Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Protein Interaction Studies for Understanding the Tremor Pathway in Parkinson’s Disease

Author(s): Nitu Dogra, Ruchi Jakhmola Mani and Deepshikha Pande Katare*

Volume 19, Issue 10, 2020

Page: [780 - 790] Pages: 11

DOI: 10.2174/1871527319666200905115548

Price: $65

Abstract

Background: Tremor is one of the most noticeable features, which occurs during the early stages of Parkinson’s Disease (PD). It is one of the major pathological hallmarks and does not have any interpreted mechanism. In this study, we have framed a hypothesis and deciphered protein- protein interactions between the proteins involved in impairment in sodium and calcium ion channels and thus cause synaptic plasticity leading to a tremor.

Methods: Literature mining for retrieval of proteins was done using Science Direct, PubMed Central, SciELO and JSTOR databases. A well-thought approach was used, and a list of differentially expressed proteins in PD was collected from different sources. A total of 71 proteins were retrieved, and a protein interaction network was constructed between them by using Cytoscape.v.3.7. The network was further analysed using the BiNGO plugin for retrieval of overrepresented biological processes in Tremor-PD datasets. Hub nodes were also generated in the network.

Results: The Tremor-PD pathway was deciphered, which demonstrates the cascade of protein interactions that might lead to tremors in PD. Major proteins involved were LRRK2, TUBA1A, TRAF6, HSPA5, ADORA2A, DRD1, DRD2, SNCA, ADCY5, TH, etc.

Conclusion: In the current study, it is predicted that ADORA2A and DRD1/DRD2 are equally contributing to the progression of the disease by inhibiting the activity of adenylyl cyclase and thereby increases the permeability of the blood-brain barrier, causing an influx of neurotransmitters and together they alter the level of dopamine in the brain which eventually leads to tremor.

Keywords: Parkinson's disease, tremors, cytoscape, interaction analysis, bingo tool, protein dysregulation.

Graphical Abstract
[1]
Alexander GE. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 2004; 6(3): 259-80.
[PMID: 22033559]
[2]
Qayyum RA, Mohamad S. Relationship between resting and action tremors in Parkinson's disease. J Neurosci Rural Pract 2016; 7(2): 232-7.
[http://dx.doi.org/10.4103/0976-3147.176192]
[3]
Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab 2012; 16(6): 706-22.
[http://dx.doi.org/10.1016/j.cmet.2012.08.012] [PMID: 23168220]
[4]
Magrinelli F, Picelli A, Tocco P, et al. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis 2016; 2016: 9832839.
[http://dx.doi.org/10.1155/2016/9832839]
[5]
Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 2012; 135(Pt 11): 3206-26.
[http://dx.doi.org/10.1093/brain/aws023] [PMID: 22382359]
[6]
Mailankody P, Thennarasu K, Nagaraju BC, Yadav R, Pal PK. Re-emergent tremor in Parkinson’s disease: A clinical and electromyographic study. J Neurol Sci 2016; 366: 33-6.
[http://dx.doi.org/10.1016/j.jns.2016.04.041] [PMID: 27288772]
[7]
Jellinger KA. The pathomechanisms underlying Parkinson’s disease. Expert Rev Neurother 2014; 14(2): 199-215.
[http://dx.doi.org/10.1586/14737175.2014.877842] [PMID: 24471711]
[8]
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 2009; 5(5): 706-8.
[http://dx.doi.org/10.4161/auto.5.5.8505] [PMID: 19377297]
[9]
Tan EK, Lu CS, Peng R, et al. Analysis of the UCHL1 genetic variant in Parkinson’s disease among Chinese. Neurobiol Aging 2010; 31(12): 2194-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.11.008] [PMID: 19329225]
[10]
Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004; 56(3): 336-41.
[http://dx.doi.org/10.1002/ana.20256] [PMID: 15349860]
[11]
Tarantino P, Annesi G, Annesi F, et al. DJ-1 gene in late-onset recessive Parkinson's Disease XXXV Congress of the Italian Neurological Society. 25: 281-1.
[12]
Zaichick SV, McGrath KM, Caraveo G. The role of Ca2+ signaling in Parkinson’s disease. Dis Model Mech 2017; 10(5): 519-35.
[http://dx.doi.org/10.1242/dmm.028738] [PMID: 28468938]
[13]
Konovalova EV, Lopacheva OM, Grivennikov IA, et al. Mutations in the Parkinson’s disease-associated PARK2 gene are accompanied by imbalance in programmed cell death systems. Acta Naturae 2015; 7(4): 146-9.
[http://dx.doi.org/10.32607/20758251-2015-7-4-146-149] [PMID: 26798503]
[14]
Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson disease gene SNCA: Evolutionary and structural insights with pathological implication. Sci Rep 2016; 6: 24475.
[http://dx.doi.org/10.1038/srep24475] [PMID: 27080380]
[15]
Casetta I, Vincenzi F, Bencivelli D, et al. A(2A) adenosine receptors and Parkinson’s disease severity. Acta Neurol Scand 2014; 129(4): 276-81.
[http://dx.doi.org/10.1111/ane.12181] [PMID: 24032478]
[16]
Erga AH, Dalen I, Ushakova A, et al. Dopaminergic and opioid pathways associated with impulse control disorders in Parkinson’s disease. Front Neurol 2018; 9: 109.
[http://dx.doi.org/10.3389/fneur.2018.00109] [PMID: 29541058]
[17]
Hassan A, Heckman MG, Ahlskog JE, et al. Association of Parkinson disease age of onset with DRD2, DRD3 and GRIN2B polymorphisms. Parkinsonism Relat Disord 2016; 22: 102-5.
[http://dx.doi.org/10.1016/j.parkreldis.2015.11.016] [PMID: 26627941]
[18]
Jayapalan S, Subramanian D, Natarajan J. Computational identification and analysis of neurodegenerative disease associated protein kinases in hominid genomes. Genes Dis 2016; 3(3): 228-37.
[http://dx.doi.org/10.1016/j.gendis.2016.04.004] [PMID: 30258892]
[19]
Zhai D, Li S, Zhao Y, Lin Z. SLC6A3 is a risk factor for Parkinson’s disease: a meta-analysis of sixteen years’ studies. Neurosci Lett 2014; 564: 99-104.
[http://dx.doi.org/10.1016/j.neulet.2013.10.060] [PMID: 24211691]
[20]
Tabrez S. A synopsis on the role of tyrosine hydroxylase in Parkinson's Disease. CNS & Neurol Disord Drug Targets 2012; 11(4): 395-409.
[21]
Chatterjee P, Roy D, Bhattacharyya M, Bandyopadhyay S. Biological networks in Parkinson’s disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics 2017; 18(1): 721.
[http://dx.doi.org/10.1186/s12864-017-4098-3] [PMID: 28899360]
[22]
Chang FC, Westenberger A, Dale RC, et al. Phenotypic insights into ADCY5-associated disease. Mov Disord 2016; 31(7): 1033-40.
[http://dx.doi.org/10.1002/mds.26598] [PMID: 27061943]
[23]
Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VM. Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 2013; 288(21): 15194-210.
[http://dx.doi.org/10.1074/jbc.M113.457408] [PMID: 23532841]
[24]
Chen Y, Lian Y, Ma Y, Wu C, Zheng Y, Xie N. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats. Exp Ther Med 2017; 14(5): 4813-6.
[PMID: 29201184]
[25]
Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks InData Mining in Proteomics. Humana Press 2011; pp. 291-303.
[26]
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005; 21(16): 3448-9.
[http://dx.doi.org/10.1093/bioinformatics/bti551] [PMID: 15972284]
[27]
Scardoni G. TOSADORI G, LAUDANNA C, Fabbri F, FAIZAAAN M. CentiScaPe: Network centralities for Cytoscape
[28]
Le W, Wu J, Tang Y. Protective microglia and their regulation in Parkinson’s disease. Front Mol Neurosci 2016; 9: 89.
[http://dx.doi.org/10.3389/fnmol.2016.00089] [PMID: 27708561]
[29]
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8(1): 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[30]
Shimoji M, Pagan F, Healton EB, Mocchetti I. CXCR4 and CXCL12 expression is increased in the nigro-striatal system of Parkinson’s disease. Neurotox Res 2009; 16(3): 318-28.
[http://dx.doi.org/10.1007/s12640-009-9076-3] [PMID: 19551455]
[31]
Rocha NP, de Miranda AS, Teixeira AL. Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. Biomed Res Int 2015; 2015: 628192.
[http://dx.doi.org/10.1155/2015/628192]
[32]
Greene LA, Levy O, Malagelada C. Akt as a victim, villain and potential hero in Parkinson’s disease pathophysiology and treatment. Cell Mol Neurobiol 2011; 31(7): 969-78.
[http://dx.doi.org/10.1007/s10571-011-9671-8] [PMID: 21547489]
[33]
Kauther KM, Höft C, Rissling I, Oertel WH, Möller JC. The PLA2G6 gene in early-onset Parkinson’s disease. Mov Disord 2011; 26(13): 2415-7.
[http://dx.doi.org/10.1002/mds.23851] [PMID: 21812034]
[34]
Torra A, Parent A, Cuadros T, et al. Overexpression of TFEB drives a pleiotropic neurotrophic effect and prevents Parkinson’s disease-related neurodegeneration. Mol Ther 2018; 26(6): 1552-67.
[35]
Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 2018; 592(5): 793-811.
[http://dx.doi.org/10.1002/1873-3468.12989] [PMID: 29364506]
[36]
Ogino M, Ichimura M, Nakano N, Minami A, Kitagishi Y, Matsuda S. Roles of PTEN with DNA Repair in Parkinson’s Disease. Int J Mol Sci 2016; 17(6): 954.
[http://dx.doi.org/10.3390/ijms17060954] [PMID: 27314344]
[37]
Pino E, Amamoto R, Zheng L, et al. FOXO3 determines the accumulation of α-synuclein and controls the fate of dopaminergic neurons in the substantia nigra. Hum Mol Genet 2014; 23(6): 1435-52.
[http://dx.doi.org/10.1093/hmg/ddt530] [PMID: 24158851]
[38]
Hartmann A, Troadec JD, Hunot S, et al. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 2001; 21(7): 2247-55.
[http://dx.doi.org/10.1523/JNEUROSCI.21-07-02247.2001] [PMID: 11264300]
[39]
Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014; 26(12): 2694-701.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.019] [PMID: 25173700]
[40]
Qin H, Buckley J, Liu Y, Holdbrooks A, Benveniste ET. Targeting the JAK/STAT pathway in the treatment of Parkinson’s disease. Available from https://www.michaeljfox.org/grant/targeting-jakstat-pathway-treatment-parkinsons-disease
[41]
Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 1996; 211(1): 13-6.
[http://dx.doi.org/10.1016/0304-3940(96)12706-3] [PMID: 8809836]
[42]
Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P. p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int J Mol Cell Med 2015; 4(2): 67-86.
[PMID: 26261796]
[43]
Mercado G, Castillo V, Vidal R, Hetz C. ER proteostasis disturbances in Parkinson’s disease: novel insights. Front Aging Neurosci 2015; 7: 39.
[http://dx.doi.org/10.3389/fnagi.2015.00039] [PMID: 25870559]
[44]
Shibata N, Motoi Y, Tomiyama H, et al. Lack of genetic associations of PPAR-γ and PGC-1α with Alzheimer’s disease and Parkinson’s disease with dementia. Dement Geriatr Cogn Disord Extra 2013; 3(1): 161-7.
[45]
Marks WJ Jr, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 2010; 9(12): 1164-72.
[http://dx.doi.org/10.1016/S1474-4422(10)70254-4] [PMID: 20970382]
[46]
Perez A, Guan L, Sutherland K, Cao C. Immune system and Parkinson’s disease. Arch Med 2016; 8: 2.
[47]
Thenral ST, Vanisree AJ. Peripheral assessment of the genes AQP4, PBP and TH in patients with Parkinson’s disease. Neurochem Res 2012; 37(3): 512-5.
[http://dx.doi.org/10.1007/s11064-011-0637-5] [PMID: 22083667]
[48]
Siitonen A, Kytövuori L, Nalls MA, et al. Finnish Parkinson’s disease study integrating protein-protein interaction network data with exome sequencing analysis. Sci Rep 2019; 9(1): 18865.
[http://dx.doi.org/10.1038/s41598-019-55479-y] [PMID: 31827228]
[49]
Rieck M, Schumacher-Schuh AF, Callegari-Jacques SM, et al. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson’s disease patients? Pharmacogenomics 2015; 16(6): 573-82.
[http://dx.doi.org/10.2217/pgs.15.23] [PMID: 25872644]
[50]
Stockwell J, Jakova E, Cayabyab FS. Adenosine A1 and A2A receptors in the brain: current research and their role in neurodegeneration. Molecules 2017; 22(4): 676.
[http://dx.doi.org/10.3390/molecules22040676] [PMID: 28441750]
[51]
Mariani E, Frabetti F, Tarozzi A, Pelleri MC, Pizzetti F, Casadei R. Meta-analysis of Parkinson’s disease transcriptome data using TRAM software: whole Substantia Nigra tissue and single dopamine neuron differential gene expression. PLoS One 2016; 11(9): e0161567.
[52]
Nagatsu T, Nakashima A, Ichinose H, Kobayashi K. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J Neural Transm (Vienna) 2019; 126(4): 397-409.
[http://dx.doi.org/10.1007/s00702-018-1903-3] [PMID: 29995172]
[53]
Nagle MW, Latourelle JC, Labadorf A, et al. The 4p16. 3 Parkinson disease risk locus is associated with GAK expression and genes involved with the synaptic vesicle membrane. PLoS One 2016; 11(8): e0160925.
[http://dx.doi.org/10.1371/journal.pone.0160925] [PMID: 27508417]
[54]
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015; 85(2): 257-73.
[http://dx.doi.org/10.1016/j.neuron.2014.12.007] [PMID: 25611507]
[55]
Brüggemann N, Klein C. Parkin type of early-onset Parkinson disease
[56]
Forsyth JT, Grünewald RA, Rostami-Hodjegan A, Lennard MS, Sagar HJ, Tucker GT. Parkinson’s disease and CYP1A2 activity. Br J Clin Pharmacol 2000; 50(4): 303-9.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00259.x] [PMID: 11012552]
[57]
Källstig E. Unfolding the role of Ire1 and DNAJB1 in Parkinson’s disease 2017.
[58]
Bandopadhyay R, Kingsbury AE, Cookson MR, et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 2004; 127(Pt 2): 420-30.
[http://dx.doi.org/10.1093/brain/awh054] [PMID: 14662519]
[59]
Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63(1): 182-217.
[http://dx.doi.org/10.1124/pr.110.002642] [PMID: 21303898]
[60]
Black KJ, Koller JM, Campbell MC, Gusnard DA, Bandak SI. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease. J Neurosci 2010; 30(48): 16284-92.
[http://dx.doi.org/10.1523/JNEUROSCI.2590-10.2010] [PMID: 21123574]
[61]
Wang W, et al. Computational prediction for the protein interactions of tyrosinase: Protein experimental interactome MAP. Process Biochem 2013; 48(4): 638-48.
[http://dx.doi.org/10.1016/j.procbio.2013.02.030]
[62]
Waschek JA. VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 2013; 169(3): 512-23.
[http://dx.doi.org/10.1111/bph.12181] [PMID: 23517078]
[63]
Miskinyte S, Butler MG, Hervé D, et al. Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am J Hum Genet 2011; 88(6): 718-28.
[http://dx.doi.org/10.1016/j.ajhg.2011.04.017] [PMID: 21596366]
[64]
Zhou W. Regulation of tumor necrosis factor-induced cell death and toll-like receptor-mediated activation of macrophages by SPATA2. Available from https://dash.harvard.edu/handle/1/17467202
[65]
Kitaguchi T, Oya M, Wada Y, Tsuboi T, Miyawaki A. Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells. Biochem J 2013; 450(2): 365-73.
[http://dx.doi.org/10.1042/BJ20121022] [PMID: 23282092]
[66]
Shi Y, Yuan Y, Xu Z, et al. Genetic variation in the Calcium/calmodulin-dependent protein Kinase (CaMK) pathway is associated with antidepressant response in females. J Affect Disord 2012; 136(3): 558-66.
[http://dx.doi.org/10.1016/j.jad.2011.10.030] [PMID: 22119081]
[67]
Gordon R, Singh N, Lawana V, et al. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson’s disease. Neurobiol Dis 2016; 93: 96-114.
[http://dx.doi.org/10.1016/j.nbd.2016.04.008] [PMID: 27151770]
[68]
Patergnani S, Marchi S, Rimessi A, et al. PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy 2013; 9(9): 1367-85.
[http://dx.doi.org/10.4161/auto.25239] [PMID: 23778835]
[69]
Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 2002; 3(9): 663-72.
[http://dx.doi.org/10.1038/nrm906] [PMID: 12209126]
[70]
Gaweda-Walerych K, Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson’s disease. Curr Genomics 2013; 14(8): 543-59.
[http://dx.doi.org/10.2174/1389202914666131210211033] [PMID: 24532986]
[71]
Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 2016; 12(2): 225-44.
[http://dx.doi.org/10.1080/15548627.2015.1121360] [PMID: 26902584]
[72]
Goldenberg MM. Medical management of Parkinson’s disease. P&T 2008; 33(10): 590-606.
[PMID: 19750042]
[73]
National Institute of Neurological Disorders. Parkinson's disease: Hope through research National Institute of Neurological Disorders and Stroke, National Institutes of Health 1994. Available from https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/Parkinsons-Disease-Hope-Thro ugh-Research
[74]
Lloret SP, Rey MV, Rascol O. Ayurveda medicine for the treatment of Parkinson’s Disease. Int. IntegrativeMed 2013; 1: 1-6.
[75]
Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 2003; 13(6): 696-706.
[http://dx.doi.org/10.1016/j.conb.2003.11.001] [PMID: 14662371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy