Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Mini-Review; Deriving Avian Stem Cells by Small Molecules

Author(s): Maryam Farzaneh*

Volume 16, Issue 3, 2021

Published on: 31 August, 2020

Page: [238 - 242] Pages: 5

DOI: 10.2174/1574888X15999200831155607

Price: $65

Open Access Journals Promotions 2
Abstract

Avian embryos and related cell lines have found wide applications in basic and applied sciences. The embryonated egg is a great host for monoclonal antibodies and recombinant proteins. Avian cell lines derived from embryonated eggs have been used for the production of transgenic birds and virus inoculation in vaccine preparation. Hitherto, many efforts have been invested to develop efficient avian stem cell culture. Under the conventional conditions, there are various challenges, such as the type of feeder layers, conditioned medium, serum, and growth factors. Researchers have investigated different conditions to solve these problems. Recent studies have shown that targeted strategies using small molecule inhibitors could be used as alternatives to multi-growth factor delivery approaches. Since small molecule inhibitors were used for mammalian pluripotent stem cells (PSC), several kinds of research have examined the effect of the small molecule on self- -renewal and maintenance of avian PSC. Avian PSC can be derived from early blastodermal cells (stage X), circular primoridial germ cells (PGC; stage HH17), gonadal PGC (stage HH28), and embryonic germ cells (EGC; HH28). Previous studies have shown that the use of small molecule drugs such as PD0325901, SB431542, SC1, IDE1, Z-VAD, Blebbistatin, H-1152, and IDE1 could be an efficient method for the derivation of avian stem cells. This mini-review covers the recent development of avian stem cell culture by small molecules.

Keywords: Stem cells, avian pluripotent stem cells, small molecules, recombinant proteins, transgenic birds, vaccine.

[1]
Farzaneh M, Khoshnam SE, Nokhbatolfoghahai M. First scientific record of two cases of partial twinning in the chick embryo, Gallus gallus domesticus. Vet Rec Case Rep 2016; 4: e000353.
[http://dx.doi.org/10.1136/vetreccr-2016-000353]
[2]
Farzaneh M, Khoshnam S. Novel insight into tricephalic white leghorn strain of gallus chicken embryo. Int J Avian & Wildlife Biol 2018; 3: 181-2.
[3]
Farzaneh M, Attari F, Khoshnam SE, Mozdziak PE. The method of chicken whole embryo culture using the eggshell windowing, surrogate eggshell and ex ovo culture system. Br Poult Sci 2018; 59(2): 240-4.
[http://dx.doi.org/10.1080/00071668.2017.1413234] [PMID: 29206486]
[4]
Farzaneh M, Khoshnam S, Mozdziak P. Concise review: Avian multipotent stem cells as a novel tool for investigating cell-based therapies. J Dairy Vet Anim Res 2017; 5: 00125.
[http://dx.doi.org/10.15406/jdvar.2017.05.00125]
[5]
Proudfoot C, Lillico S, Tait-Burkard C. Genome editing for disease resistance in pigs and chickens. Anim Front 2019; 9(3): 6-12.
[http://dx.doi.org/10.1093/af/vfz013] [PMID: 32002257]
[6]
Wang X, Shields LE, Welch RL, Pigg A, Kaleh K. Transgenesis and genome editing in chickens.Genomics and biotechnological advances in veterinary, poultry, and fisheries. Elsevier 2020; pp. 223-47.
[http://dx.doi.org/10.1016/B978-0-12-816352-8.00010-2]
[7]
Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. J Exp Biol 2020; 223: 223.
[http://dx.doi.org/10.1242/jeb.207159] [PMID: 32034040]
[8]
Chojnacka-Puchta L, Sawicka D. CRISPR/Cas9 gene editing in a chicken model: Current approaches and applications. J Appl Genet 2020; 61(2): 221-9.
[http://dx.doi.org/10.1007/s13353-020-00537-9] [PMID: 31925767]
[9]
Jones VJ, Greene ND, Copp AJ. Genetics and developmental biology of closed dysraphic conditions.Occult Spinal Dysraphism. Springer 2019; pp. 325-44.
[http://dx.doi.org/10.1007/978-3-030-10994-3_21]
[10]
Hennessy ML, Goldstein AM. Animal models in surgical research.Success in Academic Surgery: Basic Science. Springer 2019; pp. 203-12.
[http://dx.doi.org/10.1007/978-3-030-14644-3_13]
[11]
Farzaneh M, Hassani SN, Mozdziak P, Baharvand H. Avian embryos and related cell lines: A convenient platform for recombinant proteins and vaccine production. Biotechnol J 2017; 12(5): 1600598.
[http://dx.doi.org/10.1002/biot.201600598] [PMID: 28371379]
[12]
Raffaelli A, Stern CD. Signaling events regulating embryonic polarity and formation of the primitive streak in the chick embryo Curr Topics in Develop Bio Solnica-Krezel, L, ed. 2020; pp. 85-112.
[13]
Darras VM. The role of maternal thyroid hormones in avian embryonic development. Front Endocrinol (Lausanne) 2019; 10: 66.
[http://dx.doi.org/10.3389/fendo.2019.00066] [PMID: 30800099]
[14]
Azambuja AP, Simoes-Costa M. Identifying protein-DNA and protein-protein interactions in avian embryos.Vertebrate Embryogenesis. Springer 2019; pp. 99-110.
[http://dx.doi.org/10.1007/978-1-4939-9009-2_7]
[15]
Wittig JG, Münsterberg A. The chicken as a model organism to study heart development. Cold Spring Harb Perspect Biol 2019; a037218.
[http://dx.doi.org/10.1101/cshperspect.a037218] [PMID: 31767650]
[16]
Kalcheim C. The Neural Crest: A remarkable model system for studying development and disease.Neural Crest Cells. Springer 2019; pp. 1-19.
[http://dx.doi.org/10.1007/978-1-4939-9412-0_1]
[17]
Alrajeh M, Vavrusova Z, Creuzet SE. Deciphering the neural crest contribution to cephalic development with avian embryos.Neural Crest Cells. Springer 2019; pp. 55-70.
[http://dx.doi.org/10.1007/978-1-4939-9412-0_5]
[18]
Knepper P, O’hayer M, Hoopes J, Gabbai E. System and method for in ovo sexing of avian embryos, in, Google Patents In: WO2018023105A/2019.
[19]
Hunter P. The prospects for recombinant proteins from transgenic animals: A few successes along with the advent of new technologies increase the allure of transgenic animals for the production of therapeutic human proteins. EMBO Rep 2019; 20(8): e48757.
[http://dx.doi.org/10.15252/embr.201948757] [PMID: 31304991]
[20]
Zhang Y, Wang Y, Zuo Q, et al. Effects of the transforming growth factor beta signaling pathway on the differentiation of chicken embryonic stem cells into male germ cells, Cellular Reprogramming (Formerly" Cloning and Stem Cells") 2016; 401-10.
[21]
Fuet A, Pain B. Chicken induced pluripotent stem cells: Establishment and characterization.Avian and Reptilian Developmental Biology. Springer 2017; pp. 211-28.
[http://dx.doi.org/10.1007/978-1-4939-7216-6_14]
[22]
Shittu I, Zhu Z, Lu Y, et al. Development, characterization and optimization of a new suspension chicken-induced pluripotent cell line for the production of Newcastle disease vaccine. Biologicals 2016; 44(1): 24-32.
[http://dx.doi.org/10.1016/j.biologicals.2015.09.002] [PMID: 26586283]
[23]
Sisakhtnezhad S, Bahrami AR, Matin MM, et al. The molecular signature and spermatogenesis potential of newborn chicken spermatogonial stem cells in vitro. In Vitro Cell Dev Biol Anim 2015; 51(4): 415-25.
[http://dx.doi.org/10.1007/s11626-014-9843-1] [PMID: 25740657]
[24]
Momeni-Moghaddam M, Matin MM, Boozarpour S, et al. A simple method for isolation, culture, and in vitro maintenance of chicken spermatogonial stem cells. In Vitro Cell Dev Biol Anim 2014; 50(2): 155-61.
[http://dx.doi.org/10.1007/s11626-013-9685-2] [PMID: 24257999]
[25]
Van de Lavoir M-C, Diamond JH, Leighton PA, et al. Germline transmission of genetically modified primordial germ cells. Nature 2006; 441(7094): 766-9.
[http://dx.doi.org/10.1038/nature04831] [PMID: 16760981]
[26]
Chen H, Zuo Q, Wang Y, et al. Regulation of hedgehog signaling in chicken embryonic stem cells differentiation into male germ cells (Gallus). J Cell Biochem 2017; 118(6): 1379-86.
[http://dx.doi.org/10.1002/jcb.25796] [PMID: 27862257]
[27]
Lee J-S, Jang S-Y, Lee S. Method and system for detecting avian influenza virus based on cell lines, in, Google Patents WO 2009152181A12009.
[28]
Fife M, Gibson M. Avian cells for improved virus production, in, Google Patents US20160108359A1. 2019.
[29]
Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol 1951; 88(1): 49-92.
[http://dx.doi.org/10.1002/jmor.1050880104] [PMID: 24539719]
[30]
Petitte JN, Liu G, Yang Z. Avian pluripotent stem cells. Mech Dev 2004; 121(9): 1159-68.
[http://dx.doi.org/10.1016/j.mod.2004.05.003] [PMID: 15296979]
[31]
Van de Lavoir M-C, Mather-Love C, Leighton P, et al. High-grade transgenic somatic chimeras from chicken embryonic stem cells. Mech Dev 2006; 123(1): 31-41.
[http://dx.doi.org/10.1016/j.mod.2005.10.002] [PMID: 16325380]
[32]
Farzaneh M, Zare M, Hassani SN, Baharvand H. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J Cell Biochem 2018; 119(8): 6325-36.
[http://dx.doi.org/10.1002/jcb.26761] [PMID: 29393549]
[33]
Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE. The evolution of chicken stem cell culture methods. Br Poult Sci 2017; 58(6): 681-6.
[http://dx.doi.org/10.1080/00071668.2017.1365354] [PMID: 28840744]
[34]
Pain B, Kress C, Rival-Gervier S. Pluripotency in avian species. Int J Dev Biol 2018; 62(1-2-3): 245-55.
[http://dx.doi.org/10.1387/ijdb.170322bp] [PMID: 29616733]
[35]
Zhang L, Wu Y, Li X, et al. An alternative method for long-term culture of chicken embryonic stem cell in vitro. Stem Cells Int 2018; 2018: 2157451.
[http://dx.doi.org/10.1155/2018/2157451] [PMID: 29861740]
[36]
Kim YM, Park JS, Yoon JW, et al. Production of germline chimeric quails following spermatogonial cell transplantation in busulfan-treated testis. Asian J Androl 2018; 20(4): 414-6.
[http://dx.doi.org/10.4103/aja.aja_79_17] [PMID: 29405171]
[37]
Molina J. In ovo Culture of Cryopreserved Quail Testicular Tissue 2019.
[38]
Intarapat S, Stern CD. Chick stem cells: Current progress and future prospects. Stem Cell Res 2013; 11(3): 1378-92.
[http://dx.doi.org/10.1016/j.scr.2013.09.005] [PMID: 24103496]
[39]
Goonoo N, Bhaw-Luximon A. Mimicking growth factors: Role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Advances 2019; 9: 18124-46.
[http://dx.doi.org/10.1039/C9RA02765C]
[40]
Pei H, Peng Y, Zhao Q, Chen Y. Small molecule PROTACs: An emerging technology for targeted therapy in drug discovery. RSC Advances 2019; 9: 16967-76.
[http://dx.doi.org/10.1039/C9RA03423D]
[41]
Tran FH, Zheng JJ. Modulating the wnt signaling pathway with small molecules. Protein Sci 2017; 26(4): 650-61.
[http://dx.doi.org/10.1002/pro.3122] [PMID: 28120389]
[42]
Mulas C, Kalkan T, von Meyenn F, Leitch HG, Nichols J, Smith A. Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development 2019; 146(6): dev173146.
[http://dx.doi.org/10.1242/dev.173146] [PMID: 30914406]
[43]
Nichols J, Jones K. Derivation of mouse embryonic stem (ES) cell lines using small-molecule inhibitors of Erk and Gsk3 signaling (2i), Cold Spring Harbor Protocols 2017; 2017(6)
[44]
Chen G, Guo Ye, Li C, Li S, Wan X. Small molecules that promote self-renewal of stem cells and somatic cell reprogramming. Stem Cell Reviews and Reports 2020; pp. 1-13.
[45]
Szczerbinska I, Gonzales KAU, Cukuroglu E, et al. A chemically defined feeder-free system for the establishment and maintenance of the human naive pluripotent state. Stem Cell Reports 2019; 13(4): 612-26.
[http://dx.doi.org/10.1016/j.stemcr.2019.08.005] [PMID: 31522974]
[46]
Ying Q-L, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature 2008; 453(7194): 519-23.
[http://dx.doi.org/10.1038/nature06968] [PMID: 18497825]
[47]
Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejabatdoust A, Khoshnam SE. Suppression of TGF-β and ERK signaling pathways as a new strategy to provide rodent and non-rodent pluripotent stem cells. Curr Stem Cell Res Ther 2019; 14(6): 466-73.
[http://dx.doi.org/10.2174/1871527318666190314110529] [PMID: 30868962]
[48]
Hassani S-N, Totonchi M, Sharifi-Zarchi A, et al. Inhibition of TGFβ signaling promotes ground state pluripotency. Stem Cell Rev Rep 2014; 10(1): 16-30.
[http://dx.doi.org/10.1007/s12015-013-9473-0] [PMID: 24036899]
[49]
Masoudi N, Baharvand H, Hassani S, et al. Comparison of the chromosomal stability of mouse embryonic stem cell in medium containing R2i (TGF-βand ERK1, 2 inhibitors) with medium containing 2i (GSK-3 and ERK1, 2 inhibitors) by karyotyping, Cell Journal 2013.
[50]
Ezaki R, Hirose F, Furusawa S, Horiuchi H. An improved protocol for stable and efficient culturing of chicken primordial germ cells using small-molecule inhibitors. Cytotechnology 2020; 72(3): 397-405.
[http://dx.doi.org/10.1007/s10616-020-00385-9] [PMID: 32114635]
[51]
Li R, Tang X, Xu S, et al. SC1 sustains the self-renewal capacity and pluripotency of chicken blastodermal cells by inhibiting the phosphorylation of ERK1 and promoting the phosphorylation of Akt. Reprod Domest Anim 2018; 53(5): 1052-9.
[http://dx.doi.org/10.1111/rda.13202] [PMID: 30028046]
[52]
Yakhkeshi S, Rahimi S, Sharafi M, et al. In vitro improvement of quail primordial germ cell expansion through activation of TGF-beta signaling pathway. J Cell Biochem 2018; 119(6): 4309-19.
[http://dx.doi.org/10.1002/jcb.26618] [PMID: 29243844]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy