Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

The Use of Cyclodextrin or its Complexes as a Potential Treatment Against the 2019 Novel Coronavirus: A Mini-Review

Author(s): Sofiane Fatmi*, Lamia Taouzinet, Mohamed Skiba and Mokrane Iguer-Ouada

Volume 18, Issue 4, 2021

Published on: 17 September, 2020

Page: [382 - 386] Pages: 5

DOI: 10.2174/1567201817666200917124241

Price: $65

Open Access Journals Promotions 2
Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 has spread rapidly since its discovery in December 2019 in the Chinese province of Hubei, reaching this day all the continents. This scourge is, unfortunately, in lineage with various dangerous outbreaks such as Ebola, Cholera, Spanish flu, American seasonal flu. Until today, the best solution for the moment remains prevention (Social distancing, hand disinfection, use of masks, partial or total sanitary containment, etc.); there is also the emergence of drug treatment (research and development, clinical trials, use on patients). Recent reviews emphasized the role of membrane lipids in the infectivity mechanism of SARS-COV-2. Cholesterol-rich parts of cell membranes serve as docking places of host cells for the viruses. Coronavirus 2 is a member of a virus family with lipid envelope that fuses with host cell through endocytosis, internalizing its components in the cell. In vitro cell models have shown that depletion of cholesterol by cyclodextrin, and particularly methyl beta cyclodextrin disturb the host cell membrane lipid composition this way, reducing the attachment of the virus to the protein receptors. This review aims to summarize the state of the art of research concerning the use of cyclodextrin or its complexes as a potential treatment against this new virus and update work already published.

Keywords: COVID-19, SARS, cyclodextrins, complexes, cell cholesterol, dangerous outbreaks.

Graphical Abstract
[1]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[2]
Guangdi, L.; Erik, D.C. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2019, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41753-020-00016-0]
[3]
Coronavirus disease 2019 (COVID-19). Situation report 115. World Health Organization, May 14, 2020. https://www.who.int/emergencies/diseases/novel-coronavirus- 2019/situation-reports/
[4]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao, H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu, D.; Zhang, Z.; Liu, Y.; Liu, L. Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA, 2020, 323, 1582-1589.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[5]
Md Insiat, I.R. Current drugs with potential for treatment of COVID-19: a literature review: drugs for the treatment process of COVID-19. J. Pharm. Pharm. Sci., 2020, 23, 58-64.
[http://dx.doi.org/10.18433/jpps31002]
[6]
Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.; Tang, V.; Watson, G.L.; Bax, C.E.; Shaikh, R.; Questier, F.; Hernandez, D.; Chu, L.F.; Ramirez, C.M.; Rimoin, A.W. Face masks against COVID-19: an evidence review. PNAS, 2020, 30, 1-9.
[7]
Dalton, C.; Corbett, S.; Katelaris, A. Pre-emptive low cost social distancing and enhanced hygiene implemented before local COVID-19 transmission could decrease the number and severity of cases. Med. J. Aust., 2020, 212(10), 443-446.
[http://dx.doi.org/10.2139/ssrn.3549276]
[8]
Mark, D.; Joseph, M. Berning; Carole, C.; Trish, S.; Chad, H.; Kent, J.; Adams, Joe, W.; Mike, C. COVID-19: beyond washing your hands and social distancing. Int. J. Sci. Engr. Investigat., 2020, 99, 1-4.
[http://dx.doi.org/10.1001/jama.1991.03460200084041]
[9]
Baglivo, M.; Baronio, M.; Natalini, G.; Beccari, T.; Chiurazzi, P.; Fulcheri, E.; Petralia, PP.; Michelini, S.; Fiorentini, G.; Miggiano, GA.; Morresi, A.; Tonini, G.; Bertelli, M. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed., 2020, 91, 161-164.
[10]
Heaton, N.S.; Randall, G. Multifaceted roles for lipids in viral infection. Trends Microbiol., 2011, 19(7), 368-375.
[http://dx.doi.org/10.1016/j.tim.2011.03.007] [PMID: 21530270]
[11]
Wei, X.; She, G.; Wu, T.; Xue, C.; Cao, Y. PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway. Vet. Res. (Faisalabad), 2020, 51(1), 10.
[http://dx.doi.org/10.1186/s13567-020-0739-7] [PMID: 32041637]
[12]
Khellouf, A.; Benhenia, K.; Fatami, S.; Iguer-Ouada, M. The complementary effect of cholesterol and vitamin E preloaded in cyclodextrins on frozen bovine semen: motility parameters, membrane integrity and lipid peroxidation. Cryo Lett., 2018, 39(2), 113-120.
[PMID: 29734420]
[13]
Benhenia, K.; Lamara, A.; Fatmi, S.; Iguer-Ouada, M. Effect of cyclodextrins, cholesterol and vitamin E and their complexation on cryopreserved epididymal ram semen. Small Rumin. Res., 2016, 141, 29-35.
[http://dx.doi.org/10.1016/j.smallrumres.2016.06.009]
[14]
Mahammad, S.; Parmryd, I. Cholesterol depletion using methyl-β- cyclodextrin. Methods Mol. Biol., 2015, 1232, 91-102.
[http://dx.doi.org/10.1007/978-1-4939-1752-5_8] [PMID: 25331130]
[15]
Bhaskara-Amrit, U.R.; Agrawal, P.B.; Warmoeskerken, M.C.G. Applications of B -cyclodextrins in textiles. AUTEX Res. J., 2011, 11, 94-101.
[16]
Del-Valle, E.M.M. Cyclodextrins and their uses: a review. Process Biochem., 2004, 39, 1033-1046.
[http://dx.doi.org/10.1016/S0032-9592(03)00258-9]
[17]
Fatmi, S.; Bournine, L.; Iguer-Ouada, M.; Lahiani-Skiba, M.; Bouchal, F.; Skiba, M. Amorphous solid dispersion studies of camptothecin-cyclodextrin inclusion complexes in PEG 6000. Acta Pol. Pharm., 2015, 72(1), 179-192.
[PMID: 25850214]
[18]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed. Res. Int., 2015, 2015, 198268.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[19]
di Cagno, M.P. The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Molecules, 2016, 22(1), 1-15.
[http://dx.doi.org/10.3390/molecules22010001] [PMID: 28029138]
[20]
López, C.A.; de Vries, A.H.; Marrink, S.J. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLOS Comput. Biol., 2011, 7(3), e1002020.
[http://dx.doi.org/10.1371/journal.pcbi.1002020] [PMID: 21455285]
[21]
Zidovetzki, R.; Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta, 2007, 1768(6), 1311-1324.
[http://dx.doi.org/10.1016/j.bbamem.2007.03.026] [PMID: 17493580]
[22]
Jones, S.T.; Cagno, V.; Janeček, M.; Ortiz, D.; Gasilova, N.; Piret, J.; Gasbarri, M.; Constant, D.A.; Han, Y.; Vuković, L.; Král, P.; Kaiser, L.; Huang, S.; Constant, S.; Kirkegaard, K.; Boivin, G.; Stellacci, F.; Tapparel, C. Modified cyclodextrins as broad-spectrum antivirals. Sci. Adv., 2020, 6(5), eaax9318.
[http://dx.doi.org/10.1126/sciadv.aax9318] [PMID: 32064341]
[23]
Du, W.; Ayscough, K.R. Methyl β-cyclodextrin reduces accumulation of reactive oxygen species and cell death in yeast. Free Radic. Biol. Med., 2009, 46(11), 1478-1487.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.032] [PMID: 19272445]
[24]
Shrestha, S. Statin drug therapy may increase covid-19 infection. Nepalese Medical J., 2020, 3, 1.
[http://dx.doi.org/10.3126/nmj.v3i1.28256]
[25]
Jiang, Y.; Liu, S.; Shen, S.; Guo, H.; Huang, H.; Wei, W. Methyl-β-cyclodextrin inhibits EV-D68 virus entry by perturbing the accumulation of virus particles and ICAM-5 in lipid rafts. Antiviral Res., 2020, 176, 104752.
[http://dx.doi.org/10.1016/j.antiviral.2020.104752] [PMID: 32101770]
[26]
Carrouel, F.; Conte, M.P.; Fisher, J.; Gonçalves, L.S.; Dussart, C.; Llodra, J.C.; Bourgeois, D. COVID-19: a recommendation to examine the effect of mouthrinses with β-cyclodextrin combined with citrox in preventing infection and progression. J. Clin. Med., 2020, 9(4), E1126.
[http://dx.doi.org/10.3390/jcm9041126] [PMID: 32326426]
[27]
Sun, P.; Lu, X.; Xu, C.; Wang, Y.; Sun, W.; Xi, J. CD-sACE2 inclusion compounds: an effective treatment for coronavirus disease 2019 (COVID-19). J. Med. Virol., 2020, 92(10), 1721-1723.
[http://dx.doi.org/10.1002/jmv.25804] [PMID: 32232976]
[28]
Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res., 2020, 32(7), 1195-1198.
[http://dx.doi.org/10.1007/s40520-020-01570-8] [PMID: 32377965]
[29]
Panarese, A.; Shahini, E. Letter: covid-19, and vitamin D. Aliment. Pharmacol. Ther., 2020, 51(10), 993-995.
[http://dx.doi.org/10.1111/apt.15752] [PMID: 32281109]
[30]
Meneguzzo, F.; Ciriminna, R.; Zabini, F.; Pagliaro, M. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes (Basel), 2020, 8, 549.
[http://dx.doi.org/10.3390/pr8050549]
[31]
Sawikowska, A. Meta-analysis of flavonoids with antiviral potential against coronavirus. Biometrical Lett., 2020, 57(1), 13-22.
[http://dx.doi.org/10.2478/bile-2020-0002]
[32]
Abdalkader, S.L.; Alia Essam, M.A.; Majida, G. Computational study of oseltamivir, chloroquine, hydroxy chloroquine, ribavirin and kaletra against lysosomal protease Int. J. Psychosoc. Rehabil., 2020, 24, 1170-1176.
[http://dx.doi.org/10.37200/IJPR/V24I5/PR201792]
[33]
Sandro, G. Viveiros,R. and Wilson, C S. “Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44, e40.
[http://dx.doi.org/10.26633/RPSP.2020.40]
[34]
Loftsson, T. Cyclodextrins and the biopharmaceutics classification system of drugs. J. Inclusion Phenomena, 2002, 44, 63-67.
[http://dx.doi.org/10.1023/A:1023088423667]
[35]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci., 1996, 85(10), 1017-1025.
[http://dx.doi.org/10.1021/js950534b] [PMID: 8897265]
[36]
Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 2018, 23(5), 1161-1176.
[http://dx.doi.org/10.3390/molecules23051161] [PMID: 29751694]
[37]
Cyclodextrins used as excipients, Committee for human medicinal products. Euro. Med. Agency, 2017, 1-16.
[38]
Raymond, C.R.; Paul , J.S.; Marian, E.Q Handbook of pharmaceutical excipients. Pharmaceut. Press Am. Pharmacists Associat., (6th ed. ) 2009, 1-855.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy