[1]
D.J. Thirumaran, and S. Shylaja, "Medical image processing– A introduction", Int. J. Sci. Res., vol. 4, no. 11, pp. 1197-1199, 2015.
[2]
J.R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective., 4th ed Pearson: Glenview, IL, 2015.
[3]
J.T. Bushberg, and J.M. Boone, The Essential Physics of Medical Imaging., Lippincott Williams and Wilkin, 2011.
[4]
A. Elangovan, and T. Jeyaseelan, "Medical imaging modalities: A survey", Proceedings of 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), 2016pp. 1-4
[5]
P. Smitha, L. Shaji, and M.G. Mini, "A review of medical image classification techniques In", Proceedings of International Conference on VLSI, Communication Instrumentation. 2011, pp. 34-38.
[6]
L. Qin, Q. Zheng, S. Jiang, Q. Huang, and W. Gao, "Unsupervised texture classification: Automatically discover and classify texture patterns", Image Vis. Comput., vol. 26, no. 5, pp. 647-656, 2008.
[7]
A. Materka, and M. Strzelecki, “Texture Analysis Methods - a Review,” Technical Report., Technical University of Lodz, Institute of Electronics, 1998.
[8]
M. Yasmin, M. Sharif, and S. Mohsin, "Neural Networks in Medical Imaging Applications- A Survey", World Appl. Sci. J., vol. 22, no. 1, pp. 85-96, 2013.
[14]
S. Zhenghao, and H. Lifeng, "Application of neural networks in medical image processing", Proceedings of the Second International Symposium on Networking and Network Security, 2010pp. 2-4
[16]
J. Han, J. Pei, and M. Kamber, Data mining: Concepts and techniques., Elsevier, 2011.
[33]
G. Schaefer, B. Krawczyk, M.E. Celebiand, and H. Iyatomi, "An ensemble classification approach for melanoma diagnosis", Memetic. Comput., vol. 6, no. 4, pp. 233-240, 2014.
[35]
P.J. Werbos, Beyond Regression: New tools for prediction and analysis in the behavioral sciences, Ph.D. Thesis - Harvard University, 1974.
[40]
X.S. Yang, Nature-Inspired Meta-heuristic Algorithms., Luniver Press, 2008.
[41]
A.H. Gandomi, X.S. Yang, S. Talatahari, and A.H. Alavi, Meta-heuristic Algorithms in Modeling and Optimization.Meta-heuristic Applications in Structures and Infrastructures., Elsevier, 2013, pp. 1-24.
[42]
M. Crepinšek, S.H. Liu, and M. Mernik, "Exploration and exploitation in evolutionary algorithms: A survey", Computing Surveys (CSUR), vol. 45, no. 3, pp. 1-33, 2013. [CSUR
[49]
S. Binitha, and S.S. Sathya, "A survey of bio inspired optimization algorithms", Int. J. Soft Computing Eng., vol. 2, pp. 137-151, 2012.
[53]
K. Rao, P. P. Chand, and M. V. Murthy, "A neural network approach in medical decision systems", J. Theoretical Appl. Inf. Technol.. Vol. 3, No. 4, Dec 2007.
[72]
D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning., 1st ed Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989.
[79]
V. Bevilacqua, G. Mastronardi, F. Menolascina, P. Pannarale, and A. Pedone, "A novel multi-objective genetic algorithm approach to artificial neural network topology optimization: The breast cancer classification problem", The 2006 IEEE International Joint Conference on Neural Network Proceedings, 2006pp. 1958-1965
[81]
B. Pandey, T. Jain, V. Kothari, and T. Grover, "Evolutionary modular neural network approach for breast cancer diagnosis", Int. J. Comput. Sci. Issu., vol. 9, no. 1, pp. 219-225, 2012.
[82]
L. A. Lim, R. N. Maguib, E. P. Dadios, and J. M. Avila, "Implementation of GA-KSOM and ANFIS in the classification of colonic histopathological images", In", TENCON 2012 IEEE Region 10 Conference. 2012, pp. 1-5.
[87]
M. Settles, "An introduction to particle swarm optimization", Department of Computer Science, University of Idaho, vol. 2, p. 8, 2005.
[91]
D.J. Hemanth, C.K. Vijila, and J. Anitha, "Performance improved PSO based modified counter propagation neural network for abnormal MR brain image classification", Int. J. Advance. Soft Comput, vol. 2, no. 1, pp. 65-84, 2010.
[108]
L. Wu, and S. Wang, "Magnetic resonance brain image classification by an improved artificial bee colony algorithm", Prog. Electromagnetics Res., vol. 116, pp. 65-79, 2011.
[111]
M. Pourmandi, and J. Addeh, "Breast cancer diagnosis using fuzzy feature and optimized neural network via the Gbest-guided artificial bee colony algorithm", Comput. Res. Prog. Appli. Sci. Eng., vol. 1, no. 4, pp. 152-159, 2015.
[113]
X.S. Yang, "Cuckoo search via levy flights", 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), 2009pp. 210-214
[115]
V. Tiwari, "Face recognition based on cuckoo search algorithm", Image (IN), vol. 7, no. 8, pp. 401-405, 2012.
[116]
D.K. Nagthane, and A.M. Rajurkar, "Cuckoo search : An optimized way for mammogram feature selection", Intl. J. Curr. Eng. Scientific Res., vol. 4, no. 8, pp. 81-86, 2017.
[120]
A. Parsian, M. Ramezani, and N. Ghadimi, "A hybrid neural network-gray wolf optimization algorithm for melanoma detection", Biomed. Res. (Aligarh), vol. 28, no. 8, pp. 3408-3411, 2017.
[129]
D.T. Sarabai, and K. Arthi, "Efficient breast cancer classification using improved fuzzy cognitive maps with Csonn", Int. J. Appl. Eng. Res, vol. 11, no. 4, pp. 2478-2485, 2016.
[131]
M.R. Senapatand, and P.K. Dash, "Local linear wavelet neural network based breast tumor classification using firefly algorithm", Neural Comput. Appl., vol. 22, no. 7, pp. 1591-1598, 2013.
[135]
R.G. Raidl, "A unified view on hybrid meta-heuristics", International Workshop on Hybrid Meta-heuristics. Springer, Berlin, Heidelberg, 2006, pp. 1-12.
[136]
C. Blum, J. Puchinger, G.R. Raidl, and A. Roli, "A brief survey on hybrid meta-heuristics", Proceedings of BIOMA, 2010pp. 3-18
[137]
K. Thangavel, M. Karnan, R. Sivakumar, and A. K. Mohideen, "Ant colony system for segmentation and classification of microcalcification in mammograms", Int. J. Artif. Intell. Mach. Learn., p. pp. 298-303.
[138]
K. Geetha, and K. Thanushkodi, "New particle swarm optimization for feature selection and classification of micro-calcifications in mammograms", 2008 International Conference on Signal Processing, Communications and Networking, 2008pp. 458-463
[148]
S. Sudha, and D.M. Ezhilarasi, "Prediction of liver disorder using neuro-fuzzy system and chicken swarm optimization algorithm for ultrasound image", TAGA J., vol. 14, pp. 575-595, 2018.