Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Membrane Derived Vesicles as Biomimetic Carriers for Targeted Drug Delivery System

Author(s): Le-Yi Zhang, Xue Yang, Shi-Bing Wang, Hong Chen*, Hong-Ying Pan* and Zhi-Ming Hu*

Volume 20, Issue 27, 2020

Page: [2472 - 2492] Pages: 21

DOI: 10.2174/1568026620666200922113054

Price: $65

Abstract

Extracellular vesicles (EVs) are membrane vesicles (MVs) playing important roles in various cellular and molecular functions in cell-to-cell signaling and transmitting molecular signals to adjacent as well as distant cells. The preserved cell membrane characteristics in MVs derived from live cells, give them great potential in biological applications. EVs are nanoscale particulates secreted from living cells and play crucial roles in several important cellular functions both in physiological and pathological states. EVs are the main elements in intercellular communication in which they serve as carriers for various endogenous cargo molecules, such as RNAs, proteins, carbohydrates, and lipids. High tissue tropism capacity that can be conveniently mediated by surface molecules, such as integrins and glycans, is a unique feature of EVs that makes them interesting candidates for targeted drug delivery systems. The cell-derived giant MVs have been exploited as vehicles for delivery of various anticancer agents and imaging probes and for implementing combinational phototherapy for targeted cancer treatment. Giant MVs can efficiently encapsulate therapeutic drugs and deliver them to target cells through the membrane fusion process to synergize photodynamic/photothermal treatment under light exposure. EVs can load diagnostic or therapeutic agents using different encapsulation or conjugation methods. Moreover, to prolong the blood circulation and enhance the targeting of the loaded agents, a variety of modification strategies can be exploited. This paper reviews the EVs-based drug delivery strategies in cancer therapy. Biological, pharmacokinetics and physicochemical characteristics, isolation techniques, engineering, and drug loading strategies of EVs are discussed. The recent preclinical and clinical progresses in applications of EVs and oncolytic virus therapy based on EVs, the clinical challenges and perspectives are discussed.

Keywords: Extracellular vesicles, Exosomes, Targeted drug delivery, Nanoparticles, Cancer therapy, Drug delivery, Radiochemistry.

Graphical Abstract
[1]
Sun, Y.Z.; Ruan, J.S.; Jiang, Z.S.; Wang, L.; Wang, S.M. Extracellular vesicles: a new perspective in tumor therapy. BioMed Res. Int., 2018. in press
[http://dx.doi.org/10.1155/2018/2687954]
[2]
Gill, S.; Catchpole, R.; Forterre, P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol. Rev., 2019, 43(3), 273-303.
[http://dx.doi.org/10.1093/femsre/fuy042] [PMID: 30476045]
[3]
Li, X.; Corbett, A.L.; Taatizadeh, E.; Tasnim, N.; Little, J.P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I.T.S. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng, 2019, 3(1)011503
[http://dx.doi.org/10.1063/1.5087122] [PMID: 31069333]
[4]
Bebelman, M.P.; Smit, M.J.; Pegtel, D.M.; Baglio, S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther., 2018, 188, 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.013] [PMID: 29476772]
[5]
Royo, F.; Cossío, U.; Ruiz de Angulo, A.; Llop, J.; Falcon-Perez, J.M. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Nanoscale, 2019, 11(4), 1531-1537.
[http://dx.doi.org/10.1039/C8NR03900C] [PMID: 30623961]
[6]
Labelle, M.; Hynes, R.O. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov., 2012, 2(12), 1091-1099.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0329] [PMID: 23166151]
[7]
Albini, A.; Bruno, A.; Gallo, C.; Pajardi, G.; Noonan, D.M.; Dallaglio, K. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect. Tissue Res., 2015, 56(5), 414-425.
[http://dx.doi.org/10.3109/03008207.2015.1066780] [PMID: 26291921]
[8]
Becker, A.; Thakur, B.K.; Weiss, J.M.; Kim, H.S.; Peinado, H.; Lyden, D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell, 2016, 30(6), 836-848.
[http://dx.doi.org/10.1016/j.ccell.2016.10.009] [PMID: 27960084]
[9]
Campanella, C.; Caruso Bavisotto, C.; Logozzi, M.; Marino Gammazza, A.; Mizzoni, D.; Cappello, F.; Fais, S. On the choice of the extracellular vesicles for therapeutic purposes. Int. J. Mol. Sci., 2019, 20(2), 20.
[http://dx.doi.org/10.3390/ijms20020236] [PMID: 30634425]
[10]
Liu, C.; Su, C. Design strategies and application progress of therapeutic exosomes. Theranostics, 2019, 9(4), 1015-1028.
[http://dx.doi.org/10.7150/thno.30853] [PMID: 30867813]
[11]
Smith, J.A.; Leonardi, T.; Huang, B.; Iraci, N.; Vega, B.; Pluchino, S. Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology, 2015, 16(2), 147-185.
[http://dx.doi.org/10.1007/s10522-014-9510-7] [PMID: 24973266]
[12]
Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, 75(2), 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[13]
He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics, 2018, 8(1), 237-255.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[14]
Yadollahpour, A.; Rashidi, S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient. J. Chem., 2015, 31, 25-30.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.03]
[15]
Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin., 2017, 38(6), 754-763.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[16]
Saari, H.; Lázaro-Ibáñez, E.; Viitala, T.; Vuorimaa-Laukkanen, E.; Siljander, P.; Yliperttula, M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells J. Control. Release, 2015, 220(Pt B), 727-737.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.031] [PMID: 26390807]
[17]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.D.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.F.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chaudhuri, A.D.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.W.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; de Candia, P.; De Santana, E.F.; De Wever, O.; del Portillo, H.A.; Demaret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez Rubio, A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.P.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; Andaloussi, E.L.S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.I.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.E.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S. ichi; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J.; Kornek, M.; Kosanović, M.M.; Kovács, Á.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I. V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.S.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē, A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, Á.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.N.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G.; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Muraca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.M.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Ostegaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.H.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.H.; Powell, B.H.; Prada, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.A.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.M.; Silva, A.M.; Skowronek, A.; Snyder, O.L.; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Tahara, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.M.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.C.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J.; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K. V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.M.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J. ye; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zimmermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 2(1), 7.
[18]
Crescitelli, R.; Lässer, C.; Szabó, T.G.; Kittel, A.; Eldh, M.; Dianzani, I.; Buzás, E.I.; Lötvall, J. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles, 2013, 2, 2.
[http://dx.doi.org/10.3402/jev.v2i0.20677] [PMID: 24223256]
[19]
Keller, S.; Ridinger, J.; Rupp, A.K.; Janssen, J.W.; Altevogt, P. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med., 2011, 9, 86.
[http://dx.doi.org/10.1186/1479-5876-9-86] [PMID: 21651777]
[20]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; Hingtgen, S.D.; Kabanov, A.V.; Batrakova, E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond.), 2016, 12(3), 655-664.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[21]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3, 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[22]
Terwogt, J.M.; Schellens, J.H.M.; Huinink, W.W.; Beijnen, J.H. Clinical pharmacology of anticancer agents in relation to formulations and administration routes. Cancer Treat. Rev., 1999, 25(2), 83-101.
[http://dx.doi.org/10.1053/ctrv.1998.0107] [PMID: 10395834]
[23]
Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 2003, 3(6), 401-410.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[24]
El-Kenawi, A.E.; El-Remessy, A.B. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br. J. Pharmacol., 2013, 170(4), 712-729.
[http://dx.doi.org/10.1111/bph.12344] [PMID: 23962094]
[25]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[26]
Rezaee, Z.; Yadollahpour, A.; Bayati, V.; Negad Dehbashi, F. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study. Int. J. Nanomedicine, 2017, 12, 1431-1439.
[http://dx.doi.org/10.2147/IJN.S128996] [PMID: 28260889]
[27]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Applications of upconversion nanoparticles in molecular imaging: a review of recent advances and future opportunities. Biosci. Biotechnol. Res. Asia, 2015, 12, 131-140.
[http://dx.doi.org/10.13005/bbra/1615]
[28]
Yadollahpour, A. Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[29]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[30]
Rezaee, Z.; Yadollahpour, A.; Rashidi, S.; Kunwar, P.S. Radiosensitizing effect of electrochemotherapy: a systematic review of protocols and efficiency. Curr. Drug Targets, 2017, 18(16), 1893-1903.
[http://dx.doi.org/10.2174/1389450118666170622091014] [PMID: 28641523]
[31]
Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.
[http://dx.doi.org/10.1016/j.nantod.2019.02.005] [PMID: 31360214]
[32]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[33]
Luan, X.; Guan, Y.Y.; Lovell, J.F.; Zhao, M.; Lu, Q.; Liu, Y.R.; Liu, H.J.; Gao, Y.G.; Dong, X.; Yang, S.C.; Zheng, L.; Sun, P.; Fang, C.; Chen, H.Z. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel. Biomaterials, 2016, 95, 60-73.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.008] [PMID: 27130953]
[34]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[35]
Liu, H.; Mai, J.; Shen, J.; Wolfram, J.; Li, Z.; Zhang, G.; Xu, R.; Li, Y.; Mu, C.; Zu, Y.; Li, X.; Lokesh, G.L.; Thiviyanathan, V.; Volk, D.E.; Gorenstein, D.G.; Ferrari, M.; Hu, Z.; Shen, H. A novel dna aptamer for dual targeting of polymorphonuclear myeloid-derived suppressor cells and tumor cells. Theranostics, 2018, 8(1), 31-44.
[http://dx.doi.org/10.7150/thno.21342] [PMID: 29290791]
[36]
Mi, Y.; Wolfram, J.; Mu, C.; Liu, X.; Blanco, E.; Shen, H.; Ferrari, M. Enzyme-responsive multistage vector for drug delivery to tumor tissue Pharmacol. Res, 2016, 113(Pt A), 92-99.
[http://dx.doi.org/10.1016/j.phrs.2016.08.024] [PMID: 27546164]
[37]
Paolino, D.; Cosco, D.; Gaspari, M.; Celano, M.; Wolfram, J.; Voce, P.; Puxeddu, E.; Filetti, S.; Celia, C.; Ferrari, M.; Russo, D.; Fresta, M. Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials, 2014, 35(25), 7101-7109.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.088] [PMID: 24836306]
[38]
Shen, J.; Liu, H.; Mu, C.; Wolfram, J.; Zhang, W.; Kim, H.C.; Zhu, G.; Hu, Z.; Ji, L.N.; Liu, X.; Ferrari, M.; Mao, Z.W.; Shen, H. Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale, 2017, 9(16), 5329-5341.
[http://dx.doi.org/10.1039/C7NR00377C] [PMID: 28398453]
[39]
Mi, Y.; Mu, C.; Wolfram, J.; Deng, Z.; Hu, T.Y.; Liu, X.; Blanco, E.; Shen, H.; Ferrari, M. A micro/nano composite for combination treatment of melanoma lung metastasis. Adv. Healthc. Mater., 2016, 5(8), 936-946.
[http://dx.doi.org/10.1002/adhm.201500910] [PMID: 26890862]
[40]
Shen, J.; Wu, X.; Lee, Y.; Wolfram, J.; Yang, Z.; Mao, Z.W.; Ferrari, M.; Shen, H. Porous silicon microparticles for delivery of siRNA therapeutics. J. Vis. Exp., 2015, (95), 52075.
[http://dx.doi.org/10.3791/52075] [PMID: 25651103]
[41]
Molinaro, R.; Wolfram, J.; Federico, C.; Cilurzo, F.; Di Marzio, L.; Ventura, C.A.; Carafa, M.; Celia, C.; Fresta, M. Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opin. Drug Deliv., 2013, 10(12), 1653-1668.
[http://dx.doi.org/10.1517/17425247.2013.840286] [PMID: 24090239]
[42]
Samuelsson, E.; Shen, H.; Blanco, E.; Ferrari, M.; Wolfram, J. Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surf. B Biointerfaces, 2017, 158, 356-362.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.014] [PMID: 28719856]
[43]
Pasut, G.; Paolino, D.; Celia, C.; Mero, A.; Joseph, A.S.; Wolfram, J.; Cosco, D.; Schiavon, O.; Shen, H.; Fresta, M. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J. Control. Release, 2015, 199, 106-113.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.008] [PMID: 25499917]
[44]
Venuta, A.; Wolfram, J.; Shen, H.; Ferrari, M. Post-nano strategies for drug delivery: Multistage porous silicon microvectors. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(2), 207-219.
[http://dx.doi.org/10.1039/C6TB01978A] [PMID: 28670454]
[45]
Scavo, M.P.; Gentile, E.; Wolfram, J.; Gu, J.; Barone, M.; Evangelopoulos, M.; Martinez, J.O.; Liu, X.; Celia, C.; Tasciotti, E.; Vilar, E.; Shen, H. Multistage vector delivery of sulindac and silymarin for prevention of colon cancer. Colloids Surf. B Biointerfaces, 2015, 136, 694-703.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.005] [PMID: 26513752]
[46]
Mu, C.; Wu, X.; Zhou, X.; Wolfram, J.; Shen, J.; Zhang, D.; Mai, J.; Xia, X.; Holder, A.M.; Ferrari, M.; Liu, X.; Shen, H. Chemotherapy sensitizes therapy-resistant cells to mild hyperthermia by suppressing heat shock protein 27 expression in triple-negative breast cancer. Clin. Cancer Res., 2018, 24(19), 4900-4912.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3872] [PMID: 29921732]
[47]
Shen, J.; Kim, H.C.; Wolfram, J.; Mu, C.; Zhang, W.; Liu, H.; Xie, Y.; Mai, J.; Zhang, H.; Li, Z.; Guevara, M.; Mao, Z.W.; Shen, H. A liposome encapsulated ruthenium polypyridine complex as a theranostic platform for triple-negative breast cancer. Nano Lett., 2017, 17(5), 2913-2920.
[http://dx.doi.org/10.1021/acs.nanolett.7b00132] [PMID: 28418672]
[48]
Haque, S.; Whittaker, M.R.; McIntosh, M.P.; Pouton, C.W.; Kaminskas, L.M. Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges. Nanomedicine (Lond.), 2016, 12(6), 1703-1724.
[http://dx.doi.org/10.1016/j.nano.2016.03.002] [PMID: 27033834]
[49]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev, 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[50]
Chow, T.H.; Lin, Y.Y.; Hwang, J.J.; Wang, H.E.; Tseng, Y.L.; Wang, S.J.; Liu, R.S.; Lin, W.J.; Yang, C.S.; Ting, G. Improvement of biodistribution and therapeutic index via increase of polyethylene glycol on drug-carrying liposomes in an HT-29/luc xenografted mouse model. Anticancer Res., 2009, 29(6), 2111-2120.
[PMID: 19528471]
[51]
Sun, L.; Wu, Q.; Peng, F.; Liu, L.; Gong, C. Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf. B Biointerfaces, 2015, 135, 56-72.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.013] [PMID: 26241917]
[52]
Liu, C.; Gao, H.; Lv, P.; Liu, J.; Liu, G. Extracellular vesicles as an efficient nanoplatform for the delivery of therapeutics. Hum. Vaccin. Immunother., 2017, 13(11), 2678-2687.
[http://dx.doi.org/10.1080/21645515.2017.1363935] [PMID: 28949786]
[53]
Cho, N.J.; Hwang, L.Y.; Solandt, J.J.R.; Frank, C.W. Comparison of extruded and sonicated vesicles for planar bilayer self-assembly. Materials (Basel), 2013, 6(8), 3294-3308.
[http://dx.doi.org/10.3390/ma6083294] [PMID: 28811437]
[54]
Sil, S.; Dagur, R.S.; Liao, K.; Peeples, E.S.; Hu, G.; Periyasamy, P.; Buch, S. Strategies for the use of extracellular vesicles for the delivery of therapeutics. J. Neuroimmune Pharmacol., 2019, 15, 422-442.
[http://dx.doi.org/10.1007/s11481-019-09873-y] [PMID: 31456107]
[55]
Théry, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol., 2009, 9(8), 581-593.
[http://dx.doi.org/10.1038/nri2567] [PMID: 19498381]
[56]
Simpson, R.J.; Kalra, H.; Mathivanan, S. ExoCarta as a resource for exosomal research. J. Extracell. Vesicles, 2012, 1(1)
[http://dx.doi.org/10.3402/jev.v1i0.18374] [PMID: 24009883]
[57]
Vader, P.; Mol, E.A.; Pasterkamp, G.; Schiffelers, R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev, 2016, 160(Pt A), 148-156.
[http://dx.doi.org/10.1016/j.addr.2016.02.006] [PMID: 26928656]
[58]
Hood, J.L. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (Lond.), 2016, 11(13), 1745-1756.
[http://dx.doi.org/10.2217/nnm-2016-0102] [PMID: 27348448]
[59]
Andaloussi, E.L. S.; Mäger, I.; Breakefield, X.O.; Wood, M.J.A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov., 2013, 12(5), 347-357.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[60]
Yamamoto, T.; Kosaka, N.; Ochiya, T. Latest advances in extracellular vesicles: from bench to bedside. Sci. Technol. Adv. Mater., 2019, 20(1), 746-757.
[http://dx.doi.org/10.1080/14686996.2019.1629835] [PMID: 31447954]
[61]
Tan, S.; Wu, T.; Zhang, D.; Zhang, Z. Cell or cell membrane-based drug delivery systems. Theranostics, 2015, 5(8), 863-881.
[http://dx.doi.org/10.7150/thno.11852] [PMID: 26000058]
[62]
Hong, S.S.; Oh, K.T.; Choi, H.G.; Lim, S.J. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics, 2019, 11(10), 11.
[http://dx.doi.org/10.3390/pharmaceutics11100540] [PMID: 31627301]
[63]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[64]
Oku, N.; Namba, Y. Long-circulating liposomes. Crit. Rev. Ther. Drug Carrier Syst., 1994, 11(4), 231-270.
[PMID: 7664348]
[65]
Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin. Pharmacokinet., 2003, 42(5), 419-436.
[http://dx.doi.org/10.2165/00003088-200342050-00002] [PMID: 12739982]
[66]
Gentile, E.; Cilurzo, F.; Di Marzio, L.; Carafa, M.; Ventura, C.A.; Wolfram, J.; Paolino, D.; Celia, C. Liposomal chemotherapeutics. Future Oncol., 2013, 9(12), 1849-1859.
[http://dx.doi.org/10.2217/fon.13.146] [PMID: 24295415]
[67]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 23.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[68]
Sweetha, G.; Abraham, A.; Dhanraj, M.; Jain, A.R. Fabrication and evaluation of polylactic acid membrane for drug delivery system. Drug Invent. Today, 2018, 10, 433-436.
[69]
Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[70]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[71]
Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci., 2000, 11(4), 265-283.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[72]
Dicheva, B.M.; Koning, G.A. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors. Expert Opin. Drug Deliv., 2014, 11(1), 83-100.
[http://dx.doi.org/10.1517/17425247.2014.866650] [PMID: 24320104]
[73]
Busatto, S.; Pham, A.; Suh, A.; Shapiro, S.; Wolfram, J. Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomed. Microdevices, 2019, 21(2), 46.
[http://dx.doi.org/10.1007/s10544-019-0396-7] [PMID: 30989386]
[74]
Brézillon, S.; Pietraszek, K.; Maquart, F.X.; Wegrowski, Y. Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J., 2013, 280(10), 2369-2381.
[http://dx.doi.org/10.1111/febs.12210] [PMID: 23438179]
[75]
Bobrie, A.; Théry, C. Exosomes and communication between tumours and the immune system: are all exosomes equal? Biochem. Soc. Trans., 2013, 41(1), 263-267.
[http://dx.doi.org/10.1042/BST20120245] [PMID: 23356294]
[76]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[77]
Cocucci, E.; Racchetti, G.; Meldolesi, J. Shedding microvesicles: artefacts no more. Trends Cell Biol., 2009, 19(2), 43-51.
[http://dx.doi.org/10.1016/j.tcb.2008.11.003] [PMID: 19144520]
[78]
Shao, Y.; Shen, Y.; Chen, T.; Xu, F.; Chen, X.; Zheng, S. The functions and clinical applications of tumor-derived exosomes. Oncotarget, 2016, 7(37), 60736-60751.
[http://dx.doi.org/10.18632/oncotarget.11177] [PMID: 27517627]
[79]
Mashouri, L.; Yousefi, H.; Aref, A.R.; Ahadi, A.M.; Molaei, F.; Alahari, S.K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer, 2019, 18(1), 75.
[http://dx.doi.org/10.1186/s12943-019-0991-5] [PMID: 30940145]
[80]
Maia, J.; Caja, S.; Strano Moraes, M.C.; Couto, N.; Costa-Silva, B. Exosome-based cell-cell communication in the tumor microenvironment. Front. Cell Dev. Biol., 2018, 6, 18.
[http://dx.doi.org/10.3389/fcell.2018.00018] [PMID: 29515996]
[81]
Whiteside, T.L. Tumor-derived exosomes and their role in cancer progression. In:Advances in Clinical Chemistry; Academic Press Inc.: London, 2016, Vol. 74, pp. 103-141.
[82]
Whiteside, T.L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest., 2016, 126(4), 1216-1223.
[http://dx.doi.org/10.1172/JCI81136] [PMID: 26927673]
[83]
Lamparski, H.G.; Metha-Damani, A.; Yao, J.Y.; Patel, S.; Hsu, D.H.; Ruegg, C.; Le Pecq, J.B. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods, 2002, 270(2), 211-226.
[http://dx.doi.org/10.1016/S0022-1759(02)00330-7] [PMID: 12379326]
[84]
Armstrong, J.P.K.; Holme, M.N.; Stevens, M.M. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano, 2017, 11(1), 69-83.
[http://dx.doi.org/10.1021/acsnano.6b07607] [PMID: 28068069]
[85]
Smyth, T.; Petrova, K.; Payton, N.M.; Persaud, I.; Redzic, J.S.; Graner, M.W.; Smith-Jones, P.; Anchordoquy, T.J. Surface functionalization of exosomes using click chemistry. Bioconjug. Chem., 2014, 25(10), 1777-1784.
[http://dx.doi.org/10.1021/bc500291r] [PMID: 25220352]
[86]
Sato, Y.T.; Umezaki, K.; Sawada, S.; Mukai, S.A.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep., 2016, 6, 21933.
[http://dx.doi.org/10.1038/srep21933] [PMID: 26911358]
[87]
Delcayre, A.; Shu, H.; Le Pecq, J.B. Dendritic cell-derived exosomes in cancer immunotherapy: exploiting nature’s antigen delivery pathway. Expert Rev. Anticancer Ther., 2005, 5(3), 537-547.
[http://dx.doi.org/10.1586/14737140.5.3.537] [PMID: 16001959]
[88]
Shenoda, B.B.; Ajit, S.K. Modulation of immune responses by exosomes derived from antigen-presenting cells. Clin. Med. Insights Pathol., 2016, 9(Suppl. 1), 1-8.
[http://dx.doi.org/10.4137/CPath.S39925] [PMID: 27660518]
[89]
Quah, B.J.C.; O’Neill, H.C. The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol. Dis., 2005, 35(2), 94-110.
[http://dx.doi.org/10.1016/j.bcmd.2005.05.002] [PMID: 15975838]
[90]
van der Meel, R.; Fens, M.H.A.M.; Vader, P.; van Solinge, W.W.; Eniola-Adefeso, O.; Schiffelers, R.M. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J. Control. Release, 2014, 195, 72-85.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.049] [PMID: 25094032]
[91]
Kooijmans, S.A.A.; Vader, P.; van Dommelen, S.M.; van Solinge, W.W.; Schiffelers, R.M. Exosome mimetics: a novel class of drug delivery systems. Int. J. Nanomedicine, 2012, 7, 1525-1541.
[PMID: 22619510]
[92]
Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; Laktionov, P.P. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed Res. Int., 2018, 308545347
[93]
Walker, S.; Busatto, S.; Pham, A.; Tian, M.; Suh, A.; Carson, K.; Quintero, A.; Lafrence, M.; Malik, H.; Santana, M.X.; Wolfram, J. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics, 2019, 9(26), 8001-8017.
[http://dx.doi.org/10.7150/thno.37097] [PMID: 31754377]
[94]
Meng, W.; He, C.; Hao, Y.; Wang, L.; Li, L.; Zhu, G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv., 2020, 27(1), 585-598.
[http://dx.doi.org/10.1080/10717544.2020.1748758] [PMID: 32264719]
[95]
Bunggulawa, E.J.; Wang, W.; Yin, T.; Wang, N.; Durkan, C.; Wang, Y.; Wang, G. Recent advancements in the use of exosomes as drug delivery systems 06 biological sciences 0601 biochemistry and cell biology. J. Nanobiotechnology, 2018, 16(1), 81.
[96]
Karttunen, J.; Heiskanen, M.; Navarro-Ferrandis, V.; Das Gupta, S.; Lipponen, A.; Puhakka, N.; Rilla, K.; Koistinen, A.; Pitkänen, A. Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free micrornas. J. Extracell. Vesicles, 2019, 8(1)1555410
[http://dx.doi.org/10.1080/20013078.2018.1555410] [PMID: 30574280]
[97]
Busatto, S.; Vilanilam, G.; Ticer, T.; Lin, W-L.; Dickson, D.W.; Shapiro, S.; Bergese, P.; Wolfram, J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells, 2018, 7(12), 273.
[http://dx.doi.org/10.3390/cells7120273] [PMID: 30558352]
[98]
Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release, 2016, 240, 332-348.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.020] [PMID: 26774224]
[99]
Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle uptake: the phagocyte problem. Nano Today, 2015, 10(4), 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]
[100]
Borrelli, D.A.; Yankson, K.; Shukla, N.; Vilanilam, G.; Ticer, T.; Wolfram, J. Extracellular vesicle therapeutics for liver disease. J. Control. Release, 2018, 273, 86-98.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.022] [PMID: 29373816]
[101]
Charoenviriyakul, C.; Takahashi, Y.; Morishita, M.; Matsumoto, A.; Nishikawa, M.; Takakura, Y. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur. J. Pharm. Sci., 2017, 96, 316-322.
[http://dx.doi.org/10.1016/j.ejps.2016.10.009] [PMID: 27720897]
[102]
Imai, T.; Takahashi, Y.; Nishikawa, M.; Kato, K.; Morishita, M.; Yamashita, T.; Matsumoto, A.; Charoenviriyakul, C.; Takakura, Y. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J. Extracell. Vesicles, 2015, 4, 26238.
[http://dx.doi.org/10.3402/jev.v4.26238] [PMID: 25669322]
[103]
Somiya, M.; Yoshioka, Y.; Ochiya, T. Drug delivery application of extracellular vesicles; insight into production, drug loading, targeting, and pharmacokinetics. AIMS Bioeng., 2017, 4, 73-92.
[http://dx.doi.org/10.3934/bioeng.2017.1.73]
[104]
Wiklander, O.P.B.; Nordin, J.Z.; O’Loughlin, A.; Gustafsson, Y.; Corso, G.; Mäger, I.; Vader, P.; Lee, Y.; Sork, H.; Seow, Y.; Heldring, N.; Alvarez-Erviti, L.; Smith, C.I.; Le Blanc, K.; Macchiarini, P.; Jungebluth, P.; Wood, M.J.A.; Andaloussi, S.E.L. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles, 2015, 4, 26316.
[http://dx.doi.org/10.3402/jev.v4.26316] [PMID: 25899407]
[105]
Zhuang, X.; Xiang, X.; Grizzle, W.; Sun, D.; Zhang, S.; Axtell, R.C.; Ju, S.; Mu, J.; Zhang, L.; Steinman, L.; Miller, D.; Zhang, H.G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther., 2011, 19(10), 1769-1779.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[106]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Bovine milk-derived exosomes for drug delivery. Cancer Lett., 2016, 371(1), 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[107]
Coumans, F.A.W.; Brisson, A.R.; Buzas, E.I.; Dignat-George, F.; Drees, E.E.E.; El-Andaloussi, S.; Emanueli, C.; Gasecka, A.; Hendrix, A.; Hill, A.F.; Lacroix, R.; Lee, Y.; van Leeuwen, T.G.; Mackman, N.; Mäger, I.; Nolan, J.P.; van der Pol, E.; Pegtel, D.M.; Sahoo, S.; Siljander, P.R.M.; Sturk, G.; de Wever, O.; Nieuwland, R. Methodological guidelines to study extracellular vesicles. Circ. Res., 2017, 120(10), 1632-1648.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309417] [PMID: 28495994]
[108]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[109]
Gerlowski, L.E.; Jain, R.K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res., 1986, 31(3), 288-305.
[http://dx.doi.org/10.1016/0026-2862(86)90018-X]] [PMID: 2423854]
[110]
Prabhakar, U.; Maeda, H.; Jain, K.R.; Sevick-Muraca, E.M.; Zamboni, W.; Farokhzad, O.C.; Barry, S.T.; Gabizon, A.; Grodzinski, P.; Blakey, D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res., 2013, 73(8), 2412-2417.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561]
[111]
Clark, A.J.; Wiley, D.T.; Zuckerman, J.E.; Webster, P.; Chao, J.; Lin, J.; Yen, Y.; Davis, M.E. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc. Natl. Acad. Sci. USA, 2016, 113(14), 3850-3854.
[http://dx.doi.org/10.1073/pnas.1603018113] [PMID: 27001839]
[112]
Natfji, A.A.; Ravishankar, D.; Osborn, H.M.I.; Greco, F. Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J. Pharm. Sci., 2017, 106(11), 3179-3187.
[http://dx.doi.org/10.1016/j.xphs.2017.06.019] [PMID: 28669714]
[113]
Presant, C.A.; Blayney, D.; Proffitt, R.T.; Turner, A.F.; Williams, L.E.; Nadel, H.I.; Kennedy, P.; Wiseman, C.; Gala, K.; Crossley, R.J. Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet, 1990, 335(8701), 1307-1309.
[http://dx.doi.org/10.1016/0140-6736(90)91188-G] [PMID: 1971378]
[114]
Boulikas, T.; Stathopoulos, G.P.; Volakakis, N.; Vougiouka, M. Systemic Lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Res., 2005, 25(4), 3031-3039.
[PMID: 16080562]
[115]
Manca, S.; Upadhyaya, B.; Mutai, E.; Desaulniers, A.T.; Cederberg, R.A.; White, B.R.; Zempleni, J. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci. Rep., 2018, 8(1), 11321.
[http://dx.doi.org/10.1038/s41598-018-29780-1] [PMID: 30054561]
[116]
Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[117]
Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4), 341-345.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[118]
Bellavia, D.; Raimondo, S.; Calabrese, G.; Forte, S.; Cristaldi, M.; Patinella, A.; Memeo, L.; Manno, M.; Raccosta, S.; Diana, P.; Cirrincione, G.; Giavaresi, G.; Monteleone, F.; Fontana, S.; De Leo, G.; Alessandro, R. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo Chronic Myelogenous Leukemia cell growth. Theranostics, 2017, 7(5), 1333-1345.
[http://dx.doi.org/10.7150/thno.17092] [PMID: 28435469]
[119]
Zhang, P.; Zhang, L.; Qin, Z.; Hua, S.; Guo, Z.; Chu, C.; Lin, H.; Zhang, Y.; Li, W.; Zhang, X.; Chen, X.; Liu, G. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv. Mater., 2018, 30(7), 30.
[http://dx.doi.org/10.1002/adma.201705350] [PMID: 29280210]
[120]
Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater. Res., 2018, 22, 13.
[http://dx.doi.org/10.1186/s40824-018-0123-0] [PMID: 29686885]
[121]
Wang, M.; Altinoglu, S.; Takeda, Y.S.; Xu, Q. Integrating protein engineering and bioorthogonal click conjugation for extracellular vesicle modulation and intracellular delivery. PLoS One, 2015, 10(11)e0141860
[http://dx.doi.org/10.1371/journal.pone.0141860] [PMID: 26529317]
[122]
García-Manrique, P.; Matos, M.; Gutiérrez, G.; Pazos, C.; Blanco-López, M.C. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J. Extracell. Vesicles, 2018, 7(1)1422676
[http://dx.doi.org/10.1080/20013078.2017.1422676] [PMID: 29372017]
[123]
Meng, F.; Zhong, Y.; Cheng, R.; Deng, C.; Zhong, Z. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine (Lond.), 2014, 9(3), 487-499.
[http://dx.doi.org/10.2217/nnm.13.212] [PMID: 24746192]
[124]
Behr, J-P. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia (Aarau), 1997, 51(2), 34-36.
[125]
Lee, H.; Park, H.; Noh, G.J.; Lee, E.S. pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr. Polym., 2018, 202, 323-333.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.141] [PMID: 30287007]
[126]
Lee, H.; Park, H.; Yu, H.S.; Na, K.; Oh, K.T.; Lee, E.S. Dendritic cell-targeted ph-responsive extracellular vesicles for anticancer vaccination. Pharmaceutics, 2019, 11(2), 11.
[http://dx.doi.org/10.3390/pharmaceutics12010011] [PMID: 30691225]
[127]
Nakase, I.; Futaki, S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci. Rep., 2015, 5, 10112.
[http://dx.doi.org/10.1038/srep10112] [PMID: 26011176]
[128]
Schultz, M.J.; Holdbrooks, A.T.; Chakraborty, A.; Grizzle, W.E.; Landen, C.N.; Buchsbaum, D.J.; Conner, M.G.; Arend, R.C.; Yoon, K.J.; Klug, C.A.; Bullard, D.C.; Kesterson, R.A.; Oliver, P.G.; O’Connor, A.K.; Yoder, B.K.; Bellis, S.L. The tumor-associated glycosyltransferase st6gal-i regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res., 2016, 76(13), 3978-3988.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2834] [PMID: 27216178]
[129]
Agrawal, P.; Fontanals-Cirera, B.; Sokolova, E.; Jacob, S.; Vaiana, C.A.; Argibay, D.; Davalos, V.; McDermott, M.; Nayak, S.; Darvishian, F.; Castillo, M.; Ueberheide, B.; Osman, I.; Fenyö, D.; Mahal, L.K.; Hernando, E. A systems biology approach identifies fut8 as a driver of melanoma metastasis. Cancer Cell, 2017, 31(6), 804-819.e7.
[http://dx.doi.org/10.1016/j.ccell.2017.05.007] [PMID: 28609658]
[130]
Glavey, S.V.; Huynh, D.; Reagan, M.R.; Manier, S.; Moschetta, M.; Kawano, Y.; Roccaro, A.M.; Ghobrial, I.M.; Joshi, L.; O’Dwyer, M.E. The cancer glycome: carbohydrates as mediators of metastasis. Blood Rev., 2015, 29(4), 269-279.
[http://dx.doi.org/10.1016/j.blre.2015.01.003] [PMID: 25636501]
[131]
Fuster, M.M.; Esko, J.D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer, 2005, 5(7), 526-542.
[http://dx.doi.org/10.1038/nrc1649] [PMID: 16069816]
[132]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl., 2010, 49(36), 6288-6308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[133]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[134]
Khalid, A.; Persano, S.; Shen, H.; Zhao, Y.; Blanco, E.; Ferrari, M.; Wolfram, J. Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opin. Drug Deliv., 2017, 14(7), 865-877.
[http://dx.doi.org/10.1080/17425247.2017.1243527] [PMID: 27690153]
[135]
Pelt, J.; Busatto, S.; Ferrari, M.; Thompson, E.A.; Mody, K.; Wolfram, J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol. Ther., 2018, 191, 43-49.
[http://dx.doi.org/10.1016/j.pharmthera.2018.06.007] [PMID: 29932886]
[136]
Ivens, I.A.; Achanzar, W.; Baumann, A.; Brändli-Baiocco, A.; Cavagnaro, J.; Dempster, M.; Depelchin, B.O.; Rovira, A.R.; Dill-Morton, L.; Lane, J.H.; Reipert, B.M.; Salcedo, T.; Schweighardt, B.; Tsuruda, L.S.; Turecek, P.L.; Sims, J. PEGylated biopharmaceuticals: current experience and considerations for nonclinical development. Toxicol. Pathol., 2015, 43(7), 959-983.
[http://dx.doi.org/10.1177/0192623315591171] [PMID: 26239651]
[137]
Kooijmans, S.A.A.; Fliervoet, L.A.L.; van der Meel, R.; Fens, M.H.A.M.; Heijnen, H.F.G.; van Bergen En Henegouwen, P.M.P.; Vader, P.; Schiffelers, R.M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Control. Release, 2016, 224, 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.009] [PMID: 26773767]
[138]
Ishida, T.; Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm., 2008, 354(1-2), 56-62.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.005] [PMID: 18083313]
[139]
Jiang, L.; Vader, P.; Schiffelers, R.M. Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Ther., 2017, 24(3), 157-166.
[http://dx.doi.org/10.1038/gt.2017.8] [PMID: 28140387]
[140]
Zhang, S.; Zhao, B.; Jiang, H.; Wang, B.; Ma, B. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control. Release, 2007, 123(1), 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.016] [PMID: 17716771]
[141]
Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release, 2006, 114(1), 100-109.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.014] [PMID: 16831482]
[142]
Tang, K.; Zhang, Y.; Zhang, H.; Xu, P.; Liu, J.; Ma, J.; Lv, M.; Li, D.; Katirai, F.; Shen, G.X.; Zhang, G.; Feng, Z.H.; Ye, D.; Huang, B. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat. Commun., 2012, 3, 1282.
[http://dx.doi.org/10.1038/ncomms2282] [PMID: 23250412]
[143]
Xu, C.; Xia, M.; Meng, G.; Li, C.; Jiang, A.; Wei, J. Carrier cells for delivery of oncolytic measles virus into tumors: determinants of efficient loading. Virol. Sin., 2018, 33(3), 234-240.
[http://dx.doi.org/10.1007/s12250-018-0033-2] [PMID: 29767404]
[144]
Garofalo, M.; Saari, H.; Somersalo, P.; Crescenti, D.; Kuryk, L.; Aksela, L.; Capasso, C.; Madetoja, M.; Koskinen, K.; Oksanen, T.; Mäkitie, A.; Jalasvuori, M.; Cerullo, V.; Ciana, P.; Yliperttula, M. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J. Control. Release, 2018, 283, 223-234.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.015] [PMID: 29864473]
[145]
Gorbet, M.J.; Ranjan, A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol. Ther., 2020, 207107456
[http://dx.doi.org/10.1016/j.pharmthera.2019.107456] [PMID: 31863820]
[146]
Lv, P.; Liu, X.; Chen, X.; Liu, C.; Zhang, Y.; Chu, C.; Wang, J.; Wang, X.; Chen, X.; Liu, G. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano Lett., 2019, 19(5), 2993-3001.
[http://dx.doi.org/10.1021/acs.nanolett.9b00145] [PMID: 30964695]
[147]
Agrawal, A.K.; Aqil, F.; Jeyabalan, J.; Spencer, W.A.; Beck, J.; Gachuki, B.W.; Alhakeem, S.S.; Oben, K.; Munagala, R.; Bondada, S.; Gupta, R.C. Milk-derived exosomes for oral delivery of paclitaxel. nanomedicine nanotechnology. Biol. Med. (Aligarh), 2017, 13, 1627-1636.
[148]
Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; Batrakova, E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release, 2015, 207, 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[149]
Wahlgren, J.; De, L. Karlson, T.; Brisslert, M.; Vaziri Sani, F.; Telemo, E.; Sunnerhagen, P.; Valadi, H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res., 2012, 40(17)e130
[http://dx.doi.org/10.1093/nar/gks463] [PMID: 22618874]
[150]
Shtam, T.A.; Kovalev, R.A.; Varfolomeeva, E.Y.; Makarov, E.M.; Kil, Y.V.; Filatov, M.V. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun. Signal., 2013, 11, 88.
[http://dx.doi.org/10.1186/1478-811X-11-88] [PMID: 24245560]
[151]
Wang, Y.; Chen, X.; Tian, B.; Liu, J.; Yang, L.; Zeng, L.; Chen, T.; Hong, A.; Wang, X. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics, 2017, 7(5), 1360-1372.
[http://dx.doi.org/10.7150/thno.16532] [PMID: 28435471]
[152]
Fuhrmann, G.; Serio, A.; Mazo, M.; Nair, R.; Stevens, M.M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release, 2015, 205, 35-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.029] [PMID: 25483424]
[153]
O’Loughlin, A.J.; Mäger, I.; de Jong, O.G.; Varela, M.A.; Schiffelers, R.M.; El Andaloussi, S.; Wood, M.J.A.; Vader, P. Functional delivery of lipid-conjugated sirna by extracellular vesicles. Mol. Ther., 2017, 25(7), 1580-1587.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.021] [PMID: 28392161]
[154]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[155]
Yadollahpour, A.; Rezaee, Z. Electroporation as a new cancer treatment technique: a review on the mechanisms of action. Biomed. Pharmacol. J., 2014, 7, 53-62.
[http://dx.doi.org/10.13005/bpj/452]
[156]
Garcia, P.A.; Pancotto, T.; Rossmeisl, J.H., Jr; Henao-Guerrero, N.; Gustafson, N.R.; Daniel, G.B.; Robertson, J.L.; Ellis, T.L.; Davalos, R.V.; Rossmeisl, J.H.; Henao-Guerrero, N.; Gustafson, N.R.; Daniel, G.B.; Robertson, J.L.; Ellis, T.L.; Davalos, R.V. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol. Cancer Res. Treat., 2011, 10(1), 73-83.
[http://dx.doi.org/10.7785/tcrt.2012.500181] [PMID: 21214290]
[157]
Soden, D.M.; Larkin, J.O.; Collins, C.G.; Tangney, M.; Aarons, S.; Piggott, J.; Morrissey, A.; Dunne, C.; O’Sullivan, G.C. Successful application of targeted electrochemotherapy using novel flexible electrodes and low dose bleomycin to solid tumours. Cancer Lett., 2006, 232(2), 300-310.
[http://dx.doi.org/10.1016/j.canlet.2005.03.057] [PMID: 15964138]
[158]
Rezaee, Z.; Yadollahpour, A.; Bayati, V. Single intense microsecond electric pulse induces radiosensitization to ionizing radiation: effects of time intervals between electric pulse and ionizing irradiation. Front. Oncol., 2018, 8, 418.
[http://dx.doi.org/10.3389/fonc.2018.00418] [PMID: 30319980]
[159]
Goh, W.J.; Lee, C.K.; Zou, S.; Woon, E.C.Y.; Czarny, B.; Pastorin, G. Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy. Int. J. Nanomedicine, 2017, 12, 2759-2767.
[http://dx.doi.org/10.2147/IJN.S131786] [PMID: 28435256]
[160]
Jamur, M.C.; Oliver, C. Permeabilization of cell membranes. Methods Mol. Biol., 2010, 588, 63-66.
[http://dx.doi.org/10.1007/978-1-59745-324-0_9] [PMID: 20012820]
[161]
Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: a review. Phytochem. Rev., 2010, 9(3), 425-474.
[http://dx.doi.org/10.1007/s11101-010-9183-z] [PMID: 20835386]
[162]
Singh, A.; Trivedi, P.; Jain, N.K. Advances in siRNA delivery in cancer therapy. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 274-283.
[http://dx.doi.org/10.1080/21691401.2017.1307210] [PMID: 28423924]
[163]
Cardarelli, F.; Digiacomo, L.; Marchini, C.; Amici, A.; Salomone, F.; Fiume, G.; Rossetta, A.; Gratton, E.; Pozzi, D.; Caracciolo, G. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Sci. Rep., 2016, 6, 25879.
[http://dx.doi.org/10.1038/srep25879] [PMID: 27165510]
[164]
Didiot, M.C.; Hall, L.M.; Coles, A.H.; Haraszti, R.A.; Godinho, B.M.D.C.; Chase, K.; Sapp, E.; Ly, S.; Alterman, J.F.; Hassler, M.R.; Echeverria, D.; Raj, L.; Morrissey, D.V.; DiFiglia, M.; Aronin, N.; Khvorova, A. Exosome-mediated delivery of hydrophobically modified sirna for huntingtin mrna silencing. Mol. Ther., 2016, 24(10), 1836-1847.
[http://dx.doi.org/10.1038/mt.2016.126] [PMID: 27506293]
[165]
Wang, T.; Larcher, L.M.; Ma, L.; Veedu, R.N. Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules, 2018, 23(10), 23.
[http://dx.doi.org/10.3390/molecules23102564] [PMID: 30297632]
[166]
Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci., 2016, 107(10), 1373-1379.
[http://dx.doi.org/10.1111/cas.13027] [PMID: 27486853]
[167]
Kuryk, L.; Haavisto, E.; Garofalo, M.; Capasso, C.; Hirvinen, M.; Pesonen, S.; Ranki, T.; Vassilev, L.; Cerullo, V. Synergistic anti-tumor efficacy of immunogenic adenovirus ONCOS-102 (Ad5/3-D24-GM-CSF) and standard of care chemotherapy in preclinical mesothelioma model. Int. J. Cancer, 2016, 139(8), 1883-1893.
[http://dx.doi.org/10.1002/ijc.30228] [PMID: 27287512]
[168]
Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; Milhem, M.; Cranmer, L.; Curti, B.; Lewis, K.; Ross, M.; Guthrie, T.; Linette, G.P.; Daniels, G.A.; Harrington, K.; Middleton, M.R.; Miller, W.H., Jr; Zager, J.S.; Ye, Y.; Yao, B.; Li, A.; Doleman, S.; VanderWalde, A.; Gansert, J.; Coffin, R.S. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol., 2015, 33(25), 2780-2788.
[http://dx.doi.org/10.1200/JCO.2014.58.3377] [PMID: 26014293]
[169]
Coffin, R. Interview with Robert Coffin, inventor of T-VEC: the first oncolytic immunotherapy approved for the treatment of cancer. Immunotherapy, 2016, 8(2), 103-106.
[http://dx.doi.org/10.2217/imt.15.116] [PMID: 26799112]
[170]
Heise, C.; Sampson-Johannes, A.; Williams, A.; McCormick, F.; Von Hoff, D.D.; Kirn, D.H. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med., 1997, 3(6), 639-645.
[http://dx.doi.org/10.1038/nm0697-639] [PMID: 9176490]
[171]
Xia, Z.J.; Chang, J.H.; Zhang, L.; Jiang, W.Q.; Guan, Z.Z.; Liu, J.W.; Zhang, Y.; Hu, X.H.; Wu, G.H.; Wang, H.Q.; Chen, Z.C.; Chen, J.C.; Zhou, Q.H.; Lu, J.W.; Fan, Q.X.; Huang, J.J.; Zheng, X. [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus]. Chin. J. Cancer, 2004, 23(12), 1666-1670.
[PMID: 15601557]
[172]
Garber, K. China approves world’s first oncolytic virus therapy for cancer treatment. J. Natl. Cancer Inst., 2006, 98(5), 298-300.
[http://dx.doi.org/10.1093/jnci/djj111] [PMID: 16507823]
[173]
Sheng, G.; Chen, Y.; Han, L.; Huang, Y.; Liu, X.; Li, L.; Mao, Z. Encapsulation of indocyanine green into cell membrane capsules for photothermal cancer therapy. Acta Biomater., 2016, 43, 251-261.
[http://dx.doi.org/10.1016/j.actbio.2016.07.012] [PMID: 27422197]
[174]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[175]
Wolfram, J.; Yang, Y.; Shen, J.; Moten, A.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. The nano-plasma interface: Implications of the protein corona. Colloids Surf. B Biointerfaces, 2014, 124, 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.035] [PMID: 24656615]
[176]
Johnsen, K.B.; Gudbergsson, J.M.; Duroux, M.; Moos, T.; Andresen, T.L.; Simonsen, J.B. On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems - A commentary. J. Control. Release, 2018, 269, 10-14.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.002] [PMID: 29126999]
[177]
Stremersch, S.; Vandenbroucke, R.E.; Van Wonterghem, E.; Hendrix, A.; De Smedt, S.C.; Raemdonck, K. Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J. Control. Release, 2016, 232, 51-61.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.005] [PMID: 27072025]
[178]
Yurkin, S.T.; Wang, Z. Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery. Nanomedicine (Lond.), 2017, 12(16), 2007-2019.
[http://dx.doi.org/10.2217/nnm-2017-0100] [PMID: 28745122]
[179]
Liang, H.; Huang, K.; Su, T.; Li, Z.; Hu, S.; Dinh, P.U.; Wrona, E.A.; Shao, C.; Qiao, L.; Vandergriff, A.C.; Hensley, M.T.; Cores, J.; Allen, T.; Zhang, H.; Zeng, Q.; Xing, J.; Freytes, D.O.; Shen, D.; Yu, Z.; Cheng, K. Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano, 2018, 12(7), 6536-6544.
[http://dx.doi.org/10.1021/acsnano.8b00553] [PMID: 29943967]
[180]
Fang, R.H.; Hu, C.M.J.; Chen, K.N.H.; Luk, B.T.; Carpenter, C.W.; Gao, W.; Li, S.; Zhang, D.E.; Lu, W.; Zhang, L. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale, 2013, 5(19), 8884-8888.
[http://dx.doi.org/10.1039/c3nr03064d] [PMID: 23907698]
[181]
Fu, Q.; Lv, P.; Chen, Z.; Ni, D.; Zhang, L.; Yue, H.; Yue, Z.; Wei, W.; Ma, G. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale, 2015, 7(9), 4020-4030.
[http://dx.doi.org/10.1039/C4NR07027E] [PMID: 25653083]
[182]
Hu, C.M.J.; Fang, R.H.; Wang, K.C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.H.; Kroll, A.V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S.H.; Zhu, J.; Shi, W.; Hofman, F.M.; Chen, T.C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571), 118-121.
[http://dx.doi.org/10.1038/nature15373] [PMID: 26374997]
[183]
Li, R.; He, Y.; Zhang, S.; Qin, J.; Wang, J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B, 2018, 8(1), 14-22.
[http://dx.doi.org/10.1016/j.apsb.2017.11.009] [PMID: 29872619]
[184]
Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H.N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater., 2015, 27(44), 7043-7050.
[http://dx.doi.org/10.1002/adma.201503323] [PMID: 26416431]
[185]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D.S.; Roh, T.Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y.K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[186]
Wu, M.; Le, W.; Mei, T.; Wang, Y.; Chen, B.; Liu, Z.; Xue, C. Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy. Int. J. Nanomedicine, 2019, 14, 4431-4448.
[http://dx.doi.org/10.2147/IJN.S200284] [PMID: 31354269]
[187]
Suh, A.; Pham, A.; Cress, M.J.; Pincelli, T.; TerKonda, S.P.; Bruce, A.J.; Zubair, A.C.; Wolfram, J.; Shapiro, S.A. Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation. Ageing Res. Rev., 2019, 54100933
[http://dx.doi.org/10.1016/j.arr.2019.100933] [PMID: 31247326]
[188]
Escudier, B.; Dorval, T.; Chaput, N.; André, F.; Caby, M.P.; Novault, S.; Flament, C.; Leboulaire, C.; Borg, C.; Amigorena, S.; Boccaccio, C.; Bonnerot, C.; Dhellin, O.; Movassagh, M.; Piperno, S.; Robert, C.; Serra, V.; Valente, N.; Le Pecq, J.B.; Spatz, A.; Lantz, O.; Tursz, T.; Angevin, E.; Zitvogel, L. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J. Transl. Med., 2005, 3(1), 10.
[http://dx.doi.org/10.1186/1479-5876-3-10] [PMID: 15740633]
[189]
Morse, M.A.; Garst, J.; Osada, T.; Khan, S.; Hobeika, A.; Clay, T.M.; Valente, N.; Shreeniwas, R.; Sutton, M.A.; Delcayre, A.; Hsu, D.H.; Le Pecq, J.B.; Lyerly, H.K. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med., 2005, 3(1), 9.
[http://dx.doi.org/10.1186/1479-5876-3-9] [PMID: 15723705]
[190]
Sahu, S. Hemlata; Verma, A. Adverse events related to blood transfusion. Indian J. Anaesth., 2014, 58(5), 543-551.
[http://dx.doi.org/10.4103/0019-5049.144650] [PMID: 25535415]
[191]
Karimi, N.; Cvjetkovic, A.; Jang, S.C.; Crescitelli, R.; Hosseinpour Feizi, M.A.; Nieuwland, R.; Lötvall, J.; Lässer, C. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell. Mol. Life Sci., 2018, 75(15), 2873-2886.
[http://dx.doi.org/10.1007/s00018-018-2773-4] [PMID: 29441425]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy