Review Article

In Silico Study Examining New Phenylpropanoids Targets with Antidepressant Activity

Author(s): Poliane da Silva Calixto, Reinaldo Nóbrega de Almeida, Mirian G.S. Stiebbe Salvadori, Mayara dos Santos Maia, José Maria Barbosa Filho, Marcus Tullius Scotti and Luciana Scotti*

Volume 22, Issue 5, 2021

Published on: 02 September, 2020

Page: [539 - 554] Pages: 16

DOI: 10.2174/1389450121666200902171838

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Natural products, such as phenylpropanoids, which are found in essential oils derived from aromatic plants, have been explored during non-clinical psychopharmacology studies, to discover new molecules with relevant pharmacological activities in the central nervous system, especially antidepressant and anxiolytic activities. Major depressive disorder is a highly debilitating psychiatric disorder and is considered to be a disabling public health problem, worldwide, as a primary factor associated with suicide. Current clinically administered antidepressants have late-onset therapeutic actions, are associated with several side effects, and clinical studies have reported that some patients do not respond well to treatment or reach complete remission.

Objective: To review important new targets for antidepressant activity and to select phenylpropanoids with antidepressant activity, using Molegro Virtual Docker and Ossis Data Warris, and to verify substances with more promising antidepressant activity.

Results and Conclusion: An in silico molecular modeling study, based on homology, was conducted to determine the three-dimensional structure of the 5-hydroxytryptamine 2A receptor (5- HT2AR), then molecular docking studies were performed and the predisposition for cytotoxicity risk among identified molecules was examined. A model for 5-HT2AR homology, with satisfactory results, was obtained indicating the good stereochemical quality of the model. The phenylpropanoid 4-allyl-2,6-dimethoxyphenol showed the lowest binding energy for 5-HT2AR, with results relevant to the L-arginine/nitric oxide (NO)/cGMP pathway, and showed no toxicity within the parameters of mutagenicity, carcinogenicity, reproductive system toxicity, and skin-tissue irritability, when evaluated in silico; therefore, this molecule can be considered promising for the investigation of antidepressant activity.

Keywords: 4-allyl-2, 6-dimethoxyphenol, chemoinformatics, antidepressive, toxicity, target, docking.

Graphical Abstract
[1]
Sarris J, Panossian A, Schweitzer I, Stough C, Scholey A. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol 2011; 21(12): 841-60.
[http://dx.doi.org/10.1016/j.euroneuro.2011.04.002] [PMID: 21601431]
[2]
Bahmani M, Saki K, Rafieian-Kopaei M, Karamati SA, Eftekhari Z, Jelodari M. The most common herbal medicines affecting Sarcomastigophora branches: a review study. Asian Pac J Trop Med 2014; 7S1(S1): S14-21.
[http://dx.doi.org/10.1016/S1995-7645(14)60198-X] [PMID: 25312109]
[3]
Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, Anwar F. Essential oils used in aromatherapy: a systemic review. Asian Pac J Trop Biomed 2015; 5(8): 601-11.
[http://dx.doi.org/10.1016/j.apjtb.2015.05.007]
[4]
Kumari S, Pundhir S, Priya P, et al. EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom. Database (Oxford) 2014; 2014: bau120.
[http://dx.doi.org/10.1093/database/bau120] [PMID: 25534749]
[5]
Carvalho AA, Andrade LN, de Sousa ÉBV, de Sousa DP. Antitumor phenylpropanoids found in essential oils. BioMed Res Int 2015; 2015: 392674.
[http://dx.doi.org/10.1155/2015/392674] [PMID: 25949996]
[6]
Opitz S, Nes WD, Gershenzon J. Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Phytochemistry 2014; 98: 110-9.
[http://dx.doi.org/10.1016/j.phytochem.2013.11.010] [PMID: 24359633]
[7]
Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 2016; 2016: 3012462.
[http://dx.doi.org/10.1155/2016/3012462] [PMID: 28090211]
[8]
Hastings J, Owen G, Dekker A, et al. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res 2016; 44(D1): D1214-9.
[http://dx.doi.org/10.1093/nar/gkv1031] [PMID: 26467479]
[9]
Wishart DS, Tzur D, Knox C, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res 2007; 35(Database issue)(Suppl. 1): D521-6.
[http://dx.doi.org/10.1093/nar/gkl923] [PMID: 17202168]
[10]
Agnihotri S, Wakode S, Ali M. Essential oil of Myrica esculenta Buch. Ham.: composition, antimicrobial and topical anti-inflammatory activities. Nat Prod Res 2012; 26(23): 2266-9.
[http://dx.doi.org/10.1080/14786419.2011.652959] [PMID: 22260222]
[11]
Maeda A, Tanimoto S, Abe T, Kazama S, Tanizawa H, Nomura M. Chemical constituents of Myristica fragrans Houttuyn seed and their physiological activities. Yakugaku Zasshi 2008; 128(1): 129-33.
[http://dx.doi.org/10.1248/yakushi.128.129] [PMID: 18176064]
[12]
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr Eval Carcinog Risks Hum 2013; 101: 9-549.
[PMID: 24772663]
[13]
Sell AB, Carlini EA. Anesthetic action of methyleugenol and other eugenol derivatives. Pharmacology 1976; 14(4): 367-77.
[http://dx.doi.org/10.1159/000136617] [PMID: 935250]
[14]
Joshi RK. Chemical Composition, in vitro antimicrobial and antioxidant activities of the essential oils of ocimum gratissimum, o. sanctum and their major constituents. Indian J Pharm Sci 2013; 75(4): 457-62.
[http://dx.doi.org/10.4103/0250-474X.119834] [PMID: 24302801]
[15]
Siddique S, Parveen Z, Firdaus-e-Bareen , Mazhar S. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three melaleuca species of pakistani flora. Arab J Chem 2020; 13(1): 67-74.
[http://dx.doi.org/10.1016/j.arabjc.2017.01.018]
[16]
Liu YM, Fan HR, Deng S, et al. Methyleugenol potentiates central amygdala gabaergic inhibition and reduces anxiety. J Pharmacol Exp Ther 2019; 368(1): 1-10.
[http://dx.doi.org/10.1124/jpet.118.250779] [PMID: 30389721]
[17]
Norte MCB, Cosentino RM, Lazarini CA. Effects of methyl-eugenol administration on behavioral models related to depression and anxiety, in rats. Phytomedicine 2005; 12(4): 294-8.
[http://dx.doi.org/10.1016/j.phymed.2003.12.007] [PMID: 15898707]
[18]
Cavalcante IL. Avaliação comportamental não clínica do metileugenol em modelo de depressão induzida por dexametasona com fêmeas 2018; 16: 1-90.
[19]
Khalil AA, Rahman UU, Khan MR, Sahar A, Mehmood T, Khan M. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Advances 2017; 7(52): 32669-81.
[http://dx.doi.org/10.1039/C7RA04803C]
[20]
Nam H, Kim MM. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem Toxicol 2013; 55: 106-12.
[http://dx.doi.org/10.1016/j.fct.2012.12.050] [PMID: 23313798]
[21]
Eyambe G, Canales L, Banik BK. Antimicrobial activity of eugenol derivatives. Heterocyclic Lett 2011; 1(2): 154-7.
[22]
Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi AR, Abbaszadeh A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J Mycol Med 2014; 24(2): e51-6.
[http://dx.doi.org/10.1016/j.mycmed.2014.01.063] [PMID: 24582134]
[23]
Sun WJ, Lv WJ, Li LN, et al. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. N Biotechnol 2016; 33(3): 345-54.
[http://dx.doi.org/10.1016/j.nbt.2016.01.001] [PMID: 26776605]
[24]
Ma N, Liu XW, Yang YJ, et al. Preventive effect of aspirin eugenol ester on thrombosis in κ-carrageenan-induced rat tail thrombosis model. PLoS One 2015; 10(7): e0133125.
[http://dx.doi.org/10.1371/journal.pone.0133125] [PMID: 26193677]
[25]
Rajoriya S, Nandhakumar P, Kv K, Kumar A. A Study on effect of eugenol on anti-metastatic activity and expression of MMPS in TNBC MDA MB : 231 Cell Line 2019; 8(4): 788-94.
[26]
de Morais SM, Vila-Nova NS, Bevilaqua CML, et al. Thymol and eugenol derivatives as potential antileishmanial agents. Bioorg Med Chem 2014; 22(21): 6250-5.
[http://dx.doi.org/10.1016/j.bmc.2014.08.020] [PMID: 25281268]
[27]
da Silva Leal VM, Bonassoli VT, Soares LM, Milani H, de Oliveira RMW. Depletion of 5 hydroxy-triptamine (5-HT) affects the antidepressant-like effect of neuronal nitric oxide synthase inhibitor in mice. Neurosci Lett 2017; 656: 131-7.
[http://dx.doi.org/10.1016/j.neulet.2017.07.035] [PMID: 28746839]
[28]
Fonsêca DV, Salgado PRR, Aragão Neto HdeC, et al. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities. Int Immunopharmacol 2016; 38: 402-8.
[http://dx.doi.org/10.1016/j.intimp.2016.06.005] [PMID: 27355133]
[29]
ARAÚJO, A. N. V. DE. Investigação Da Atividade Antidepressiva Do Ortoeugenol Em Modelos Comportamentais de Depressão Induzidos Por Dexametasona 2018; 85
[30]
Fang G, Yu H, Zhi S, et al. Sex differences in intergenerational transfer risk of major depressive disorder. Med Sci Monit 2019; 25: 9887-92.
[http://dx.doi.org/10.12659/MSM.917888] [PMID: 31869319]
[31]
WHO. Global Health Risks 2009.
[32]
Gosnell SN, Velasquez KM, Molfese DL, et al. Prefrontal cortex, temporal cortex, and hippocampus volume are affected in suicidal psychiatric patients. Psychiatry Res Neuroimaging 2016; 256: 50-6.
[http://dx.doi.org/10.1016/j.pscychresns.2016.09.005] [PMID: 27685801]
[33]
Luo P, He G, Liu D. HCN channels: New targets for the design of an antidepressant with rapid effects. J Affect Disord 2019; 245(245): 764-70.
[http://dx.doi.org/10.1016/j.jad.2018.11.081] [PMID: 30448761]
[34]
Mirkovic B, Laurent C, Podlipski MA, Frebourg T, Cohen D, Gerardin P. Genetic Association Studies of Suicidal Behavior: A Review of the Past 10 Years, Progress, Limitations, and Future Directions. Front Psychiatry 2016; 7(SEP): 158.
[http://dx.doi.org/10.3389/fpsyt.2016.00158] [PMID: 27721799]
[35]
Courtet P, Giner L, Seneque M, Guillaume S, Olie E, Ducasse D. Neuroinflammation in suicide: Toward a comprehensive model. World J Biol Psychiatry 2016; 17(8): 564-86.
[http://dx.doi.org/10.3109/15622975.2015.1054879] [PMID: 26223957]
[36]
Fasipe OJ. The emergence of new antidepressants for clinical use: Agomelatine paradox versus other novel agents. IBRO Rep 2019; 6(January): 95-110.
[http://dx.doi.org/10.1016/j.ibror.2019.01.001] [PMID: 31211282]
[37]
Kulkarni SK, Dhir A. Current investigational drugs for major depression. Expert Opin Investig Drugs 2009; 18(6): 767-88.
[http://dx.doi.org/10.1517/13543780902880850] [PMID: 19426122]
[38]
Balakrishnan N, Raj JS, Kandakatla N. In Silico studies on new indazole derivatives as gsk-3β inhibitors. Int J Pharm Pharm Sci 2015; 7(3): 295-9.
[39]
Barnes NM, Neumaier JF. Neuronal 5-HT Receptors and SERT. Tocris Biosci Sci Revew Ser 2011; 34: 1-15.
[40]
Bombardi C, Di Giovanni G. Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 2013; 230(4): 427-39.
[http://dx.doi.org/10.1007/s00221-013-3512-6] [PMID: 23591691]
[41]
Cortes-Altamirano JL, Olmos-Hernandez A, Jaime HB, et al. Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and their Role in the Modulation of Pain Response in the Central Nervous System. Curr Neuropharmacol 2018; 16(2): 210-21.
[http://dx.doi.org/10.2174/1570159X15666170911121027] [PMID: 28901281]
[42]
Kulikova EA, Khotskin NV, Illarionova NB, et al. Inhibitor of striatal-enriched protein tyrosine phosphatase, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (tc-2153), produces antidepressant-like effect and decreases functional activity and protein level of 5-ht2a receptor in the brain. Neuroscience 2018; 394: 220-31.
[http://dx.doi.org/10.1016/j.neuroscience.2018.10.031] [PMID: 30367948]
[43]
Dantsuji M, Nakamura S, Nakayama K, et al. 5-HT2A receptor activation enhances NMDA receptor-mediated glutamate responses through Src kinase in the dendrites of rat jaw-closing motoneurons. J Physiol 2019; 597(9): 2565-89.
[http://dx.doi.org/10.1113/JP275440] [PMID: 30919966]
[44]
Srikiatkhachorn A, Suwattanasophon C, Ruangpattanatawee U, Phansuwan-Pujito P. 2002 Wolff Award. 5 -HT2A receptor activation and nitric oxide synthesis: a possible mechanism determining migraine attacks. Headache 2002; 42(7): 566-74.
[45]
Schmid CL, Bohn LM. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ß-arrestin2/Src/Akt signaling complex in vivo. J Neurosci 2010; 30(40): 13513-24.
[http://dx.doi.org/10.1523/JNEUROSCI.1665-10.2010] [PMID: 20926677]
[46]
Hanson QM, Carley JR, Gilbreath TJ, Smith BC, Underbakke ES. Calmodulin-induced conformational control and allostery underlying neuronal nitric oxide synthase activation. J Mol Biol 2018; 430(7): 935-47.
[http://dx.doi.org/10.1016/j.jmb.2018.02.003] [PMID: 29458127]
[47]
Amidfar M, Kim YK, Colic L, et al. Increased levels of 5HT2A receptor mRNA expression in peripheral blood mononuclear cells of patients with major depression: correlations with severity and duration of illness. Nord J Psychiatry 2017; 71(4): 282-8.
[http://dx.doi.org/10.1080/08039488.2016.1276624] [PMID: 28125323]
[48]
Lin F, Li F, Wang C, et al. Mechanism exploration of arylpiperazine derivatives targeting the 5-ht2a receptor by in silico methods. Molecules 2017; 22(7): E1064.
[http://dx.doi.org/10.3390/molecules22071064] [PMID: 28672848]
[49]
Kanagarajadurai K, Malini M, Bhattacharya A, Panicker MM, Sowdhamini R. Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding. Mol Biosyst 2009; 5(12): 1877-88.
[http://dx.doi.org/10.1039/b906391a] [PMID: 19763327]
[50]
Staroń J, Kurczab R, Warszycki D, et al. Virtual screening-driven discovery of dual 5-HT6/5-HT2A receptor ligands with pro-cognitive properties. Eur J Med Chem 2020; 185: 111857.
[http://dx.doi.org/10.1016/j.ejmech.2019.111857] [PMID: 31734022]
[51]
Abbasi-Maleki S, Kadkhoda Z, Taghizad-Farid R. The antidepressant-like effects of origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming. Test J Tradit Complement Med 2019; 1-9.
[52]
Nguyen ET, Caldwell JL, Streicher J, et al. Differential effects of imipramine and CORT118335 (Glucocorticoid receptor modulator/mineralocorticoid receptor antagonist) on brain-endocrine stress responses and depression-like behavior in female rats. Behav Brain Res 2018; 336(336): 99-110.
[http://dx.doi.org/10.1016/j.bbr.2017.08.045] [PMID: 28866130]
[53]
Canet G, Chevallier N, Zussy C, Desrumaux C, Givalois L. Central role of glucocorticoid receptors in alzheimer’s disease and depression. Front Neurosci 2018; 12(OCT): 739.
[http://dx.doi.org/10.3389/fnins.2018.00739] [PMID: 30459541]
[54]
Farrell C, O’Keane V. Epigenetics and the glucocorticoid receptor: A review of the implications in depression. Psychiatry Res 2016; 242: 349-56.
[http://dx.doi.org/10.1016/j.psychres.2016.06.022] [PMID: 27344028]
[55]
Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 2017; 18(3): 159-74.
[http://dx.doi.org/10.1038/nrm.2016.152] [PMID: 28053348]
[56]
Madalena KM, Lerch JK. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural Plast 2017; 2017: 8640970.
[http://dx.doi.org/10.1155/2017/8640970] [PMID: 28928988]
[57]
Attoui N, Guedri K. K. M. Effect of ketoconazole on early maternal separation stress model in rats: a neurobehavioral and biochemical approach. Adv Anim Vet Sci 2019; 7(9): 761-9.
[http://dx.doi.org/10.17582/journal.aavs/2019/7.9.761.769]
[58]
Papilloud A, Veenit V, Tzanoulinou S, et al. Peripubertal stress-induced heightened aggression: modulation of the glucocorticoid receptor in the central amygdala and normalization by mifepristone treatment. Neuropsychopharmacology 2019; 44(4): 674-82.
[http://dx.doi.org/10.1038/s41386-018-0110-0] [PMID: 29941978]
[59]
Block TS, Kushner H, Kalin N, Nelson C, Belanoff J, Schatzberg A. Combined analysis of mifepristone for psychotic depression: plasma levels associated with clinical response. Biol Psychiatry 2018; 84(1): 46-54.
[http://dx.doi.org/10.1016/j.biopsych.2018.01.008] [PMID: 29523415]
[60]
Schatzberg AF. Anna-Monika Award Lecture, DGPPN Kongress, 2013: the role of the hypothalamic-pituitary-adrenal (HPA) axis in the pathogenesis of psychotic major depression. World J Biol Psychiatry 2015; 16(1): 2-11.
[http://dx.doi.org/10.3109/15622975.2014.916414] [PMID: 24933348]
[61]
Solomon MB, Wulsin AC, Rice T, et al. The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test. Horm Behav 2014; 65(4): 363-71.
[http://dx.doi.org/10.1016/j.yhbeh.2014.02.002] [PMID: 24530653]
[62]
de Souza IBMB, Costa LRF, Tiago PRF, et al. Venlafaxine and nortriptyline reverse acute dexamethasone-induced depressive-like behaviors in male and female mice. Exp Clin Psychopharmacol 2019; 27(5): 433-42.
[http://dx.doi.org/10.1037/pha0000263] [PMID: 30714753]
[63]
Maccallini C, Montagnani M, Paciotti R, et al. Selective acetamidine-based nitric oxide synthase inhibitors: synthesis, docking, and biological studies. ACS Med Chem Lett 2015; 6(6): 635-40.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00149] [PMID: 26101565]
[64]
Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 2015; 9(AUGUST): 322.
[http://dx.doi.org/10.3389/fncel.2015.00322] [PMID: 26347610]
[65]
Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 2016; 16(1): 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[66]
Talarek S, Listos J, Orzelska-Gorka J, Jakobczuk M, Kotlinska J, Biala G. The importance of l-arginine:no:cgmp pathway in tolerance to flunitrazepam in mice. Neurotox Res 2017; 31(2): 309-16.
[http://dx.doi.org/10.1007/s12640-016-9688-3] [PMID: 27957675]
[67]
Do HT, Li H, Chreifi G, Poulos TL, Silverman RB. Optimization of blood-brain barrier permeability with potent and selective human neuronal nitric oxide synthase inhibitors having a 2-aminopyridine scaffold. J Med Chem 2019; 62(5): 2690-707.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02032] [PMID: 30802056]
[68]
Boissel JP, Schwarz PM, Förstermann U, Neuronal-Type NO. Neuronal-type no. synthase: transcript diversity and expressional regulation. nitric oxide -. Biol Chem 1998; 2(5): 337-49.
[http://dx.doi.org/10.1006/niox.1998.0189] [PMID: 10100489]
[69]
Maccallini C, Amoroso R. Targeting neuronal nitric oxide synthase as a valuable strategy for the therapy of neurological disorders. Neural Regen Res 2016; 11(11): 1731-4.
[http://dx.doi.org/10.4103/1673-5374.194707] [PMID: 28123402]
[70]
Joca SRL, Sartim AG, Roncalho AL, Diniz CFA, Wegener G. Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res 2019; 377(1): 45-58.
[http://dx.doi.org/10.1007/s00441-018-02987-4] [PMID: 30649612]
[71]
Picón-Pagès P, Garcia-Buendia J, Muñoz FJ. Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865(8): 1949-67.
[http://dx.doi.org/10.1016/j.bbadis.2018.11.007] [PMID: 30500433]
[72]
Ronchetti SA, Pino MTL, Cordeiro G, et al. Soluble Guanylyl Cyclase A1 Subunit Is a Key Mediator of Proliferation, Survival, and Migration in ECC-1 and HeLa Cell Lines. Sci Rep 2019; 9(1): 1-11.
[http://dx.doi.org/10.1038/s41598-019-51420-5] [PMID: 30626917]
[73]
Gileadi O, Allerston C, von Delft F. Crystal structures of human soluble guanylate cyclase catalytic domains: promiscuity of the dimer interface and a potential allosteric site. BMC Pharmacol Toxicol 2013; 14(S1): O15.
[http://dx.doi.org/10.1186/2050-6511-14-S1-O15]
[74]
Wang W, Zhou T, Jia R, et al. NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway contribute to the antidepressant-like effect of Yueju pill in mice. Biosci Rep 2019; 39(9): 1-10.
[http://dx.doi.org/10.1042/BSR20190524] [PMID: 31467174]
[75]
Ben-Azu B, Aderibigbe AO, Ajayi AM, Umukoro S, Iwalewa EO. Involvement of l-arginine-nitric oxide pathway in the antidepressant and memory promoting effects of morin in mice. Drug Dev Res 2019; 80(8): 1071-9.
[http://dx.doi.org/10.1002/ddr.21588] [PMID: 31407363]
[76]
Chaudhari UP, Trivedi ND, Patil SRR, Banerjee S. Molecular docking studies of l-name with the neuronal nitric oxide synthase. Int J Chemtech Res 2010; 2(1): 122-8.
[77]
Júnior ALG, Tchekalarova JD, da Conceição Machado K, et al. Antidepressant-like effect of anacardic acid in mice via the L-arginine-nitric oxide-serotonergic system. Phytother Res 2019; 33(8): 2126-38.
[http://dx.doi.org/10.1002/ptr.6407] [PMID: 31240792]
[78]
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 2017; 32(5): 1357-82.
[http://dx.doi.org/10.1007/s11011-017-0081-6] [PMID: 28762173]
[79]
Dang Y-H, Ma X-C, Zhang J-C, et al. Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des 2014; 20(32): 5151-9.
[http://dx.doi.org/10.2174/1381612819666140110120435] [PMID: 24410564]
[80]
Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990; 185(1): 1-10.
[http://dx.doi.org/10.1016/0014-2999(90)90204-J] [PMID: 2171955]
[81]
Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47(4): 351-4.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9] [PMID: 10686270]
[82]
Wang JX, Irvine MW, Burnell ES, et al. Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. Nat Commun 2020; 11(1): 423.
[http://dx.doi.org/10.1038/s41467-020-14321-0] [PMID: 31969570]
[83]
Wang JX, Furukawa H. Dissecting diverse functions of NMDA receptors by structural biology. Curr Opin Struct Biol 2019; 54: 34-42.
[http://dx.doi.org/10.1016/j.sbi.2018.12.009] [PMID: 30703613]
[84]
Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer’s disease. Alzheimers Dement 2018; 14(10): 1302-12.
[http://dx.doi.org/10.1016/j.jalz.2018.05.017] [PMID: 30293574]
[85]
Regan MC, Zhu Z, Yuan H, et al. Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nat Commun 2019; 10(1): 321.
[http://dx.doi.org/10.1038/s41467-019-08291-1] [PMID: 30659174]
[86]
Bratsos S, Saleh SN. Clinical Efficacy of Ketamine for Treatment-resistant Depression. Cureus 2019; 11(7): e5189.
[http://dx.doi.org/10.7759/cureus.5189] [PMID: 31565597]
[87]
Hashimoto K. Ketamine’s antidepressant action: beyond NMDA receptor inhibition. Expert Opin Ther Targets 2016; 20(11): 1389-92.
[http://dx.doi.org/10.1080/14728222.2016.1238899] [PMID: 27646666]
[88]
Becker R, Gass N, Kußmaul L, et al. NMDA receptor antagonists traxoprodil and lanicemine improve hippocampal-prefrontal coupling and reward-related networks in rats. Psychopharmacology (Berl) 2019; 236(12): 3451-63.
[http://dx.doi.org/10.1007/s00213-019-05310-3] [PMID: 31267156]
[89]
Tu G, Fu T, Yang F, Yao L, Xue W, Zhu F. Prediction of glun2b-ct1290-1310/dapk1 interaction by protein-peptide docking and molecular dynamics simulation. Molecules 2018; 23(11): E3018.
[http://dx.doi.org/10.3390/molecules23113018] [PMID: 30463177]
[90]
López V, Nielsen B, Solas M, Ramírez MJ, Jäger AK. Exploring pharmacological mechanisms of lavender (lavandula angustifolia) essential oil on central nervous system targets. Front Pharmacol 2017; 8(MAY): 280.
[http://dx.doi.org/10.3389/fphar.2017.00280] [PMID: 28579958]
[91]
Jeon SW, Kim YK. Inflammation-induced depression: Its pathophysiology and therapeutic implications. J Neuroimmunol 2017; 313(October): 92-8.
[http://dx.doi.org/10.1016/j.jneuroim.2017.10.016] [PMID: 29153615]
[92]
Zou W, Feng R, Yang Y. Changes in the serum levels of inflammatory cytokines in antidepressant drug-naïve patients with major depression. PLoS One 2018; 13(6): e0197267.
[http://dx.doi.org/10.1371/journal.pone.0197267] [PMID: 29856741]
[93]
Dahl J, Ormstad H, Aass HCD, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology 2014; 45: 77-86.
[http://dx.doi.org/10.1016/j.psyneuen.2014.03.019] [PMID: 24845179]
[94]
Yoshimura R, Kishi T, Iwata N. Plasma levels of IL-6 in patients with untreated major depressive disorder: comparison with catecholamine metabolites. Neuropsychiatr Dis Treat 2019; 15: 2655-61.
[http://dx.doi.org/10.2147/NDT.S195379] [PMID: 31686824]
[95]
Jiang SJ, Tsai PI, Peng SY, et al. A potential peptide derived from cytokine receptors can bind proinflammatory cytokines as a therapeutic strategy for anti-inflammation. Sci Rep 2019; 9(1): 2317.
[http://dx.doi.org/10.1038/s41598-018-36492-z] [PMID: 30783144]
[96]
Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 2008; 29(11): 1275-88.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x] [PMID: 18954521]
[97]
Bialek K, Czarny P, Strycharz J, Sliwinski T. Major depressive disorders accompanying autoimmune diseases - Response to treatment. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95(April): 109678.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109678] [PMID: 31238086]
[98]
Shariq AS, Brietzke E, Rosenblat JD, Barendra V, Pan Z, McIntyre RS. Targeting cytokines in reduction of depressive symptoms: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83(83): 86-91.
[http://dx.doi.org/10.1016/j.pnpbp.2018.01.003] [PMID: 29309829]
[99]
Bayramgürler D, Karson A, Özer C, Utkan T. Effects of long-term etanercept treatment on anxiety- and depression-like neurobehaviors in rats. Physiol Behav 2013; 119: 145-8.
[http://dx.doi.org/10.1016/j.physbeh.2013.06.010] [PMID: 23769689]
[100]
Chester K, Zahiruddin S, Ahmad A, Khan W, Paliwal S, Ahmad S. Bioautography-Based Identification of Antioxidant Metabolites of Solanum Nigrum L. and Exploration Its Hepatoprotective Potential AgChester, K et Al (2017) ‘Bioautography-Based Identification of Antioxidant Metabolites of Solanum Nigrum L and Explorati Pharmacogn Mag 2017; 13(62): 179-88.
[101]
Alizadeha AA, Hamzeh-Mivehroud M, Haddad E, et al. Characterization of novel fragment antibodies against tnf-alpha isolated using phage display technique. Iran J Pharm Res 2019; 18(2): 759-71.
[http://dx.doi.org/10.22037/ijpr.2019.1100646] [PMID: 31531059]
[102]
Xu S, Peng H, Wang N, Zhao M. Inhibition of TNF-α and il-1 by compounds from selected plants for rheumatoid arthritis therapy: in vivo and in silico studies. Trop J Pharm Res 2018; 17(2): 277-85.
[http://dx.doi.org/10.4314/tjpr.v17i2.12]
[103]
Wang J, Qiao C, Xiao H, et al. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database. Drug Des Devel Ther 2016; 10: 4091-100.
[http://dx.doi.org/10.2147/DDDT.S118457] [PMID: 28008232]
[104]
Yamasaki K, Taga T, Hirata Y, et al. Cloning and expression of the human interleukin-6 (bsf-2/ifni 2) receptor. Science (80- ) 1988; 241(4867): 825-8.
[105]
Liu Q, Imaizumi T, Aizawa T, et al. Cytosolic Sensors of Viral RNA Are Involved in the Production of Interleukin-6 via Toll-Like Receptor 3 Signaling in Human Glomerular Endothelial Cells. Kidney Blood Press Res 2019; 44(1): 62-71.
[http://dx.doi.org/10.1159/000498837] [PMID: 30808838]
[106]
Dewitte A, Villeneuve J, Lepreux S, et al. CD154 induces interleukin-6 secretion by kidney tubular epithelial cells under hypoxic conditions: inhibition by chloroquine. Mediators Inflamm 2020; 2020: 6357046.
[http://dx.doi.org/10.1155/2020/6357046] [PMID: 32089648]
[107]
Han MS, White A, Perry RJ, et al. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci USA 2020; 117(6): 2751-60.
[http://dx.doi.org/10.1073/pnas.1920004117] [PMID: 31980524]
[108]
Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Interleukin-6 secretion is limited by self-signaling in endosomes. J Mol Cell Biol 2019; 11(2): 144-57.
[http://dx.doi.org/10.1093/jmcb/mjy038] [PMID: 30016456]
[109]
Borovcanin MM, Jovanovic I, Radosavljevic G, et al. Interleukin-6 in schizophrenia-is there a therapeutic relevance? Front Psychiatry 2017; 8(11): 221.
[http://dx.doi.org/10.3389/fpsyt.2017.00221] [PMID: 29163240]
[110]
Gelinas AD, Davies DR, Edwards TE, et al. Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand. J Biol Chem 2014; 289(12): 8720-34.
[http://dx.doi.org/10.1074/jbc.M113.532697] [PMID: 24415767]
[111]
Wang M, Wei J, Yang X, et al. The level of IL-6 was associated with sleep disturbances in patients with major depressive disorder. Neuropsychiatr Dis Treat 2019; 15: 1695-700.
[http://dx.doi.org/10.2147/NDT.S202329] [PMID: 31417262]
[112]
Fan N, Luo Y, Ou Y, He H. Altered serum levels of TNF-α, IL-6, and IL-18 in depressive disorder patients. Hum Psychopharmacol 2017; 32(4)
[http://dx.doi.org/10.1002/hup.2588] [PMID: 28582802]
[113]
Haroon E, Daguanno AW, Woolwine BJ, et al. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology 2018; 95(April): 43-9.
[http://dx.doi.org/10.1016/j.psyneuen.2018.05.026] [PMID: 29800779]
[114]
Zhu CB, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006; 31(10): 2121-31.
[http://dx.doi.org/10.1038/sj.npp.1301029] [PMID: 16452991]
[115]
Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 2010; 35(13): 2510-20.
[http://dx.doi.org/10.1038/npp.2010.116] [PMID: 20827273]
[116]
Shukla P, Khandelwal R, Sharma D, Dhar A, Nayarisseri A, Singh SK. Virtual Screening of IL-6 Inhibitors for Idiopathic Arthritis. Bioinformation 2019; 15(2): 121-30.
[http://dx.doi.org/10.6026/97320630015121] [PMID: 31435158]
[117]
Kappelmann N, Lewis G, Dantzer R, Jones P, Khandaker G. Antidepressant activity of anti-cytokine treatment: a systematic review and meta- analysis of clinical trials of chronic inflammatory conditions brain. Behav Immun 2017; 66: e2.
[118]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26(2): 283-91.
[http://dx.doi.org/10.1107/S0021889892009944]
[119]
Lovell SC, Davis IW, Adrendall WB, et al. Structure Validation by C Alpha GeomF. Altschul, S., Gish, W., Miller, W., W. Myers, E., & J. Lipman, D. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology.Etry: Phi,Psi and C Beta Deviation. Proteins-Structure Funct. Genet 2002; 2003(50): 437-50.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[120]
Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat Struct Biol 2003; 10(12): 980.
[http://dx.doi.org/10.1038/nsb1203-980] [PMID: 14634627]
[121]
Schüttelkopf AW, van Aalten DMF. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004; 60(Pt 8): 1355-63.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[122]
Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem 2006; 49(11): 3315-21.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[123]
Sander T, Freyss J, von Korff M, Reich JR, Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 2009; 49(2): 232-46.
[http://dx.doi.org/10.1021/ci800305f] [PMID: 19434825]
[124]
Liu T, Tang GW, Capriotti E. Comparative modeling: the state of the art and protein drug target structure prediction. Comb Chem High Throughput Screen 2011; 14(6): 532-47.
[http://dx.doi.org/10.2174/138620711795767811] [PMID: 21521153]
[125]
Muhammed MT, Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des 2019; 93(1): 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[126]
Kim S, Thiessen PA, Bolton EE, et al. PubChem Substance and Compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[127]
Sasaki-Hamada S, Nakamura Y, Koizumi K, Nabeta R, Oka JI. Pharmacological evidence for the relationship between the NMDA receptor and nitric oxide pathway and the antidepressant-like effects of glucagon-like peptide-2 in the mouse forced-swim test. BehavBrain Res 2019; 364(1): 162-6.
[http://dx.doi.org/10.1016/j.bbr.2019.02.028] [PMID: 30779973]
[128]
Yazir Y, Utkan T, Aricioglu F. Inhibition of neuronal nitric oxide synthase and soluble guanylate cyclase prevents depression-like behaviour in rats exposed to chronic unpredictable mild stress. Basic Clin Pharmacol Toxicol 2012; 111(3): 154-60.
[http://dx.doi.org/10.1111/j.1742-7843.2012.00877.x] [PMID: 22385503]
[129]
Schoch GA, D’Arcy B, Stihle M, et al. Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations. J Mol Biol 2010; 395(3): 568-77.
[http://dx.doi.org/10.1016/j.jmb.2009.11.011] [PMID: 19913032]
[130]
Hodes GE, Ménard C, Russo SJ. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol Stress 2016; 4: 15-22.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.003] [PMID: 27981186]
[131]
Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiology & Behavior 2017; 175(1): 139-48.
[http://dx.doi.org/10.1016/j.physbeh.2017.03.040]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy