular age-related macular degeneration a randomized clinical trial. JAMA Ophthalmol., 2020, 138(5), 560-567.
[136]
Nocentini, A.; Supuran, C.T. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: a patent review (2008-2018). Expert Opin. Ther. Pat., 2018, 28(10), 729-740.
[http://dx.doi.org/10.1080/13543776.2018.1508453]
[137]
Iqbal, M.; Rahman, S.; Zafar, S.; Chen, X.; Liu, J.; Liu, Y. Epilepsy & Behavior Systematic review and meta-analysis of the efficacy of different exercise programs in pilocarpine induced status epilepticus models. Epilepsy Behav., 2017, 73, 256-267.
[http://dx.doi.org/10.1016/j.yebeh.2017.06.007] [PMID: 28666249]
[138]
Li, F.; Huang, W.; Zhang, X. Efficacy and safety of different regimens for primary open-angle glaucoma or ocular hypertension: a systematic review and network meta-analysis. Acta Ophthalmol., 2018, 96(3), e277-e284.
[http://dx.doi.org/10.1111/aos.13568] [PMID: 29144028]
[139]
Heel, R.C.; Brogden, R.N.; Speight, T.M.; Avery, G.S. Timolol: a review of its therapeutic efficacy in the topical treatment of glaucoma. Drugs, 1979, 17(1), 38-55.
[http://dx.doi.org/10.2165/00003495-197917010-00002] [PMID: 369807]
[140]
Wu, A.; Khawaja, A.P.; Pasquale, L.R.; Stein, J.D. A review of systemic medications that may modulate the risk of glaucoma. Eye (Lond.), 2019, 34, 12-28.
[http://dx.doi.org/10.1038/s41433-019-0603-z] [PMID: 31595027]
[141]
Cimolai, N. A review of neuropsychiatric adverse events from topical ophthalmic brimonidine Hum. experimntal Toxicol, 2020, 39(10), 1279-1290.
[142]
Nocentini, A.; Supuran, C.T. Adrenergic agonists and antagonists as antiglaucoma agents: a literature and patent review (2013-2019). Expert Opin. Ther. Pat., 2019, 29, 805-815.
[http://dx.doi.org/10.1080/13543776.2019.1665023]
[143]
Liu, H.W.; Lu, Y.T.; Ren, Y.B.; Meng, Y. Efficacy of bimatoprost for the treatment of primary open-angle glaucoma: A protocol of systematic review and meta-analysis. Medicine (Baltimore), 2020, 99(23)e20356
[http://dx.doi.org/10.1097/MD.0000000000020356] [PMID: 32501980]
[144]
Zhang, X.L.; Qin, L. Efficacy of travoprost for the treatment of patients with glaucoma. Medicine (Baltimore), 2019, 98(29)e16526
[http://dx.doi.org/10.1097/MD.0000000000016526] [PMID: 31335731]
[145]
Lusthaus, J.A.; Goldberg, I. Brimonidine and brinzolamide for treating glaucoma and ocular hypertension; a safety evaluation. Expert Opin. Drug Saf., 2017, 16(9), 1071-1078.
[http://dx.doi.org/10.1080/14740338.2017.1346083] [PMID: 28656780]
[146]
Rossi, P.; Paoli, P.; Milazzo, S.; Chelazzi, L.; Ienco, A.; Conti, L. Betaxolol Polymorphs. Crystals (Basel), 2019, 9(509), 1-13.
[147]
Schmickl, C.N.; Owens, R.L.; Orr, J.E.; Edwards, B.A.; Malhotra, A. Side effects of acetazolamide: a analysis systematic review and meta- assessing overall risk and dose dependence. BMJ Open Respir. Res., 2020, 7e000557
[http://dx.doi.org/10.1136/bmjresp-2020-000557] [PMID: 32332024]
[148]
Eroglu, B.; Dalgakiran, D.; Inan, T.; Kurkcuoglu, O.; Güner, F.S. A computational and experimental approach to develop minocycline-imprinted hydrogels and determination of their drug delivery performances. J. Polym. Res., 2018, 25(12), 258.
[http://dx.doi.org/10.1007/s10965-018-1647-7]
[149]
Linkuvienė, V.; Zubrienė, A.; Manakova, E.; Petrauskas, V.; Baranauskienė, L.; Zakšauskas, A.; Smirnov, A.; Gražulis, S.; Ladbury, J.E.; Matulis, D. Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q. Rev. Biophys., 2018, 51(e10)e10
[http://dx.doi.org/10.1017/S0033583518000082] [PMID: 30912486]
[150]
Anitha, D.; Suganthi, M.; Gnanendra, S.; Govarthanan, M. Identification of potential carbonic anhydrase inhibitors for glaucoma treatment through an in-silico approach. Int. J. Pept. Res. Ther., 2020. in press
[http://dx.doi.org/10.1007/s10989-019-10011-8]
[151]
Dave, K.; Panchal, H. Review on chemogenomics approach: interpreting antagonist activity of secreted frizzled-related protein 1 in glaucoma disease with in-silico docking. Curr. Top. Med. Chem., 2012, 12(16), 1834-1842.
[http://dx.doi.org/10.2174/1568026611209061834] [PMID: 23030617]
[152]
Janssen, S.F.; Gorgels, T.G.M.F.; Van Der Spek, P.J.; Jansonius, N.M.; Bergen, A.A.B. In silico analysis of the molecular machinery underlying aqueous humor production : potential implications for glaucoma. J. Clin. Bioinforma., 2013, 3, 21.
[153]
Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci., 2002, 38(3), 209-272.
[http://dx.doi.org/10.2172/793406]
[154]
Taylor, P.; Leung, H. W. Development and utilization of physiologically based pharmacokinetic models for toxicological 24 applications, J. Toxicol. Environ. Health Sci., 2009, 37-41.
[155]
Zhao, P.; Zhang, L.; Grillo, J.A.; Liu, Q.; Bullock, J.M.; Moon, Y.J.; Song, P.; Brar, S.S.; Madabushi, R.; Wu, T.C.; Booth, B.P.; Rahman, N.A.; Reynolds, K.S.; Gil Berglund, E.; Lesko, L.J.; Huang, S.M. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin. Pharmacol. Ther., 2011, 89(2), 259-267.
[http://dx.doi.org/10.1038/clpt.2010.298] [PMID: 21191381]
[156]
Missel, P.; Horner, M. Modelling ocular delivery: Using computational fluid dynamics. ONdrugDelivery, 2015, 54, 12-16.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy