Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Phytochemicals as Potential Curative Agents against Viral Infection: A Review

Author(s): Abhijeet Kumar, Anil Kumar Singh* and Garima Tripathi*

Volume 24, Issue 20, 2020

Page: [2356 - 2366] Pages: 11

DOI: 10.2174/1385272824999200910093524

Price: $65

Open Access Journals Promotions 2
Abstract

The present pandemic erupted due to highly contagious coronavirus SARS-CoV- 2, and lack of any efficient therapy to restrain its infection and treatment, led the scientific community to re-evaluate the efficacy of commonly available phytochemicals as potential therapeutic agents. The vast pharmacological activities and medicinal significance of the plant-derived natural products against a diverse range of physiological disorders and diseases are well documented. Under the current health emergency across the world, there is an urgent requirement of repurposing of the available FDA approved drugs and natural products which could help in controlling the infections and alleviating the severity of the diseases as discovering entirely new chemical entity as a novel drug would be a protracted and costly journey. Some of the phytochemicals have already displayed potential anti-viral activity against different targets of SARS-CoV-2 virus. The present review would provide an account of the prevalent phytochemicals with antiviral activities, which would help in the development of promising drug therapy for the treatment of COVID-19 and similar such highly infectious viruses.

Keywords: Phytochemicals, antiviral, flavonoids, alkaloid, terpenoids, COVID-19.

Graphical Abstract
[1]
Goldberg, D.E.; Siliciano, R.F.; Jacobs, W.R., Jr Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell, 2012, 148(6), 1271-1283.
[http://dx.doi.org/10.1016/j.cell.2012.02.021] [PMID: 22424234]
[2]
Radloff, P.D.; Philipps, J.; Nkeyi, M.; Hutchinson, D.; Kremsner, P.G. Atovaquone and proguanil for Plasmodium falciparum malaria. Lancet, 1996, 347(9014), 1511-1514.
[http://dx.doi.org/10.1016/S0140-6736(96)90671-6] [PMID: 8684102]
[3]
Blair, W.; Cox, C. Current landscape of antiviral drug discovery. F1000 Res., 2016, 5, 202.
[http://dx.doi.org/10.12688/f1000research.7665.1] [PMID: 26962437]
[4]
Plotkin, S.A.; Orenstein, W.; Offit, P.A.; Edwards, K.M. Hepatitis B vaccines.Plotkin’s Vaccines, 7th ed; Elsevier, 2018, pp. 342-374.
[5]
Plotkin, S.A.; Orenstein, W.; Offit, P.A. Poliovirus vaccine-inactivated and poliovirus vaccine-live.Plotkin’s Vaccines, 6th ed; Elsevier, 2012, pp. 573-645.
[6]
Plotkin, S.A.; Orenstein, W.; Offit, P.A. Rabies vaccines.Plotkin’s Vaccines, 6th ed; Elsevier, 2012, pp. 646-668.
[7]
Plotkin, S.A.; Orenstein, W.; Offit, P.A. Rotavirus vaccines.Plotkin’s Vaccines, 6th ed; Elsevier, 2012, pp. 669-687.
[8]
Hladish, T.J.; Pearson, C.A.B.; Toh, K.B.; Rojas, D.P.; Manrique-Saide, P.; Vazquez-Prokopec, G.M.; Halloran, M.E.; Longini, I.M., Jr Designing effective control of dengue with combined interventions. Proc. Natl. Acad. Sci. USA, 2020, 117(6), 3319-3325.
[http://dx.doi.org/10.1073/pnas.1903496117] [PMID: 31974303]
[9]
Gillim-Ross, L.; Subbarao, K. Emerging respiratory viruses: challenges and vaccine strategies. Clin. Microbiol. Rev., 2006, 19(4), 614-636.
[http://dx.doi.org/10.1128/CMR.00005-06] [PMID: 17041137]
[10]
Barouch, D.H. Challenges in the development of an HIV-1 vaccine. Nature, 2008, 455(7213), 613-619.
[http://dx.doi.org/10.1038/nature07352] [PMID: 18833271]
[11]
Pizzorno, A.; Padey, B.; Terrier, O.; Rosa-Calatrava, M. Drug repurposing approaches for the treatment of influenza viral infection: reviving old drugs to fight against a long-lived enemy. Front. Immunol., 2019, 10, 531.
[http://dx.doi.org/10.3389/fimmu.2019.00531] [PMID: 30941148]
[12]
Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: a brief overview. J. Pharm. Pharmacol., 2020, 72(9), 1145-1151.
[http://dx.doi.org/10.1111/jphp.13273] [PMID: 32301512]
[13]
Stockman, L.J.; Bellamy, R.; Garner, P. SARS: systematic review of treatment effects. PLoS Med., 2006, 3(9)e343
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[14]
Tansey, T. Influenza: a viral world war. Nature, 2017, 546, 207-208.
[http://dx.doi.org/10.1038/546207a]
[15]
Cheng, V.C.; Lau, S.K.; Woo, P.C.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev., 2007, 20(4), 660-694.
[http://dx.doi.org/10.1128/CMR.00023-07] [PMID: 17934078]
[16]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[17]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[18]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteris-tics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[20]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmo-hamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[21]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949 ]
[22]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[23]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[24]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[25]
Le, T.T.; Andreadakis, Z.; Kumar, A.; Roman, R.G.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19, 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[26]
Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead phytochemicals for anticancer drug development. Front. Plant Sci., 2016, 7, 1667.
[http://dx.doi.org/10.3389/fpls.2016.01667] [PMID: 27877185]
[27]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: an update on plant-derived com-pounds antibacterial activity. Microbiol. Res., 2017, 196, 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[28]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J., 2011, 10, 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[29]
Miller, L.H.; Su, X. Artemisinin: discovery from the Chinese herbal garden. Cell, 2011, 146(6), 855-858.
[http://dx.doi.org/10.1016/j.cell.2011.08.024] [PMID: 21907397]
[30]
Eastman, R.T.; Fidock, D.A. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat. Rev. Microbiol., 2009, 7(12), 864-874.
[http://dx.doi.org/10.1038/nrmicro2239] [PMID: 19881520]
[31]
Cragg, G.M. Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev., 1998, 18(5), 315-331.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199809)18:5<315:AID-MED3>3.0.CO;2-W] [PMID: 9735872]
[32]
Wang, S.T.; Cui, W.Q.; Pan, D.; Jiang, M.; Chang, B.; Sang, L.X. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J. Gastroenterol., 2020, 26(6), 562-597.
[http://dx.doi.org/10.3748/wjg.v26.i6.562] [PMID: 32103869]
[33]
Mileo, A.M.; Nisticò, P.; Miccadei, S. Polyphenols: immunomodulatory and therapeutic implication in colorectal cancer. Front. Immunol., 2019, 10, 729.
[http://dx.doi.org/10.3389/fimmu.2019.00729] [PMID: 31031748]
[34]
Rane, J.S.; Chatterjee, A.; Kumar, A.; Ray, S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. ChemRxiv, 2020, 2020, 1-11.
[http://dx.doi.org/10.26434/chemrxiv.12094203.v1]
[35]
Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and Quercetin: promising flavonoids with chemo-preventive potential. Biomolecules, 2019, 9(5), 174.
[http://dx.doi.org/10.3390/biom9050174] [PMID: 31064104]
[36]
Kumar, A.; Singh, A.K.; Gautam, M.K.; Tripathi, G. Role of phytochemicals in cancer cell metabolism regulation.Cancer Cell Metabolism: A Potential Target for Cancer Therapy; Kumar, D., Ed.; Springer, 2020.
[http://dx.doi.org/10.1007/978-981-15-1991-8_11]
[37]
Ha, S.Y.; Youn, H.; Song, C.S.; Kang, S.C.; Bae, J.J.; Kim, H.T.; Lee, K.M.; Eom, T.H.; Kim, I.S.; Kwak, J.H. Antiviral effect of flavonol glycosides isolated from the leaf of Zanthoxylum piperitum on influenza virus. J. Microbiol., 2014, 52(4), 340-344.
[http://dx.doi.org/10.1007/s12275-014-4073-5] [PMID: 24682996]
[38]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[39]
Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr., 2002, 76(3), 560-568.
[http://dx.doi.org/10.1093/ajcn/76.3.560] [PMID: 12198000]
[40]
Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; Hoelscher, M.; Bleicker, T.; Brünink, S.; Schneider, J.; Ehmann, R.; Zwirglmaier, K.; Drosten, C.; Wendtner, C. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020, 581(7809), 465-469.
[http://dx.doi.org/10.1038/s41586-020-2196-x] [PMID: 32235945]
[41]
Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: promising natural compounds against viral infections. Arch. Virol., 2017, 162(9), 2539-2551.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[42]
Farazuddin, M.; Mishra, R.; Jing, Y.; Srivastava, V.; Comstock, A.T.; Sajjan, U.S. Quercetin prevents rhinovirus-induced progression of lung disease in mice with COPD phenotype. PLoS One, 2018, 13(7)e0199612
[http://dx.doi.org/10.1371/journal.pone.0199612] [PMID: 29975735]
[43]
Ganesan, S.; Comstock, A.T.; Kinker, B.; Mancuso, P.; Beck, J.M.; Sajjan, U.S. Combined exposure to cigarette smoke and nontypeable Haemophilus influenzae drives development of a COPD phenotype in mice. Respir. Res., 2014, 15(1), 11.
[http://dx.doi.org/10.1186/1465-9921-15-11] [PMID: 24495712]
[44]
Lee, K.Y. Enterovirus 71 infection and neurological complications. Korean J. Pediatr., 2016, 59(10), 395-401.
[http://dx.doi.org/10.3345/kjp.2016.59.10.395] [PMID: 27826325]
[46]
Chen, B.; Sumi, A.; Toyoda, S.; Hu, Q.; Zhou, D.; Mise, K.; Zhao, J.; Kobayashi, N. Time series analysis of reported cases of hand, foot, and mouth disease from 2010 to 2013 in Wuhan, China. BMC Infect. Dis., 2015, 15, 495.
[http://dx.doi.org/10.1186/s12879-015-1233-0] [PMID: 26530702]
[47]
Yao, C.; Xi, C.; Hu, K.; Gao, W.; Cai, X.; Qin, J.; Lv, S.; Du, C.; Wei, Y. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol. J., 2018, 15(1), 116.
[http://dx.doi.org/10.1186/s12985-018-1023-6] [PMID: 30064445]
[48]
Cui, S.; Wang, J.; Fan, T.; Qin, B.; Guo, L.; Lei, X.; Wang, J.; Wang, M.; Jin, Q. Crystal structure of human enterovirus 71 3C protease. J. Mol. Biol., 2011, 408(3), 449-461.
[http://dx.doi.org/10.1016/j.jmb.2011.03.007] [PMID: 21396941]
[49]
Lin, Y.J.; Chang, Y.C.; Hsiao, N.W.; Hsieh, J.L.; Wang, C.Y.; Kung, S.H.; Tsai, F.J.; Lan, Y.C.; Lin, C.W. Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J. Virol. Methods, 2012, 182(1-2), 93-98.
[http://dx.doi.org/10.1016/j.jviromet.2012.03.020] [PMID: 22465253]
[50]
Webster, D.P.; Klenerman, P.; Dusheiko, G.M.; Hepatitis, C. Lancet, 2015, 385(9973), 1124-1135.
[http://dx.doi.org/10.1016/S0140-6736(14)62401-6] [PMID: 25687730]
[51]
Rojas, Á.; Del Campo, J.A.; Clement, S.; Lemasson, M.; García-Valdecasas, M.; Gil-Gómez, A.; Ranchal, I.; Bartosch, B.; Bautista, J.D.; Rosenberg, A.R.; Negro, F.; Romero-Gómez, M. Effect of quercetin on Hepatitis C virus life cycle: from viral to host targets. Sci. Rep., 2016, 6, 31777.
[http://dx.doi.org/10.1038/srep31777] [PMID: 27546480]
[52]
Wakita, T. Isolation of JFH-1 strain and development of an HCV infection system. Methods Mol. Biol., 2009, 510, 305-327.
[http://dx.doi.org/10.1007/978-1-59745-394-3_23] [PMID: 19009271]
[53]
Herker, E.; Harris, C.; Hernandez, C.; Carpentier, A.; Kaehlcke, K.; Rosenberg, A.R.; Farese, R.V., Jr; Ott, M. Efficient hepatitis C virus particle formation requires diacyl-glycerol acyltransferase-1. Nat. Med., 2010, 16(11), 1295-1298.
[http://dx.doi.org/10.1038/nm.2238] [PMID: 20935628]
[54]
Whitehead, S.S.; Blaney, J.E.; Durbin, A.P.; Murphy, B.R. Prospects for a dengue virus vaccine. Nat. Rev. Microbiol., 2007, 5(7), 518-528.
[http://dx.doi.org/10.1038/nrmicro1690] [PMID: 17558424]
[55]
Powell, J.R. Mosquito-borne human viral diseases: Why Aedes aegypti? Am. J. Trop. Med. Hyg., 2018, 98(6), 1563-1565.
[http://dx.doi.org/10.4269/ajtmh.17-0866] [PMID: 29557341]
[56]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; Abubakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8, 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[57]
McAuley, J.L.; Gilbertson, B.P.; Trifkovic, S.; Brown, L.E.; McKimm-Breschkin, J.L. Influenza virus neuraminidase structure and functions. Front. Microbiol., 2019, 10, 39.
[http://dx.doi.org/10.3389/fmicb.2019.00039] [PMID: 30761095]
[58]
Nickol, M.E.; Kindrachuk, J. A year of terror and a century of reflection: perspectives on the great influenza pandemic of 1918-1919. BMC Infect. Dis., 2019, 19(1), 117.
[http://dx.doi.org/10.1186/s12879-019-3750-8] [PMID: 30727970]
[59]
Myers, K.P.; Olsen, C.W.; Gray, G.C. Cases of swine influenza in humans: a review of the literature. Clin. Infect. Dis., 2007, 44(8), 1084-1088.
[http://dx.doi.org/10.1086/512813] [PMID: 17366454]
[60]
Peeples, L. News feature: avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc. Natl. Acad. Sci. USA, 2020, 117(15), 8218-8221.
[http://dx.doi.org/10.1073/pnas.2005456117] [PMID: 32229574]
[61]
Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits Influenza A Virus (IAV) entry. Viruses, 2015, 8(1), 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[62]
Qiu, X.; Kroeker, A.; He, S.; Kozak, R.; Audet, J.; Mbikay, M.; Chrétien, M. Prophylactic efficacy of quercetin 3-β-O-d-glucoside against Ebola virus infection. Antimicrob. Agents Chemother., 2016, 60(9), 5182-5188.
[http://dx.doi.org/10.1128/AAC.00307-16] [PMID: 27297486]
[63]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[64]
Jo, S.; Kim, H.; Kim, S.; Shin, D.H.; Kim, M.S. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem. Biol. Drug Des., 2019, 94(6), 2023-2030.
[http://dx.doi.org/10.1111/cbdd.13604] [PMID: 31436895]
[65]
Hills, S.L.; Phillips, D.C. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis., 2009, 15(8), 1333.
[http://dx.doi.org/10.3201/eid1508.090149] [PMID: 19751614]
[66]
Cid-Ortega, S.; Monroy-Rivera, J.A. Extraction of kaempferol and its glycosides using supercritical fluids from plant sources: A review. Food Technol. Biotechnol., 2018, 56(4), 480-493.
[http://dx.doi.org/10.17113/ftb.56.04.18.5870] [PMID: 30923445]
[67]
Saxena, S.K.; Mishra, N.; Saxena, R.; Singh, M.; Mathur, A. Trend of Japanese encephalitis in North India: evidence from thirty-eight acute encephalitis cases and appraisal of niceties. J. Infect. Dev. Ctries., 2009, 3(7), 517-530.
[http://dx.doi.org/10.3855/jidc.470] [PMID: 19762970]
[68]
Zhang, T.; Wu, Z.; Du, J.; Hu, Y.; Liu, L.; Yang, F.; Jin, Q. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS One, 2012, 7(1)e30259
[http://dx.doi.org/10.1371/journal.pone.0030259] [PMID: 22276167]
[69]
Dong, W.; Wei, X.; Zhang, F.; Hao, J.; Huang, F.; Zhang, C.; Liang, W. A dual character of flavonoids in influenza a virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways. Sci. Rep., 2014, 4, 7237.
[http://dx.doi.org/10.1038/srep07237] [PMID: 25429875]
[70]
Abdal Dayem, A.; Choi, H.Y.; Kim, Y.B.; Cho, S.G. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One, 2015, 10(3)e0121610
[http://dx.doi.org/10.1371/journal.pone.0121610] [PMID: 25806943]
[71]
Gamblin, S.J.; Skehel, J.J. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J. Biol. Chem., 2010, 285(37), 28403-28409.
[http://dx.doi.org/10.1074/jbc.R110.129809] [PMID: 20538598]
[72]
Benton, D.J.; Wharton, S.A.; Martin, S.R.; McCauley, J.W. Role of neuraminidase in Influenza A(H7N9) virus receptor binding. J. Virol., 2017, 91(11), e02293-e16.
[http://dx.doi.org/10.1128/JVI.02293-16] [PMID: 28356530]
[73]
Thirupathi, A.; Pinho, R.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J. Physiol. Biochem., 2018, 74(3), 359-367.
[http://dx.doi.org/10.1007/s13105-018-0633-1] [PMID: 29713940]
[74]
Pandey, P.; Rane, J.S.; Chatterjee, A.; Kumar, A.; Khan, R.; Prakash, A.; Ray, S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemi-cals: an in silico study for drug development. J. Biomol. Struct. Dyn., 2020, 2020, 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1796811] [PMID: 32698689]
[75]
Rivière, C.; Pawlus, A.D.; Mérillon, J.M. Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat. Prod. Rep., 2012, 29(11), 1317-1333.
[http://dx.doi.org/10.1039/c2np20049j] [PMID: 23014926]
[76]
Wu, J.M.; Wang, Z.R.; Hsieh, T.C.; Bruder, J.L.; Zou, J.G.; Huang, Y.Z. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine. (review) Int. J. Mol. Med., 2001, 8(1), 3-17.
[http://dx.doi.org/10.3892/ijmm.8.1.3] [PMID: 11408943]
[77]
Frémont, L. Biological effects of resveratrol. Life Sci., 2000, 66(8), 663-673.
[http://dx.doi.org/10.1016/S0024-3205(99)00410-5] [PMID: 10680575]
[78]
Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G.C.; Novellino, E. Resveratrol as a novel anti-herpes simplex virus nutraceutical agent: An overview. Viruses, 2018, 10(9), 473.
[http://dx.doi.org/10.3390/v10090473] [PMID: 30177661]
[79]
Bostanghadiri, N.; Pormohammad, A.; Chirani, A.S.; Pouriran, R.; Erfanimanesh, S.; Hashemi, A. Comprehensive review on the antimicrobial potency of the plant poly-phenol resveratrol. Biomed. Pharmacother., 2017, 95, 1588-1595.
[http://dx.doi.org/10.1016/j.biopha.2017.09.084] [PMID: 28950659]
[80]
Zhao, X.; Cui, Q.; Fu, Q.; Song, X.; Jia, R.; Yang, Y.; Zou, Y.; Li, L.; He, C.; Liang, X.; Yin, L.; Lin, J.; Ye, G.; Shu, G.; Zhao, L.; Shi, F.; Lv, C.; Yin, Z. Antiviral proper-ties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation. Sci. Rep., 2017, 7(1), 8782.
[http://dx.doi.org/10.1038/s41598-017-09365-0] [PMID: 28821840]
[81]
Palamara, A.T.; Nencioni, L.; Aquilano, K.; De Chiara, G.; Hernandez, L.; Cozzolino, F.; Ciriolo, M.R.; Garaci, E. Inhibition of Influenza A virus replication by resveratrol. J. Infect. Dis., 2005, 191(10), 1719-1729.
[http://dx.doi.org/10.1086/429694] [PMID: 15838800]
[82]
Dyall, J.; Gross, R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Hensley, L.E.; Frieman, M.B.; Jahrling, P.B. Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies. Drugs, 2017, 77(18), 1935-1966.
[http://dx.doi.org/10.1007/s40265-017-0830-1] [PMID: 29143192]
[83]
Lin, S-C.; Ho, C-T.; Chuo, W-H.; Li, S.; Wang, T.T.; Lin, C-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[84]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: a short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[85]
Basnet, P.; Skalko-Basnet, N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[86]
Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, 2014186864
[http://dx.doi.org/10.1155/2014/186864] [PMID: 24877064]
[87]
Li, H.; Sureda, A.; Devkota, H.P.; Pittalà, V.; Barreca, D.; Silva, A.S.; Tewari, D.; Xu, S.; Nabavi, S.M. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol. Adv., 2020, 38107343
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.010] [PMID: 30716389]
[88]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[89]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10, 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[90]
Mounce, B.C.; Cesaro, T.; Carrau, L.; Vallet, T.; Vignuzzi, M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res., 2017, 142, 148-157.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[91]
Chen, T.Y.; Chen, D.Y.; Wen, H.W.; Ou, J.L.; Chiou, S.S.; Chen, J.M.; Wong, M.L.; Hsu, W.L. Inhibition of enveloped viruses infectivity by curcumin. PLoS One, 2013, 8(5)e62482
[http://dx.doi.org/10.1371/journal.pone.0062482] [PMID: 23658730]
[92]
Chen, D.Y.; Shien, J.H.; Tiley, L.; Chiou, S.S.; Wang, S.Y.; Chang, T.J.; Lee, Y.J.; Chan, K.W.; Hsu, W.L. Curcumin inhibits influenza virus infection and haemagglutina-tion activity. Food Chem., 2010, 119, 1346-1351.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.011]
[93]
Farnsworth, N.R.; Svoboda, G.H.; Blomster, R.N. Antiviral activity of selected Catharanthus alkaloids. J. Pharm. Sci., 1968, 57(12), 2174-2175.
[http://dx.doi.org/10.1002/jps.2600571235] [PMID: 4303510]
[94]
Hallock, Y.F.; Manfredi, K.P.; Dai, J.R.; Cardellina, J.H., II; Gulakowski, R.J.; McMahon, J.B.; Schäffer, M.; Stahl, M.; Gulden, K.P.; Bringmann, G.; François, G.; Boyd, M.R. Michellamines D-F, new HIV-inhibitory dimeric naphthylisoquinoline alkaloids, and korupensamine E, a new antimalarial monomer, from Ancistrocladus korupensis. J. Nat. Prod., 1997, 60(7), 677-683.
[http://dx.doi.org/10.1021/np9700679] [PMID: 9249970]
[95]
McMahon, J.B.; Currens, M.J.; Gulakowski, R.J.; Buckheit, R.W., Jr; Lackman-Smith, C.; Hallock, Y.F.; Boyd, M.R. Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. Antimicrob. Agents Chemother., 1995, 39(2), 484-488.
[http://dx.doi.org/10.1128/AAC.39.2.484] [PMID: 7537029]
[96]
Ieven, M.; van den Berghe, D.A.; Vlietinck, A.J. Plant antiviral agents. IV. Influence of lycorine on growth pattern of three animal viruses. Planta Med., 1983, 49(2), 109-114.
[http://dx.doi.org/10.1055/s-2007-969826] [PMID: 6318251]
[97]
Manske, R.F.; Brossi, A. The Alkaloids 15; Academic Press: London, 1987, pp. 83-164.
[98]
Manske, R.F.; Brossi, A. The Alkaloids 18; Academic Press: London, 1988, pp. 99-216.
[99]
Troost, B.; Mulder, L.M.; Diosa-Toro, M.; van de Pol, D.; Rodenhuis-Zybert, I.A.; Smit, J.M. Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro. Sci. Rep., 2020, 10(1), 6364.
[http://dx.doi.org/10.1038/s41598-020-63397-7] [PMID: 32286447]
[100]
Diosa-Toro, M.; Troost, B.; van de Pol, D.; Heberle, A.M.; Urcuqui-Inchima, S.; Thedieck, K.; Smit, J.M. Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Res., 2019, 161, 90-99.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.011] [PMID: 30468746]
[101]
Serkedjieva, J.; Velcheva, M. In vitro anti-influenza virus activity of the pavine alkaloid (-)-thalimonine isolated from Thalictrum simplex L. Antivir. Chem. Chemother., 2003, 14(2), 75-80.
[http://dx.doi.org/10.1177/095632020301400202] [PMID: 12856918]
[102]
Varghese, F.S.; Thaa, B.; Amrun, S.N.; Simarmata, D.; Rausalu, K.; Nyman, T.A.; Merits, A.; McInerney, G.M.; Ng, L.F.P.; Ahola, T. The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling. J. Virol., 2016, 90(21), 9743-9757.
[http://dx.doi.org/10.1128/JVI.01382-16] [PMID: 27535052]
[103]
Anyanwu, A.A.; Jimam, N.S.; Omale, S.; Wannang, N.N.J. Antiviral activities of Cucumis metuliferus fruits alkaloids on Infectious Bursal Disease Virus (IBDV). Phytopharmacol., 2017, 6, 98-101.
[104]
Xu, W.; Zhang, M.; Liu, H.; Wei, K.; He, M.; Li, X.; Hu, D.; Yang, S.; Zheng, Y. Antiviral activity of aconite alkaloids from Aconitum carmichaelii Debx. Nat. Prod. Res., 2019, 33(10), 1486-1490.
[http://dx.doi.org/10.1080/14786419.2017.1416385] [PMID: 29271255]
[105]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[106]
Liu, W.X.; Zhao, J.W.; Zuo, A.X.; Yang, Z.; Gao, L.; Zhou, M.; Jiang, Z.Y. Two novel terpenoids from the cultured Perovskia atriplicifolia. Fitoterapia, 2018, 130, 152-155.
[http://dx.doi.org/10.1016/j.fitote.2018.08.024] [PMID: 30172827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy