Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

A Review on Phytopharmaceuticals having Concomitant Experimental Anti-diabetic and Anti-cancer Effects as Potential Sources for Targeted Therapies Against Insulin-mediated Breast Cancer Cell Invasion and Migration

Author(s): Vibhavana Singh, Rakesh Reddy, Antarip Sinha, Venkatesh Marturi, Shravani S. Panditharadyula and Asis Bala*

Volume 17, Issue 1, 2021

Published on: 31 August, 2020

Page: [49 - 74] Pages: 26

DOI: 10.2174/1573394716999200831113335

Price: $65

Open Access Journals Promotions 2
Abstract

Diabetes and breast cancer are pathophysiologically similar and clinically established diseases that co-exist with a wider complex similar molecular signalling and having a similar set of risk factors. Insulin plays a pivotal role in the invasion and migration of breast cancer cells. Several ethnopharmacological evidences shed light on the concomitant anti-diabetic and anti-cancer activity of medicinal plant and phytochemicals against breast tumors of patients with diabetes. This present article reviewed the findings on medicinal plants and phytochemicals with concomitant antidiabetic and anti-cancer effects reported in scientific literature to facilitate the development of dual- acting therapies against diabetes and breast cancer. The schematic tabular form of published literature on medicinal plants (63 plants belongs to 45 families) concluded the dynamics of phytochemicals against diabetes and breast tumors that could be explored further for the discovery of therapies for controlling of breast cancer cell invasion and migration in patients with diabetes.

Keywords: Breast cancer cell, invasion, migration, medicinal plants, ethnopharmacological phytomolecules, concomitant antidiabetic, anticancer activity and molecular target for drug design.

Graphical Abstract
[2]
De Bruijn KM, Arends LR, Hansen BE, Leeflang S, Ruiter R, van Eijck CH. Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg 2013; 100(11): 1421-9.
[http://dx.doi.org/10.1002/bjs.9229] [PMID: 24037561]
[3]
Shao S, Gill AA, Zahm SH, et al. Diabetes and overall survival among breast cancer patients in the U.S. military health system. Cancer Epidemiol Biomarkers Prev 2018; 27(1): 50-7.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0439] [PMID: 29097445]
[4]
Zhou Y, Zhang X, Gu C, Xia J. Influence of diabetes mellitus on mortality in breast cancer patients. ANZ J Surg 2015; 85(12): 972-8.
[http://dx.doi.org/10.1111/ans.12877] [PMID: 25312511]
[5]
Storey S, Cohee A, Gathirua-Mwangi WG, et al. impact of diabetes on the symptoms of breast cancer survivors. Oncol Nurs Forum 2019; 46(4): 473-84.
[http://dx.doi.org/10.1188/19.ONF.473-484] [PMID: 31225841]
[6]
Krysiak R, Rudzki H, Okopień B. Diabetes and prediabetes in endocrine disorders. Wiad Lek 2012; 65(3): 187-98.
[7]
Karthikeyan J, Kavitha V, Abirami T, Bavani G. Medicinal plants and diabetes mellitus: A review. J Pharmacog Phytochem 2017; 6(4): 1270-9.
[8]
Oyagbemi AA, Salihu M, Oguntibeju OO, Esterhuyse AJ, Farombi EO. Some selected medicinal plants with antidiabetic potentials. In: Antioxidant-Antidiabetic Agents and Human Health. IntechOpen: UK, 2014; pp. 95-113.
[http://dx.doi.org/10.5772/57230]
[9]
Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron Phys 2016; 8(1): 1832-42.
[http://dx.doi.org/10.19082/1832] [PMID: 26955456]
[10]
Chukwuma CI, Matsabisa MG, Ibrahim MA, Erukainure OL, Chabalala MH, Islam MS. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J Ethnopharmacol 2019; 235: 329-60.
[http://dx.doi.org/10.1016/j.jep.2019.02.024] [PMID: 30769039]
[11]
Rahimi MA. Review: Anti diabetic medicinal plants used for diabetes mellitus. Bull Env Pharmacol Life Sci 2015; 4(2): 163-80.
[12]
Rajendran A, Sudeshraj R, Sureshkumar S. Potential antidiabetic activity of medicinal plants – A short review. J Phytopharmacol 2018; 7(5): 456-9.
[13]
Chukwuma CI, Mopuri R, Nagiah S, Chuturgoon AA, Islam MS. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats. Eur J Nutr 2018; 57(7): 2431-44.
[http://dx.doi.org/10.1007/s00394-017-1516-x] [PMID: 28770335]
[14]
Teoh SL, Das S. Phytochemicals and their effective role in the treatment of diabetes mellitus: A short review. Phytochem Rev 2018; 17(5): 1111-28.
[http://dx.doi.org/10.1007/s11101-018-9575-z]
[15]
Erukainure OL, Hafizur RM, Kabir N, et al. Suppressive effects of Clerodendrum volubile P Beauv. [Labiatae] methanolic extract and its fractions on type 2 diabetes and its complications. Front Pharmacol 2018; 9: 8.
[http://dx.doi.org/10.3389/fphar.2018.00008] [PMID: 29449808]
[16]
Alqahtani SN, Alkholy SO, Ferreira MP. Antidiabetic and anticancer potential of native medicinal plants from Saudi Arabia.Polyphenols in therapy of obesity and diabetes USA: Academic Press . 2014; pp. 119-32.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00011-6]
[17]
Indian Council Of Medical Research (ICMR). 2019. Available from: https://main.icmr.nic.in/sites/default/files/ICMR_News_1.pdf
[18]
Sun YS, Zhao Z, Yang ZN, et al. Risk factors and preventions of breast cancer. Int J Biol Sci 2017; 13(11): 1387-97.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[19]
Breast cancer WHO 2018-19 reports. Available from: https://www.who.int/cancer/prevention/diagnosis screening/breast- cancer/en/
[21]
Dieci MV, Orvieto E, Dominici M, Conte P, Guarneri V. Rare breast cancer subtypes: Histological, molecular, and clinical peculiarities. Oncologist 2014; 19(8): 805-13.
[http://dx.doi.org/10.1634/theoncologist.2014-0108] [PMID: 24969162]
[22]
Tamimi RM, Colditz GA, Hazra A, et al. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat 2012; 131(1): 159-67.
[http://dx.doi.org/10.1007/s10549-011-1702-0] [PMID: 21830014]
[23]
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490(7418): 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[24]
Allred DC. Ductal carcinoma in situ: Terminology, classification, and natural history. J Natl Cancer Inst Monogr 2010; 2010(41): 134-8.
[http://dx.doi.org/10.1093/jncimonographs/lgq035] [PMID: 20956817]
[25]
Erbas B, Provenzano E, Armes J, Gertig D. The natural history of ductal carcinoma in situ of the breast: A review. Breast Cancer Res Treat 2006; 97(2): 135-44.
[http://dx.doi.org/10.1007/s10549-005-9101-z] [PMID: 16319971]
[26]
Sanders ME, Schuyler PA, Dupont WD, Page DL. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 2005; 103(12): 2481-4.
[http://dx.doi.org/10.1002/cncr.21069] [PMID: 15884091]
[27]
Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ. Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses’ Health Study. Cancer 2005; 103(9): 1778-84.
[http://dx.doi.org/10.1002/cncr.20979] [PMID: 15770688]
[28]
Eusebi V, Feudale E, Foschini MP, et al. Long-term follow-up of in situ carcinoma of the breast. Semin Diagn Pathol 1994; 11(3): 223-35.
[29]
Jiralerspong S, Goodwin PJ. obesity and breast cancer prognosis: evidence, challenges, and opportunities. J Clin Oncol 2016; 34(35): 4203-16.
[http://dx.doi.org/10.1200/JCO.2016.68.4480] [PMID: 27903149]
[30]
Iyengar NM, Arthur R, Manson JE, et al. Association of body fat and risk of breast cancer in postmenopausal women with normal body mass index: A secondary analysis of a randomized clinical trial and observational study. JAMA Oncol 2019; 5(2): 155-63.
[http://dx.doi.org/10.1001/jamaoncol.2018.5327] [PMID: 30520976]
[31]
Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J Clin 2017; 67(5): 378-97.
[http://dx.doi.org/10.3322/caac.21405] [PMID: 28763097]
[32]
Rosner B, Eliassen AH, Toriola AT, et al. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer 2017; 140(9): 2003-14.
[http://dx.doi.org/10.1002/ijc.30627] [PMID: 28133728]
[33]
Keum N, Greenwood DC, Lee DH, et al. Adult weight gain and adiposity-related cancers: A dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst 2015; 107(2): djv088.
[http://dx.doi.org/10.1093/jnci/djv088] [PMID: 25757865]
[34]
Chlebowski RT, Luo J, Anderson GL, et al. Weight loss and breast cancer incidence in postmenopausal women. Cancer 2019; 125(2): 205-12.
[http://dx.doi.org/10.1002/cncr.31687] [PMID: 30294816]
[35]
Nelson HD, Zakher B, Cantor A, et al. Van, Ravesteyn NT.; Trentham-Dietz, A.; Mandelblatt, JS.; Miglioretti, DL. Risk factors for breast cancer for women aged 40 to 49 years: A systematic review and metaanalysis. Ann Intern Med 2012; 156(9): 635-48.
[http://dx.doi.org/10.7326/0003-4819-156-9-201205010-00006] [PMID: 22547473]
[36]
Chen M, Rao Y, Zheng Y, et al. Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: A meta-analysis of epidemiological studies. PLoS One 2014; 9(2): e89288.
[http://dx.doi.org/10.1371/journal.pone.0089288] [PMID: 24586662]
[37]
Farvid MS, Chen WY, Rosner BA, Tamimi RM, Willett WC, Eliassen AH. Fruit and vegetable consumption and breast cancer incidence: Repeated measures over 30 years of follow-up. Int J Cancer 2019; 144(7): 1496-510.
[http://dx.doi.org/10.1002/ijc.31653] [PMID: 29978479]
[38]
World Cancer Research Fund and American Institute for Cancer Research. Continuous Update Project Report Expert Report 2018. Available from: https://www.wcrf.org/sites/default/files/Summary-of-Third-Expert-Report-2018.pdf
[39]
Liu Y, Nguyen N, Colditz GA. Links between alcohol consumption and breast cancer: A look at the evidence. Womens Health (Lond) 2015; 11(1): 65-77.
[http://dx.doi.org/10.2217/WHE.14.62] [PMID: 25581056]
[40]
Jung S, Wang M, Anderson K, et al. Alcohol consumption and breast cancer risk by estrogen receptor status: In a pooled analysis of 20 studies. Int J Epidemiol 2016; 45(3): 916-28.
[http://dx.doi.org/10.1093/ije/dyv156] [PMID: 26320033]
[41]
McTiernan A, Friedenreich CM, Katzmarzyk PT, et al. physical activity in cancer prevention and survival: A systematic review. Med Sci Sports Exerc 2019; 51(6): 1252-61.
[http://dx.doi.org/10.1249/MSS.0000000000001937] [PMID: 31095082]
[42]
Kerr J, Anderson C, Lippman SM. Physical activity, sedentary behaviour, diet, and cancer: An update and emerging new evidence. Lancet Oncol 2017; 18(8): e457-71.
[http://dx.doi.org/10.1016/S1470-2045(17)30411-4] [PMID: 28759385]
[43]
Moore SC, Lee IM, Weiderpass E, et al. association of leisure time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med 2016; 176(6): 816-25.
[http://dx.doi.org/10.1001/jamainternmed.2016.1548] [PMID: 27183032]
[44]
Pizot C, Boniol M, Mullie P, et al. Physical activity, hormone replacement therapy and breast cancer risk: A meta-analysis of prospective studies. Eur J Cancer 2016; 52: 138-54.
[http://dx.doi.org/10.1016/j.ejca.2015.10.063] [PMID: 26687833]
[45]
Neilson HK, Friedenreich CM, Brockton NT, Millikan RC. Physical activity and postmenopausal breast cancer: Proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomarkers Prev 2009; 18(1): 11-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0756] [PMID: 19124476]
[46]
Shiyanbola OO, Arao RF, Miglioretti DL, et al. Emerging trends in family history of breast cancer and associated risk. Cancer Epidemiol Biomarkers Prev 2017; 26(12): 1753-60.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0531] [PMID: 28986348]
[47]
Kharazmi E, Chen T, Narod S, Sundquist K, Hemminki K. Effect of multiplicity, laterality, and age at onset of breast cancer on familial risk of breast cancer: A nationwide prospective cohort study. Breast Cancer Res Treat 2014; 144(1): 185-92.
[http://dx.doi.org/10.1007/s10549-014-2848-3] [PMID: 24487690]
[48]
Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 2001; 358(9291): 1389-99.
[http://dx.doi.org/10.1016/S0140-6736(01)06524-2] [PMID: 11705483]
[49]
Mocci E, Milne RL, Méndez-Villamil EY, et al. Risk of pancreatic cancer in breast cancer families from the breast cancer family registry. Cancer Epidemiol Biomarkers Prev 2013; 22(5): 803-11.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-0195] [PMID: 23456555]
[50]
Beebe-Dimmer JL, Yee C, Cote ML, et al. Familial clustering of breast and prostate cancer and risk of postmenopausal breast cancer in the Women’s Health Initiative Study. Cancer 2015; 121(8): 1265-72.
[http://dx.doi.org/10.1002/cncr.29075] [PMID: 25754547]
[51]
Tung N, Lin NU, Kidd J, et al. frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol 2016; 34(13): 1460-8.
[http://dx.doi.org/10.1200/JCO.2015.65.0747] [PMID: 26976419]
[52]
Turnbull C, Rahman N. Genetic predisposition to breast cancer: Past, present, and future. Annu Rev Genomics Hum Genet 2008; 9: 321-45.
[http://dx.doi.org/10.1146/annurev.genom.9.081307.164339] [PMID: 18544032]
[53]
Churpek JE, Walsh T, Zheng Y, et al. Inherited predisposition to breast cancer among African American women. Breast Cancer Res Treat 2015; 149(1): 31-9.
[http://dx.doi.org/10.1007/s10549-014-3195-0] [PMID: 25428789]
[54]
Pal T, Bonner D, Cragun D, et al. A high frequency of BRCA mutations in young black women with breast cancer residing in Florida. Cancer 2015; 121(23): 4173-80.
[http://dx.doi.org/10.1002/cncr.29645] [PMID: 26287763]
[55]
Weitzel JN, Clague J, Martir-Negron A, et al. Prevalence and type of BRCA mutations in Hispanics undergoing genetic cancer risk assessment in the southwestern United States: A report from the Clinical Cancer Genetics Community Research Network. J Clin Oncol 2013; 31(2): 210-6.
[http://dx.doi.org/10.1200/JCO.2011.41.0027] [PMID: 23233716]
[56]
Kuchenbaecker KB, Hopper JL, Barnes DR, et al. BRCA1 and BRCA2 cohort consortium. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 2017; 317(23): 2402-16.
[http://dx.doi.org/10.1001/jama.2017.7112] [PMID: 28632866]
[57]
Antoniou AC, Casadei S, Heikkinen T, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 2014; 371(6): 497-506.
[http://dx.doi.org/10.1056/NEJMoa1400382] [PMID: 25099575]
[58]
Kramer I, Schaapveld M, Oldenburg HSA, et al. The influence of adjuvant systemic regimens on contralateral breast cancer risk and receptor subtype. J Natl Cancer Inst 2019; 111(7): 709-18.
[http://dx.doi.org/10.1093/jnci/djz010] [PMID: 30698719]
[59]
Dyrstad SW, Yan Y, Fowler AM, Colditz GA. Breast cancer risk associated with benign breast disease: Systematic review and meta-analysis. Breast Cancer Res Treat 2015; 149(3): 569-75.
[http://dx.doi.org/10.1007/s10549-014-3254-6] [PMID: 25636589]
[60]
Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K. Atypical hyperplasia of the breast--risk assessment and management options. N Engl J Med 2015; 372(1): 78-89.
[http://dx.doi.org/10.1056/NEJMsr1407164] [PMID: 25551530]
[61]
Mazzola E, Coopey SB, Griffin M, et al. Reassessing risk models for atypical hyperplasia: Age may not matter. Breast Cancer Res Treat 2017; 165(2): 285-91.
[http://dx.doi.org/10.1007/s10549-017-4320-7] [PMID: 28589368]
[62]
Morrow M, Schnitt SJ, Norton L. Current management of lesions associated with an increased risk of breast cancer. Nat Rev Clin Oncol 2015; 12(4): 227-38.
[http://dx.doi.org/10.1038/nrclinonc.2015.8] [PMID: 25622978]
[63]
Manson JE, Chlebowski RT, Stefanick ML, et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 2013; 310(13): 1353-68.
[http://dx.doi.org/10.1001/jama.2013.278040] [PMID: 24084921]
[64]
Stout NK, Cronin AM, Uno H, et al. Estrogen-receptor status and risk of contralateral breast cancer following DCIS. Breast Cancer Res Treat 2018; 171(3): 777-81.
[http://dx.doi.org/10.1007/s10549-018-4860-5] [PMID: 29946862]
[65]
Wong SM, King T, Boileau JF, Barry WT, Golshan M. Population-based analysis of breast cancer incidence and survival outcomes in women diagnosed with lobular carcinoma in situ. Ann Surg Oncol 2017; 24(9): 2509-17.
[http://dx.doi.org/10.1245/s10434-017-5867-6] [PMID: 28455673]
[66]
Masannat YA, Husain E, Roylance R, et al. Pleomorphic LCIS what do we know? A UK multicenter audit of pleomorphic lobular carcinoma in situ. Breast 2018; 38: 120-4.
[http://dx.doi.org/10.1016/j.breast.2017.12.011] [PMID: 29310036]
[67]
Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007; 356(3): 227-36.
[http://dx.doi.org/10.1056/NEJMoa062790] [PMID: 17229950]
[68]
Sprague BL, Gangnon RE, Burt V, et al. Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst 2014; 106(10): dju255.
[http://dx.doi.org/10.1093/jnci/dju255] [PMID: 25217577]
[69]
Huo CW, Chew GL, Britt KL, et al. Mammographic density-a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat 2014; 144(3): 479-502.
[http://dx.doi.org/10.1007/s10549-014-2901-2] [PMID: 24615497]
[70]
Byrne C, Ursin G, Martin CF, et al. Mammographic density change with estrogen and progestin therapy and breast cancer risk. J Natl Cancer Inst 2017; 109(9): djx001.
[http://dx.doi.org/10.1093/jnci/djx001] [PMID: 28376149]
[71]
Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 2012; 13(11): 1141-51.
[http://dx.doi.org/10.1016/S1470-2045(12)70425-4] [PMID: 23084519]
[72]
Qu X, Zhang X, Qin A, et al. Bone mineral density and risk of breast cancer in postmenopausal women. Breast Cancer Res Treat 2013; 138(1): 261-71.
[http://dx.doi.org/10.1007/s10549-013-2431-3] [PMID: 23381744]
[73]
Grenier D, Cooke AL, Lix L, Metge C, Lu H, Leslie WD. Bone mineral density and risk of postmenopausal breast cancer. Breast Cancer Res Treat 2011; 126(3): 679-86.
[http://dx.doi.org/10.1007/s10549-010-1138-y] [PMID: 20838879]
[74]
Kerlikowske K, Shepherd J, Creasman J, Tice JA, Ziv E, Cummings SR. Are breast density and bone mineral density independent risk factors for breast cancer? J Natl Cancer Inst 2005; 97(5): 368-74.
[http://dx.doi.org/10.1093/jnci/dji056] [PMID: 15741573]
[75]
Sampson JN, Falk RT, Schairer C, et al. Association of estrogen metabolism with breast cancer risk in different cohorts of postmenopausal women. Cancer Res 2017; 77(4): 918-25.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1717] [PMID: 28011624]
[76]
Brown SB, Hankinson SE. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers Steroids 2015; 99(Pt A): 8-10.
[77]
Key TJ, Appleby PN, Reeves GK, et al. Sex hormones and risk of breast cancer in premenopausal women: A collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol 2013; 14(10): 1009-19.
[http://dx.doi.org/10.1016/S1470-2045(13)70301-2] [PMID: 23890780]
[78]
Fortner RT, Eliassen AH, Spiegelman D, Willett WC, Barbieri RL, Hankinson SE. Premenopausal endogenous steroid hormones and breast cancer risk: results from the Nurses’ Health Study II. Breast Cancer Res 2013; 15(2): R19.
[http://dx.doi.org/10.1186/bcr3394] [PMID: 23497468]
[79]
Nichols HB, Schoemaker MJ, Cai J, et al. Breast cancer risk after recent childbirth: A pooled analysis of 15 prospective studies. Ann Intern Med 2018; 11: 11.
[http://dx.doi.org/10.7326/M18-1323] [PMID: 30534999]
[80]
Gaudet MM, Gierach GL, Carter BD, et al. Pooled analysis of nine cohorts reveals breast cancer risk factors by tumor molecular subtype. Cancer Res 2018; 78(20): 6011-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0502] [PMID: 30185547]
[81]
Warren MP. Menopausal hormone therapy has risks and benefits during the intervention and poststopping phase. Evid Based Med 2014; 19(3): 105.
[http://dx.doi.org/10.1136/eb-2013-101656] [PMID: 24492931]
[82]
Li K, Anderson G, Viallon V, et al. Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts. Breast Cancer Res 2018; 20(1): 147.
[http://dx.doi.org/10.1186/s13058-018-1073-0] [PMID: 30509329]
[83]
Chlebowski RT, Manson JE, Anderson GL, et al. Estrogen plus progestin and breast cancer incidence and mortality in the women’s health initiative Observational Study. J Natl Cancer Inst 2013; 105(8): 526-35.
[http://dx.doi.org/10.1093/jnci/djt043] [PMID: 23543779]
[84]
Beral V, Reeves G, Bull D, Green J. Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst 2011; 103(4): 296-305.
[http://dx.doi.org/10.1093/jnci/djq527] [PMID: 21278356]
[85]
Chlebowski RT, Rohan TE, Manson JE, et al. Breast cancer after use of estrogen plus progestin and estrogen alone: Analyses of data from 2 women’s health initiative randomized clinical trials. JAMA Oncol 2015; 1(3): 296-305.
[http://dx.doi.org/10.1001/jamaoncol.2015.0494] [PMID: 26181174]
[86]
LaCroix AZ, Chlebowski RT, Manson JE, et al. Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: A randomized controlled trial. JAMA 2011; 305(13): 1305-14.
[http://dx.doi.org/10.1001/jama.2011.382] [PMID: 21467283]
[87]
Calle EE, Feigelson HS, Hildebrand JS, Teras LR, Thun MJ, Rodriguez C. Postmenopausal hormone use and breast cancer associations differ by hormone regimen and histologic subtype. Cancer 2009; 115(5): 936-45.
[http://dx.doi.org/10.1002/cncr.24101] [PMID: 19156895]
[88]
Bakken K, Fournier A, Lund E, et al. Menopausal hormone therapy and breast cancer risk: impact of different treatments. The European Prospective Investigation into Cancer and Nutrition. Int J Cancer 2011; 128(1): 144-56.
[http://dx.doi.org/10.1002/ijc.25314] [PMID: 20232395]
[89]
Chlebowski RT, Anderson GL. The influence of time from menopause and mammography on hormone therapy-related breast cancer risk assessment. J Natl Cancer Inst 2011; 103(4): 284-5.
[http://dx.doi.org/10.1093/jnci/djq561] [PMID: 21278357]
[90]
Manson JE, Aragaki AK, Rossouw JE, et al. Menopausal hormone therapy and long-term all-cause and cause-specific mortality: The women’s health initiative randomized trials. JAMA 2017; 318(10): 927-38.
[http://dx.doi.org/10.1001/jama.2017.11217] [PMID: 28898378]
[91]
Brinton LA. Fertility status and cancer. Semin Reprod Med 2017; 35(3): 291-7.
[http://dx.doi.org/10.1055/s-0037-1603098] [PMID: 28658713]
[92]
van den Belt-Dusebout AW, Spaan M, Lambalk CB, et al. Ovarian stimulation for in vitro fertilization and long-term risk of breast cancer. JAMA 2016; 316(3): 300-12.
[http://dx.doi.org/10.1001/jama.2016.9389] [PMID: 27434442]
[93]
Gennari A, Costa M, Puntoni M, et al. Breast cancer incidence after hormonal treatments for infertility: Systematic review and meta-analysis of population-based studies. Breast Cancer Res Treat 2015; 150(2): 405-13.
[http://dx.doi.org/10.1007/s10549-015-3328-0] [PMID: 25744295]
[94]
Williams CL, Jones ME, Swerdlow AJ, et al. Risks of ovarian, breast, and corpus uteri cancer in women treated with assisted reproductive technology in Great Britain, 1991-2010: data linkage study including 2.2 million person years of observation. BMJ 2018; 362: k2644.
[http://dx.doi.org/10.1136/bmj.k2644] [PMID: 29997145]
[95]
Reigstad MM, Storeng R, Myklebust TA, et al. Cancer risk in women treated with fertility drugs according to parity status-a registry-based cohort study. Cancer Epidemiol Biomarkers Prev 2017; 26(6): 953-62.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0809] [PMID: 28108444]
[96]
Brinton LA, Scoccia B, Moghissi KS, et al. Long-term relationship of ovulation-stimulating drugs to breast cancer risk. Cancer Epidemiol Biomarkers Prev 2014; 23(4): 584-93.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0996] [PMID: 24700523]
[97]
Breast cancer and breastfeeding: Collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 2002; 360(9328): 187-95.
[http://dx.doi.org/10.1016/S0140-6736(02)09454-0] [PMID: 12133652]
[98]
Ma H, Ursin G, Xu X, et al. Reproductive factors and the risk of triple-negative breast cancer in white women and African-American women: A pooled analysis. Breast Cancer Res 2017; 19(1): 6.
[http://dx.doi.org/10.1186/s13058-016-0799-9] [PMID: 28086982]
[99]
Faupel-Badger JM, Arcaro KF, Balkam JJ, et al. Postpartum remodeling, lactation, and breast cancer risk: Summary of a National Cancer Institute-sponsored workshop. J Natl Cancer Inst 2013; 105(3): 166-74.
[http://dx.doi.org/10.1093/jnci/djs505] [PMID: 23264680]
[100]
Islami F, Liu Y, Jemal A, et al. Breastfeeding and breast cancer risk by receptor status--a systematic review and meta-analysis. Ann Oncol 2015; 26(12): 2398-407.
[http://dx.doi.org/10.1093/annonc/mdv379] [PMID: 26504151]
[101]
Elands RJJ, Offermans NSM, Simons CCJM, et al. Associations of adult-attained height and early life energy restriction with postmenopausal breast cancer risk according to estrogen and progesterone receptor status. Int J Cancer 2019; 144(8): 1844-57.
[http://dx.doi.org/10.1002/ijc.31890] [PMID: 30252931]
[102]
Zhang B, Shu XO, Delahanty RJ, et al. kConFab Investigators, Australian Ovarian Study Group; DRIVE Project. Height and breast cancer risk: Evidence from prospective studies and mendelian randomization. J Natl Cancer Inst 2015; 107(11): 11.
[http://dx.doi.org/10.1093/jnci/djv219] [PMID: 26296642]
[103]
Green J, Cairns BJ, Casabonne D, Wright FL, Reeves G, Beral V. Height and cancer incidence in the Million Women Study: Prospective cohort, and meta-analysis of prospective studies of height and total cancer risk. Lancet Oncol 2011; 12(8): 785-94.
[http://dx.doi.org/10.1016/S1470-2045(11)70154-1] [PMID: 21782509]
[104]
Westhoff CL, Pike MC. Hormonal contraception and breast cancer. Am J Obstet Gynecol 2018; 219(2): 169.e1-4.
[http://dx.doi.org/10.1016/j.ajog.2018.03.032] [PMID: 29779566]
[105]
Ellingjord-Dale M, Vos L, Tretli S, Hofvind S, Dos-Santos-Silva I, Ursin G. Parity, hormones and breast cancer subtypes - results from a large nested case-control study in a national screening program. Breast Cancer Res 2017; 19(1): 10.
[http://dx.doi.org/10.1186/s13058-016-0798-x] [PMID: 28114999]
[106]
Soini T, Hurskainen R, Grénman S, Mäenpää J, Paavonen J, Pukkala E. Cancer risk in women using the levonorgestrel-releasing intrauterine system in Finland. Obstet Gynecol 2014; 124(2 Pt 1): 292-9.
[http://dx.doi.org/10.1097/AOG.0000000000000356] [PMID: 25004338]
[107]
Dinger J, Bardenheuer K, Minh TD. Levonorgestrel-releasing and copper intrauterine devices and the risk of breast cancer. Contraception 2011; 83(3): 211-7.
[http://dx.doi.org/10.1016/j.contraception.2010.11.009] [PMID: 21310281]
[108]
Schaapveld M, Aleman BM, van Eggermond AM, et al. Second cancer risk up to 40 years after treatment for hodgkin’s lymphoma. N Engl J Med 2015; 373(26): 2499-511.
[http://dx.doi.org/10.1056/NEJMoa1505949] [PMID: 26699166]
[109]
Ehrhardt MJ, Howell CR, Hale K, et al. Subsequent breast cancer in female childhood cancer survivors in the St Jude Lifetime Cohort Study (SJLIFE). J Clin Oncol 2019; 37(19): 1647-56.
[http://dx.doi.org/10.1200/JCO.18.01099] [PMID: 31075046]
[110]
International Agency for Research on Cancer. 2012. Available from: http://www.inchem. org/documents/iarc/iarcmono/v100aiarc.pdf
[111]
Hilakivi-Clarke L. Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters. Breast Cancer Res 2014; 16(2): 208.
[http://dx.doi.org/10.1186/bcr3649] [PMID: 25032259]
[112]
Reed CE, Fenton SE. Exposure to diethylstilbestrol during sensitive life stages: A legacy of heritable health effects. Birth Defects Res C Embryo Today 2013; 99(2): 134-46.
[http://dx.doi.org/10.1002/bdrc.21035] [PMID: 23897597]
[113]
Hauner D, Hauner H. Metabolic syndrome and breast cancer: Is there a link? Breast Care (Basel) 2014; 9(4): 277-81.
[http://dx.doi.org/10.1159/000365951] [PMID: 25404888]
[114]
Calip GS, Malone KE, Gralow JR, Stergachis A, Hubbard RA, Boudreau DM. Metabolic syndrome and outcomes following early-stage breast cancer. Breast Cancer Res Treat 2014; 148(2): 363-77.
[http://dx.doi.org/10.1007/s10549-014-3157-6] [PMID: 25301086]
[115]
Agnoli C, Grioni S, Sieri S, et al. Metabolic syndrome and breast cancer risk: A case-cohort study nested in a multicentre italian cohort. PLoS One 2015; 10(6): e0128891.
[http://dx.doi.org/10.1371/journal.pone.0128891] [PMID: 26030767]
[116]
Sheean P, Liang H, Schiffer L, Arroyo C, Stolley M. Examining the prevalence of metabolic syndrome among overweight/obese African-American breast cancer survivors vs. matched non-cancer controls. J Cancer Surviv 2017; 11(1): 102-10.
[http://dx.doi.org/10.1007/s11764-016-0566-z] [PMID: 27562474]
[117]
Lee JA, Yoo JE, Park HS. Metabolic syndrome and incidence of breast cancer in middle-aged Korean women: A nationwide cohort study. Breast Cancer Res Treat 2017; 162(2): 389-93.
[http://dx.doi.org/10.1007/s10549-017-4131-x] [PMID: 28150128]
[118]
Peairs KS, Barone BB, Snyder CF, et al. Diabetes mellitus and breast cancer outcomes: A systematic review and meta-analysis. J Clin Oncol 2011; 29(1): 40-6.
[http://dx.doi.org/10.1200/JCO.2009.27.3011] [PMID: 21115865]
[119]
Barone BB, Yeh HC, Snyder CF, et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: A systematic review and meta-analysis. JAMA 2008; 300(23): 2754-64.
[http://dx.doi.org/10.1001/jama.2008.824] [PMID: 19088353]
[120]
Luo J, Hendryx M, Virnig B, et al. Pre-existing diabetes and breast cancer prognosis among elderly women. Br J Cancer 2015; 113(5): 827-32.
[http://dx.doi.org/10.1038/bjc.2015.249] [PMID: 26158425]
[121]
Zhao XB, Ren GS. Diabetes mellitus and prognosis in women with breast cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2016; 95(49): e5602.
[http://dx.doi.org/10.1097/MD.0000000000005602] [PMID: 27930583]
[122]
Bhandari R, Kelley GA, Hartley TA, Rockett IR. Metabolic syndrome is associated with increased breast cancer risk: A systematic review with meta-analysis. Int J Breast Cancer 2014; 2014: 189384.
[http://dx.doi.org/10.1155/2014/189384] [PMID: 25653879]
[123]
Esposito K, Chiodini P, Capuano A, et al. Metabolic syndrome and postmenopausal breast cancer: systematic review and meta-analysis. Menopause 2013; 20(12): 1301-9.
[http://dx.doi.org/10.1097/GME.0b013e31828ce95d] [PMID: 23571527]
[124]
Tabassum I, Mahmood H, Faheem M. Type 2 Diabetes Mellitus as a risk factor for female breast cancer in the population of Northern Pakistan. Asian Pac J Cancer Prev 2016; 17(7): 3255-8.
[125]
Muti P, Quattrin T, Grant BJ, et al. Fasting glucose is a risk factor for breast cancer: a prospective study. Cancer Epidemiol Biomarkers Prev 2002; 11(11): 1361-8.
[126]
Hernandez AV, Guarnizo M, Miranda Y, et al. Association between insulin resistance and breast carcinoma: A systematic review and meta-analysis. PLoS One 2014; 9(6): e99317.
[http://dx.doi.org/10.1371/journal.pone.0099317] [PMID: 24911052]
[127]
Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B. Diabetes mellitus and breast cancer. Lancet Oncol 2005; 6(2): 103-11.
[http://dx.doi.org/10.1016/S1470-2045(05)01736-5] [PMID: 15683819]
[128]
Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci (Lond) 2009; 118(5): 315-32.
[http://dx.doi.org/10.1042/CS20090399] [PMID: 19922415]
[129]
Cannata D, Fierz Y, Vijayakumar A, LeRoith D. Type 2 diabetes and cancer: What is the connection? Mt Sinai J Med 2010; 77(2): 197-213.
[http://dx.doi.org/10.1002/msj.20167] [PMID: 20309918]
[130]
Shlomai G, Neel B, LeRoith D, Gallagher EJ. Type 2 diabetes mellitus and cancer: The role of pharmacotherapy. J Clin Oncol 2016; 34(35): 4261-9.
[http://dx.doi.org/10.1200/JCO.2016.67.4044] [PMID: 27903154]
[131]
Federici M, Porzio O, Zucaro L, et al. Increased abundance of insulin/IGF-I hybrid receptors in adipose tissue from NIDDM patients. Mol Cell Endocrinol 1997; 135(1): 41-7.
[132]
Pandini G, Vigneri R, Costantino A, et al. Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: Evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 1999; 5(7): 1935-44.
[133]
Xue F, Michels KB. Diabetes, metabolic syndrome, and breast cancer: A review of the current evidence. Am J Clin Nutr 2007; 86(3): s823-35.
[http://dx.doi.org/10.1093/ajcn/86.3.823S] [PMID: 18265476]
[134]
Rinaldi S, Peeters PH, Berrino F, et al. IGF-I, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 2006; 13(2): 593-605.
[http://dx.doi.org/10.1677/erc.1.01150] [PMID: 16728585]
[135]
Chang YL, Sheu WH, Lin SY, Liou WS. Good glycaemic control is associated with a better prognosis in breast cancer patients with type 2 diabetes mellitus. Clin Exp Med 2018; 18(3): 383-90.
[http://dx.doi.org/10.1007/s10238-018-0497-2] [PMID: 29572669]
[136]
Patel DK, Kumar R, Laloo D, Hemalatha S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac J Trop Dis 2012; 2(3): 239-350.
[http://dx.doi.org/10.1016/S2222-1808(12)60054-1]
[137]
Li M, Li X, Zhang H, Lu Y. Molecular mechanisms of metformin for diabetes and cancer treatment. Front Physiol 2018; 9: 1039.
[http://dx.doi.org/10.3389/fphys.2018.01039] [PMID: 30108523]
[138]
WHO. WHO traditional medicine strategy 2014–2023 WHO, Geneva 2013. Available from: https://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/
[139]
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[140]
Shrestha PM, Dhillion SS. Medicinal plant diversity and use in the highlands of Dolakha district. Nepal J Ethnopharmacol 2003; 86(1): 81-96.
[http://dx.doi.org/10.1016/S0378-8741(03)00051-5] [PMID: 12686446]
[141]
Asase A, Kokubun T, Grayer RJ, et al. Chemical constituents and antimicrobial activity of medicinal plants from Ghana: Cassia sieberiana, Haematostaphis barteri, Mitragyna inermis and Pseudocedrela kotschyi. Phytother Res 2008; 22(8): 1013-6.
[http://dx.doi.org/10.1002/ptr.2392] [PMID: 18618525]
[142]
Katiyar D, Singh V, Gilani SJ, Goel R, Grover P, Vats A. Hypoglycemic herbs and their polyherbal formulations: A comprehensive review. Med Chem Res 2015; 24(1): 1-21.
[http://dx.doi.org/10.1007/s00044-014-1080-3]
[143]
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts Plants (Basel) ; 6(4): 42.
[http://dx.doi.org/10.3390%2Fplants6040042]
[144]
Kapinova A, Kubatka P, Golubnitschaja O, et al. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 2018; 23(1): 36.
[http://dx.doi.org/10.1186/s12199-018-0724-1] [PMID: 30092754]
[145]
Nasri H, Shirzad H. Toxicity and safety of medicinal plants. J Herb Med Plarmacol 2013; 2(2): 21-2.
[146]
Maleki D, Kyoomehr P, Rajabi A, Amin GR, Azizi E. Cytotoxic activity of Ammi visnaga (L.) Lam. Against T47D (breast ductal carcinoma) cell line. North Khorasan Univ Med Sci 2012; 2012: 94348316. available from: http://journals.nkums.ac.ir/ index.php/ndnkh/article/viewFile/292/472
[147]
Abduljalil TZ, Saour K, Nasser AMA. Phytochemical study of some flavonoids present in the fruits of two Ammi L. species wildly grown in Iraq. Iraqi J Pharm Sci 2010; 19(1): 48-57. available from: https://innovareacademics.in/journals/index.php/ijpps/article/view/5912
[148]
Jouad H, Maghrani M, Eddouks M. Hypoglycemic effect of aqueous extract of Ammi visnaga in normal and streptozotocin-induced diabetic rats. J Herb Pharmacother 2002; 2(4): 19-29.
[http://dx.doi.org/10.1080/J157v02n04_03] [PMID: 15277079]
[149]
Gordanian B, Behbahani M, Carapetian J, Fazilati M. Cytotoxic effect of Artemisia absinthium (L.) grown at two different altitudes on human breast cancer cell line MCF7. Pajouhesh Dar Pezeshki 2012; 36: 124-31.
[150]
Daradka HM, Abas MM. Mohammad, Mukhallad A. M.; Jaffar, M.M. Antidiabetic effect of Artemisia absinthium extracts on alloxan-induced diabetic rats. Comp Clin Pathol 2014; 23(6): 1733-42.
[http://dx.doi.org/10.1007/s00580-014-1963-1]
[151]
Sharaf M, El-Ansari MA, Saleh NA. New flavonoids from Avicennia marina. Fitoterapia 2000; 71(3): 274-7.
[http://dx.doi.org/10.1016/S0367-326X(99)00169-0] [PMID: 10844167]
[152]
Momtazi BA, Behbahani M, Sadeghi-Aliabadi H. Evaluation of cytotoxic effect of some extracts of Avicennia marina against MDA-MB231 human breast cancer cell line. Pharm Sci 2011; 16(4): 229-38.
[153]
Okla MK, Alamri SA, Alatar AA, et al. Antioxidant, hypoglycemic, and neurobehavioral effects of a leaf extract of Avicennia marina on autoimmune diabetic mice. Evid Based Complement Alternat Med 2019; 2019: 1263260.
[http://dx.doi.org/10.1155/2019/1263260] [PMID: 31239852]
[154]
Hatam NA, Whiting DA, Yousif NJ. Cucurbitacin glycosides from Citrullus colocynthis. Phytochemistry 1876; 28(4): 1268-71.
[http://dx.doi.org/10.1016/0031-9422(89)80230-4]
[155]
Wasfi IA. Some pharmacological studies on Citrullus colocynthis. J Herbs Spices Med Plants 1994; 2(2): 65-79.
[http://dx.doi.org/10.1300/J044v02n02_08]
[156]
Tannin-Spitz T, Grossman S, Dovrat S, Gottlieb HE, Bergman M. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem Pharmacol 2007; 73(1): 56-67.
[http://dx.doi.org/10.1016/j.bcp.2006.09.012] [PMID: 17049494]
[157]
Shi C, Karim S, Wang C, Zhao M, Murtaza G. A review on antidiabetic activity of Citrullus colocynthi. Acta Pol Pharm 2014; 71(3): 363-7.
[158]
Marzieh M, Javad B, Majid AS. Anti-angiogenesis effect of Crocous sativus L. extract on matrix metalloproteinase gene activities in human breast carcinoma cells. J Herb Med Pharmacol 2014; 3(2): 101-5.
[159]
Mohajeri D, Mousavi GH, Doustar Y. Antihyperglycemic and pancrease-protective effects of Croucus sativus L. (saffron) stigma ethanolic extract on rats with alloxan-induced diabetes. J Biol Sci 2009; 9(4): 302-10.
[http://dx.doi.org/10.3923/jbs.2009.302.310]
[160]
Kianbakht S, Hajiaghaee R. Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan induced diabetic rats. Faslnamah-i Giyahan-i Daruyi 2011; 3(39): 39-43.http://jmp.ir/article-1-204-en.html
[161]
Elgazar FA, Rezq AA, Bukhari MH. Anti-hyperglycemic effect of saffron extract in alloxan-induced diabetic rats. Eur J Biol Sci 2013; 5(1): 14-22.
[http://dx.doi.org/10.5829/idosi.ejbs.2013.5.1.7224]
[162]
Kang C, Lee H, Jung ES, et al. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem 2012; 135(4): 2350-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.092] [PMID: 22980812]
[163]
He SY, Qian ZY, Tang FT, Wen N, Xu GL, Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci 2005; 77(8): 907-21.
[http://dx.doi.org/10.1016/j.lfs.2005.02.006] [PMID: 15964309]
[164]
Xu GL, Yu SQ, Gong ZN, Zhang SQ. Study of the effect of crocin on rat experimental hyperlipidemia and the underlying mechanisms. Zhongguo Zhongyao Zazhi 2005; 30(5): 369-72.
[165]
Sheng L, Qian Z, Zheng S, Xi L. Mechanism of hypolipidemic effect of crocin in rats: Crocin inhibits pancreatic lipase. Eur J Pharmacol 2006; 543(1-3): 116-22.
[http://dx.doi.org/10.1016/j.ejphar.2006.05.038] [PMID: 16828739]
[166]
Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M, Ahmadi M, Shafiee S. Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food 2013; 16(3): 206-10.
[http://dx.doi.org/10.1089/jmf.2012.2407] [PMID: 23437790]
[167]
Shirali S, Zahra Bathaie S, Nakhjavani M. Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytother Res 2013; 27(7): 1042-7.
[http://dx.doi.org/10.1002/ptr.4836] [PMID: 22948795]
[168]
Sheng L, Qian Z, Shi Y, et al. Crocetin improves the insulin resistance induced by high-fat diet in rats. Br J Pharmacol 2008; 154(5): 1016-24.
[http://dx.doi.org/10.1038/bjp.2008.160] [PMID: 18469847]
[169]
Xi L, Qian Z, Shen X, Wen N, Zhang Y. Crocetin prevents dexamethasone-induced insulin resistance in rats. Planta Med 2005; 71(10): 917-22.
[http://dx.doi.org/10.1055/s-2005-871248] [PMID: 16254822]
[170]
Xi L, Qian Z, Xu G, et al. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J Nutr Biochem 2007; 18(1): 64-72.
[http://dx.doi.org/10.1016/j.jnutbio.2006.03.010] [PMID: 16713230]
[171]
Xi L, Qian Z, Xu G, Zhou C, Sun S. Crocetin attenuates palmitate-induced insulin insensitivity and disordered tumor necrosis factor-alpha and adiponectin expression in rat adipocytes. Br J Pharmacol 2007; 151(5): 610-7.
[http://dx.doi.org/10.1038/sj.bjp.0707276] [PMID: 17471172]
[172]
Xiang M, Qian ZY, Zhou CH, Liu J, Li WN. Crocetin inhibits leukocyte adherence to vascular endothelial cells induced by AGEs. J Ethnopharmacol 2006; 107(1): 25-31.
[http://dx.doi.org/10.1016/j.jep.2006.01.022] [PMID: 16529888]
[173]
Xiang M, Yang M, Zhou C, Liu J, Li W, Qian Z. Crocetin prevents AGEs-induced vascular endothelial cell apoptosis. Pharmacol Res 2006; 54(4): 268-74.
[http://dx.doi.org/10.1016/j.phrs.2006.06.010] [PMID: 16899372]
[174]
Samarghandian S, Borji A, Delkhosh MB, Samini F. Safranal treatment improves hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. J Pharm Pharm Sci 2013; 16(2): 352-62.
[http://dx.doi.org/10.18433/J3ZS3Q] [PMID: 23958204]
[175]
Javad R, Abbas A, Roghayeh A, et al. Effects of curcuma longa extract on telomerase activity in lung and breast cancer cells. ZJRMS 2014; 16(10): 1-6.
[176]
Lekshmi PC, Arimboor R, Nisha VM, Menon AN, Raghu KG. In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme. J Food Sci Technol 2014; 51(12): 3910-7.
[http://dx.doi.org/10.1007/s13197-013-0953-7] [PMID: 25477660]
[177]
Baltina LA. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. Curr Med Chem 2003; 10(2): 155-71.
[http://dx.doi.org/10.2174/0929867033368538] [PMID: 12570715]
[178]
Rossi T, Castelli M, Zandomeneghi G, et al. Selectivity of action of glycyrrhizin derivatives on the growth of MCF-7 and HEP-2 cells. Anticancer Res 2003; 23(5A): 3813-8.
[179]
Karthikeson PS, Lakshmi T. Anti- diabetic activity of Glycyrrhiza glabra -an in vitro activity. Int J Pharm Sci Rev Res 2017; 44(1): 80-1.
[180]
Contero F, Abdo S, Vinueza D, Moreno J, Tuquinga M, Paca N. Estrogenic activity of ethanolic extracts from leaves of Ilexguayusa loes and Medicago sativa in Rattus norvegicus. Pharmacol Online Arch 2015; 13: 95-9.
[181]
Boué SM, Wiese TE, Nehls S, et al. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J Agric Food Chem 2003; 51(8): 2193-9.
[http://dx.doi.org/10.1021/jf021114s] [PMID: 12670155]
[182]
Gray AM, Flatt PR. Pancreatic and extra-pancreatic effects of the traditional anti-diabetic plant, Medicago sativa (lucerne). Br J Nutr 1997; 78(2): 325-34.
[http://dx.doi.org/10.1079/BJN19970150] [PMID: 9301421]
[183]
Ogur R. Studies with Myrtus communis L.: Anticancer properties. J Intercult Ethnopharmacol 2014; 3(4): 135-7.
[http://dx.doi.org/10.5455/jice.20140803044831] [PMID: 26401362]
[184]
Talebianpoor MS. Antidiabetic activity of hydroalcoholic extract of Myrtus communis (myrtle) fruits in streptozotocin-induced and dexamethasone-induced diabetic rats. Phcog Res 2019; 11(2): 115-20.
[http://dx.doi.org/10.4103/pr.pr_160_18]
[185]
Bumidin MS, Johari FA, Risan NF, Nasir MHM. The effect of aqueous extracts of Nigella sativa on breast cancer cell line MCF-7: An in vitro study. Sci Herit J (Gws) 2018; 2(1): 13-7.
[http://dx.doi.org/10.26480/gws.01.2018.13.17]
[186]
Touati KB, Kacimi G, Haffaf EM, Berdja S, Bouguerra SA. In vivo subacute toxicity and antidiabetic effect of aqueous extract of Nigella sativa. Hindawi Evid-Based Complement Alternat Med 2017; 2017: 13.
[http://dx.doi.org/10.1155/2017/8427034]
[187]
Shabani HS, Tehrani HS, Rabiei Z, Enferadi TS, Vannozzi GP. Peganum harmala L.'s anti-growth effect on a breast cancer cell line. Biotechnol Rep (Amst) 2015; 8: 138-43.
[http://dx.doi.org/10.1016/j.btre.2015.08.007] [PMID: 28352583]
[188]
Komeili G, Hashemi M, Niafar MB. Evaluation of antidiabetic and antihyperlipidemic effects of peganum harmala seeds in diabetic rats. Cholesterol 2016; 2016: 7389864.
[http://dx.doi.org/10.1155/2016/7389864]
[189]
Kubatka P, Uramova S, Kello M, et al. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int J Mol Sci 2019; 20(7): 1749.
[http://dx.doi.org/10.3390/ijms20071749] [PMID: 30970626]
[190]
Aljarah AK, Hameed IH. In vitro anti-diabetic properties of methanolic extract of Thymus vulgaris using α-glucosidase and α-amylase inhibition assay and determination of its bioactive chemical compounds. Indian J Public Health Res Develop 2018; 9(3): 388-92.
[http://dx.doi.org/10.5958/0976-5506.2018.00241.3]
[191]
Sreeja S, Anju VS, Sreeja S. In vitro estrogenic activities of fenugreek Trigonella foenum graecum seeds. Indian J Med Res 2010; 131(6): 814-9.
[192]
Mankala SK. In vivo antidiabetic evaluation of fenugreek seeds extract in alloxan induced rats. Int J Cur Sci Res 2011; 1(3): 96-104.
[193]
Shabi Ruskin R, Aruna SR. In vitro and in vivo antitumor activity of Catharanthus roseus. Int. Res J Pharm. App Sci 2014; 4(6): 1-4.
[194]
Ahmed MF, Kazim SM, Ghori SS, et al. Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Int J Endocrinol 2010; 2010: 841090.
[http://dx.doi.org/10.1155/2010/841090] [PMID: 20652054]
[195]
Moheghi N. Tavakkol, Afshari J.; Brook, A. The cytotoxic effect of Zingiber officinale in breast cancer (MCF7) cell line. GMUHS J 2011; 17(3): 28-34.
[196]
Rahman S, Salehin F, Iqbal A. In vitro antioxidant and anticancer activity of young Zingiber officinale against human breast carcinoma cell lines. BMC Complement Altern Med 2011; 11(1): 76.
[http://dx.doi.org/10.1186/1472-6882-11-76] [PMID: 21933433]
[197]
Sattar NA, Hussain F, Iqbal T, Sheikh MA. Determination of in vitro antidiabetic effects of Zingiber offcinale Roscoe. Braz J Pharm Sci 2012; 48(4): 601-7.
[http://dx.doi.org/10.1590/S1984-82502012000400003]
[198]
Barapatre A, Meena AS, Mekala S, Das A, Jha H. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int J Biol Macromol 2016; 86: 443-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.109] [PMID: 26836619]
[199]
Barapatre A, Aadil KR, Tiwary BN, Jha H. In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. Int J Biol Macromol 2015; 75: 81-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.012] [PMID: 25600985]
[200]
Wong FC, Woo CC, Hsu A, Tan BK. The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways. PLoS One 2013; 8(10): e78021.
[http://dx.doi.org/10.1371/journal.pone.0078021] [PMID: 24205071]
[201]
Saliu JA, Ademiluyi AO, Akenyemi AJ, Oboh G. In vitro antidiabetes and antihypertension properties of phenolic extracts from bitter leaf (Vernonia amygdalina Del). J Food Biochem 2012; 36(5): 569-76.
[http://dx.doi.org/10.1111/j.1745-4514.2011.00576.x]
[202]
Eyong KO, Bairy G, Eno AA, Taube JH. Triterpenoids from the stem bark of Vitellaria paradoxa (sapotaceae) and derived esters exhibit cytotoxicity against a breast cancer cell line. Med Chem Res 2018; 27(1): 268-77.
[http://dx.doi.org/10.1007/s00044-017-2059-7]
[203]
Coulibaly FA. Evaluation of the antidiabetic activity of the extracts of Vitellaria paradoxa in oryctolaguscuniculus rabbit (Lagomorph). Int J Sci Technol Educ Res 2014; 24(3): 1673-82.
[204]
Sunderam V, Thiyagarajan D, Lawrence AV, Mohammed SSS, Selvaraj A. In vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J Biol Sci 2019; 26(3): 455-9.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.001] [PMID: 30899157]
[205]
Ukwenya VO, Ashaolu OJ, Adeyemi DO, et al. Evaluation of antioxidant potential of methanolic leaf extract of Anacardium Occidentale (Linn) of the testes of streptozotocin-induced diabetic wistar rats. Eur J Anat 2013; 17(2): 72-81.
[206]
Fatope MO, Audu OT, Takeda Y, et al. Bioactive ent-kaurene diterpenoids from Annona senegalensis. J Nat Prod 1996; 59(3): 301-3.
[http://dx.doi.org/10.1021/np9601566] [PMID: 8882434]
[207]
Ibrahim A, Aimola IA, Mohammed A. Inhibition of key enzymes linked to diabetes by Annona senegalensis Pers (Annonaceae) leaf in vitro. J Herb Med 2018; 2018: 16100248.
[http://dx.doi.org/10.1016/j.hermed.2018.11.004]
[208]
Rizzo LY, Longato GB, Ruiz AL, et al. In vitro, in vivo and in silico analysis of the anticancer and estrogen-like activity of guava leaf extracts. Curr Med Chem 2014; 21(20): 2322-30.
[http://dx.doi.org/10.2174/0929867321666140120120031] [PMID: 24438525]
[209]
Manikandan R, Anand AV, Muthumani GD. Phytochemical and in vitro anti-diabetic activity of methanolic extract of Psidium guajava leaves. Int J Curr Microbiol Appl Sci 2013; 2(2): 15-9.
[210]
Al-Asmari AK, Albalawi SM, Athar MT, Khan AQ, Al-Shahrani H, Islam M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One 2015; 10(8): e0135814.
[http://dx.doi.org/10.1371/journal.pone.0135814] [PMID: 26288313]
[211]
Jaiswal D, Rai PK, Mehta S, et al. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac J Trop Med 2013; 6(6): 426-32.
[http://dx.doi.org/10.1016/S1995-7645(13)60068-1] [PMID: 23711700]
[212]
Xue M, Ge Y, Zhang J, et al. Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One 2012; 7(8): e43483.
[http://dx.doi.org/10.1371/journal.pone.0043483] [PMID: 22916270]
[213]
Apostolidis E, Lee CM. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated α-glucosidase and α-amylase inhibition. J Food Sci 2010; 75(3): H97-H102.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01544.x] [PMID: 20492300]
[214]
Abd-Ellatef GEF, Ahmed OM, Abdel-Reheim ES, Abdel-Hamid AHZ. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation Breast Cancer Targets Ther 2017; 9: 67-83.
[215]
Gopal SS, Lakshmi MJ, Sharavana G, Sathaiah G, Sreerama YN, Baskaran V. Lactucaxanthin – a potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats. Food Funct J 2017; 8(3): 1124-31.
[216]
Karamallah MH. Apoptotic effect of Capparis Spinosa extract on breast cancer cell line (MCF-7). Pharma Chem 2016; 8(20): 328-33.
[217]
Bonina F, Puglia C, Ventura D, et al. In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L buds. J Cosmet Sci 2002; 53(6): 321-35.
[218]
Germanò MP, De Pasquale R, D’Angelo V, Catania S, Silvari V, Costa C. Evaluation of extracts and isolated fraction from Capparis spinosa L. buds as an antioxidant source. J Agric Food Chem 2002; 50(5): 1168-71.
[http://dx.doi.org/10.1021/jf010678d] [PMID: 11853498]
[219]
Eddouks M, Lemhadri A, Michel JB. Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 2005; 98(3): 345-50.
[http://dx.doi.org/10.1016/j.jep.2005.01.053] [PMID: 15814271]
[220]
Eddouks M, Lemhadri A, Michel JB. Caraway and caper: Potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol 2004; 94(1): 143-8.
[http://dx.doi.org/10.1016/j.jep.2004.05.006] [PMID: 15261975]
[221]
Rathee P, Rathee D, Rathee D, Rathee S. In vitro anticancer activity of stachydrine isolated from Capparis decidua on prostate cancer cell lines. Nat Prod Res 2012; 26(18): 1737-40.
[http://dx.doi.org/10.1080/14786419.2011.608673] [PMID: 21988653]
[222]
Wang M, Shu ZJ, Wang Y, Peng W. Stachydrine hydrochloride inhibits proliferation and induces apoptosis of breast cancer cells via inhibition of Akt and ERK pathways. Am J Transl Res 2017; 9(4): 1834-44.
[223]
Zia-Ul-Haq M, Cavar S, Qayum M, Imran I, de Feo V. Compositional studies: Antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int J Mol Sci 2011; 12(12): 8846-61.
[http://dx.doi.org/10.3390/ijms12128846] [PMID: 22272107]
[224]
Yadav P, Sarkar S, Bhatnagar D. Action of capparis decidua against alloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol Res 1997; 36(3): 221-8.
[http://dx.doi.org/10.1006/phrs.1997.0222] [PMID: 9367667]
[225]
Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol 2010; 127(2): 457-62.
[http://dx.doi.org/10.1016/j.jep.2009.10.013] [PMID: 19837152]
[226]
Goyal R, Grewal RB. The influence of teent (Capparis decidua) on human plasma triglycerides, total lipids and phospholipids. Nutr Health 2003; 17(1): 71-6.
[http://dx.doi.org/10.1177/026010600301700109] [PMID: 12803284]
[227]
de Oliveira SJ, Bezerra PD, de Freitas CDT, et al. In vitro cytotoxicity against different human cancer cell lines of laticifer proteins of Calotropis procera (Ait.). R Br Toxicol In Vitro 2007; 21(8): 1563-73.
[http://dx.doi.org/10.1016/j.tiv.2007.05.007] [PMID: 17604595]
[228]
Alzahrani HS, Mutwakil M, Sabir JSM, Saini KS, Alarif WM, Rizgallah MR. Anticancer and antibacterial activity of Calotropis procera leaf extract. J Basic Appl Sci Res 2017; 7(12): 18-25.
[229]
Neto MCL, De Vasconcelos CFB, Thijan VN, et al. Evaluation of antihyperglycaemic activity of Calotropis procera leaves extract on streptozotocin-induced diabetes in wistar rats. Rev Bras Farmacogn 2013; 23(6): 913-9.
[http://dx.doi.org/10.1590/S0102-695X2013000600008]
[230]
Waheed A, Barker J, Barton SJ, et al. Novel acylated steroidal glycosides from Caralluma tuberculata induce caspase-dependent apoptosis in cancer cells. J Ethnopharmacol 2011; 137(3): 1189-96.
[http://dx.doi.org/10.1016/j.jep.2011.07.049] [PMID: 21820042]
[231]
Abdel-Sattar EA, Abdallah HM, Khedr A, Abdel-Naim AB, Shehata IA. Antihyperglycemic activity of Caralluma tuberculata in streptozotocin-induced diabetic rats. Food Chem Toxicol 2013; 59: 111-7.
[http://dx.doi.org/10.1016/j.fct.2013.05.060] [PMID: 23770343]
[232]
Nemec MJ, Kim H, Marciante AB, et al. Polyphenolics from mango (Mangifera indica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice. J Nutritional Biochem 2017; 41: 12-19
[233]
Han J, Yi J, Liang F, et al. X-3, a mangiferin derivative, stimulates AMP-activated protein kinase and reduces hyperglycemia and obesity in db/db mice. Mol Cell Endocrinol 2015; 405: 63-73.
[http://dx.doi.org/10.1016/j.mce.2015.02.008] [PMID: 25681564]
[234]
Saleh S, El-Maraghy N, Reda E, Barakat W. Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: Role of adiponectin and TNF-α. An Acad Bras Cienc 2014; 86(4): 1935-48.
[http://dx.doi.org/10.1590/0001-3765201420140212] [PMID: 25590730]
[235]
Alshehri MA. Anticancer activity of methanolic extarct of Momordica charantia against human colon, liver and breast cancer cell lines- In vitro. J Biol Agric Healthcare 2016; 6(6): 106-11.
[236]
Jiang B, Ji M, Liu W, et al. Antidiabetic activities of a cucurbitane-type triterpenoid compound from Momordica charantia in alloxan-induced diabetic mice. Mol Med Rep 2016; 14(5): 4865-72.
[http://dx.doi.org/10.3892/mmr.2016.5800] [PMID: 27748816]
[237]
Yue J, Xu J, Cao J, et al. Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). J Funct Foods 2017; 37: 624-31.
[http://dx.doi.org/10.1016/j.jff.2017.07.041]
[238]
Chang CI, Chou CH, Liao MH, et al. Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin-resistant cells. J Funct Foods 2015; 13: 214-24.
[http://dx.doi.org/10.1016/j.jff.2014.12.050]
[239]
Ahmed A, Ali M, El-Kholie E, El-Garawani I, Sherif N. Anticancer activity of Morus nigra on human breast cancer cell line (MCF-7): The role of fresh and dry fruit extracts. J Biosci Appl Res 2016; 2(6): 352-61.
[240]
Yuling L, Zhufang S, Zhen C, et al. Use of the effective fraction of alkaloids from mulberry twig in preparing hypoglycemic agents US Patents, US 9,066,960, 2015.
[241]
Johnson IS, Wright HF, Svoboda GH, Vlantis J. Antitumor principles derived from Vinca rosea Linn. I. Vincaleukoblastine and leurosine. Cancer Res 1960; 20(7): 1016-22.
[242]
Zhang L, Wei G, Liu Y, Zu Y, Gai Q, Yang L. Antihyperglycemic and antioxidant activities of total alkaloids from Catharanthus roseus in streptozotocin-induced diabetic rats. J For Res 2016; 27(1): 167-74.
[http://dx.doi.org/10.1007/s11676-015-0112-2]
[243]
Tiong SH, Looi CY, Arya A, et al. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia 2015; 102: 182-8.
[http://dx.doi.org/10.1016/j.fitote.2015.01.019] [PMID: 25665941]
[244]
Tiong SH, Looi CY, Hazni H, et al. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 2013; 18(8): 9770-84.
[http://dx.doi.org/10.3390/molecules18089770] [PMID: 23955322]
[245]
Rathi SG, Suthar MP, Patel PG, Bhaskar VH, Rajgor NB. In vitro cytotoxic screening of Glycyrrhiza glabra L. (Fabaceae): A natural anticancer drug. Young Pharm 2009; 1(3): 239-43.
[http://dx.doi.org/10.4103/0975-1483.57071]
[246]
Wu F, Jin Z, Jin J. Hypoglycemic effects of glabridin, a polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Mol Med Rep 2013; 7(4): 1278-82.
[http://dx.doi.org/10.3892/mmr.2013.1330] [PMID: 23426874]
[247]
Guo Z, Niu X, Xiao T, Lu J, Li W, Zhao Y. Chemical profile and inhibition of a-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by flavonoids from licorice (Glycyrrhiza uralensis Fisch). J Funct Foods 2015; 14: 324-36.
[http://dx.doi.org/10.1016%2Fj.jff.2014.12.003]
[248]
Lampronti I, Martello D, Bianchi N, et al. In vitro antiproliferative effects on human tumor cell lines of extracts from the Bangladeshi medicinal plant Aegle marmelos Correa. Phytomedicine 2003; 10(4): 300-8.
[http://dx.doi.org/10.1078/094471103322004794] [PMID: 12809360]
[249]
Baliga MS, Thilakchand KR, Rai MP, Rao S, Venkatesh P. Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integr Cancer Ther 2013; 12(3): 187-96.
[http://dx.doi.org/10.1177/1534735412451320] [PMID: 23089553]
[250]
Jagetia GC, Venkatesh P, Baliga MS. Aegle marmelos (L.) Correa inhibits the proliferation of transplanted Ehrlich ascites carcinoma in mice. Biol Pharm Bull 2005; 28(1): 58-64.
[http://dx.doi.org/10.1248/bpb.28.58] [PMID: 15635164]
[251]
Ponnachan PT, Paulose CS, Panikkar KR. Effect of leaf extract of Aegle marmelose in diabetic rats. Indian J Exp Biol 1993; 31(4): 345-7.
[252]
Luo KW, Ko CH, Yue GG, et al. Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice. J Nutr Biochem 2014; 25(4): 395-403.
[http://dx.doi.org/10.1016/j.jnutbio.2013.11.013] [PMID: 24561153]
[253]
Ankolekar C, Terry T, Johnson K, Johnson D, Barbosa AC, Shetty K. Anti-hyperglycemia properties of Tea (Camellia sinensis) bioactives using in vitro assay models and influence of extraction time. J Med Food 2011; 14(10): 1190-7.
[http://dx.doi.org/10.1089/jmf.2010.0291] [PMID: 21859352]
[254]
Subbarayan PR, Sarkar M, Impellizzeri S, et al. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells. J Ethnopharmacol 2010; 131(1): 78-82.
[http://dx.doi.org/10.1016/j.jep.2010.06.002] [PMID: 20541002]
[255]
Akhtar MS, Iqbal J. Evaluation of the hypoglycaemic effect of Achyranthes aspera in normal and alloxan-diabetic rabbits. J Ethnopharmacol 1991; 31(1): 49-57.
[http://dx.doi.org/10.1016/0378-8741(91)90143-2] [PMID: 2030593]
[256]
Carini JP. Flavonoids from Achyrocline satureioides: Promising biomolecules for anticancer therapy. RSC Adv 2014; 4: 3131-44.
[http://dx.doi.org/10.1039/C3RA43627F]
[257]
Lee Y, Park OJ. Involvement of AMPK/mTOR/HIF-1α in anticancer control of quercetin in hypoxic MCF-7 cells. Food Sci Biotechnol 2011; 20: 371-5.
[http://dx.doi.org/10.1007/s10068-011-0052-3]
[258]
Chou CC, Yang JS, Lu HF, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 2010; 33(8): 1181-91.
[http://dx.doi.org/10.1007/s12272-010-0808-y] [PMID: 20803121]
[259]
Ruffa MJ, Ferraro G, Wagner ML, Calcagno ML, Campos RH, Cavallaro L. Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J Ethnopharmacol 2002; 79(3): 335-9.
[http://dx.doi.org/10.1016/S0378-8741(01)00400-7] [PMID: 11849838]
[260]
Kadarian C, Broussalis AM, Miño J, et al. Hepatoprotective activity of Achyrocline satureioides (Lam) D.C. Pharmacol Res 2002; 45(1): 57-61.
[http://dx.doi.org/10.1006/phrs.2001.0904] [PMID: 11820863]
[261]
Jayanti S, Suseno DAN, Suseno DN. Nanoparticles from onion (Allium cepa. l) extract suppress bcl-2 expression in MCF-7 cells in vitro. RJOAS 2019; 90(6): 45-50.
[http://dx.doi.org/10.18551/rjoas.2019-06.07]
[262]
Roman-Ramos R, Flores-Saenz JL, Alarcon-Aguilar FJ. Anti-hyperglycemic effect of some edible plants. J Ethnopharmacol 1995; 48(1): 25-32.
[http://dx.doi.org/10.1016/0378-8741(95)01279-M] [PMID: 8569244]
[263]
Kumari K, Mathew BC, Augusti KT. Antidiabetic and hypohpidaemic effects of s-methyl cysteinesulfoxide, isolated from Allium cepa linn. Indian J Biochem Biophys 1995; 32(1): 49-54.
[264]
Mansoureh M. Allium sativum: A review of ethnopharmacology, phytochemistry, and antibreast cancer activity. Der Pharm Lett 2017; 9(5): 42-54.
[265]
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006; 13(9-10): 624-9.
[http://dx.doi.org/10.1016/j.phymed.2005.09.010] [PMID: 17085291]
[266]
Alajmi MF, Alam P, Alqasoumi SI, et al. Comparative anticancer and antimicrobial activity of aerial parts of Acacia salicina, Acacia laeta, Acacia hamulosa and Acacia tortilis grown in Saudi Arabia. Saudi Pharm J 2017; 25(8): 1248-52.
[http://dx.doi.org/10.1016/j.jsps.2017.09.010] [PMID: 29204075]
[267]
Mukhtar MH, Almalki WH, Azmat A, Abdalla MR, Ahmed M. Evaluation of anti-diabetic activity of Acacia tortilis (Forssk.) hayne leaf extract in streptozotocin-induced diabetic rats. Int J Pharmacol 2017; 13: 438-47.
[http://dx.doi.org/10.3923/ijp.2017.438.447]
[268]
Majumder R, Parida P, Paul S, Basak P. In vitro and in silico study of Aloe vera leaf extract against human breast cancer. Nat Prod Res 2019; 29: 1-4.
[http://dx.doi.org/10.1080/14786419.2018.1534848] [PMID: 30600703]
[269]
Basak P, Paul S, Majumdar R. In vitro cytotoxic study of aloevera whole leaf extract on PBMC and breast cancer cell line. Proceedings of the I2CT 2017; 7-9 April 2017; Mumbai, India.
[270]
Jain N, Vijayaraghavan R, Pant SC, Lomash V, Ali M. Aloe vera gel alleviates cardiotoxicity in streptozocin-induced diabetes in rats. J Pharm Pharmacol 2010; 62(1): 115-23.
[http://dx.doi.org/10.1211/jpp.62.01.0013] [PMID: 20723007]
[271]
Okyar A, Can A, Akev N, Baktir G, Sütlüpinar N. Effect of Aloe vera leaves on blood glucose level in type I and type II diabetic rat models. Phytother Res 2001; 15(2): 157-61.
[http://dx.doi.org/10.1002/ptr.719] [PMID: 11268118]
[272]
Jada SR, Subur GS, Matthews C, et al. Semisynthesis and in vitro anticancer activities of andrographolide analogues. Phytochemistry 2007; 68(6): 904-12.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.031] [PMID: 17234223]
[273]
Dandu AM, Inamdar NM. Evaluation of beneficial effects of antioxidant properties of aqueous leaf extract of Andrographis paniculata in STZ-induced diabetes. Pak J Pharm Sci 2009; 22(1): 49-52.
[274]
Zhang XF, Tan BK. Anti-diabetic property of ethanolic extract of Andrographis paniculata in streptozotocin-diabetic rats. Acta Pharmacol Sin 2000; 21(12): 1157-64.
[275]
Mokhtar MM, Hegazy MEF, Shaban HM, Ali SS. Evaluating the potential cancer chemopreventive efficacy of two different solvent extracts of Seriphidium herba-alba in vitro. Bull Fac Pharm Cairo Univ 2017; 55(1): 195-201.
[http://dx.doi.org/10.1016/j.bfopcu.2017.03.002]
[276]
al-Khazraji SM, al-Shamaony LA, Twaij HA. Hypoglycaemic effect of Artemisia herba alba. I. Effect of different parts and influence of the solvent on hypoglycaemic activity. J Ethnopharmacol 1993; 40(3): 163-6.
[http://dx.doi.org/10.1016/0378-8741(93)90064-C] [PMID: 8145571]
[277]
Yan SW, Asmah R. anti-proliferation of mda-mb-231 cells by averrhoa bilimbi extract is associated with g0/g1 perturbation and mitochondria-mediated apoptosis independent of p53. Int Food Res J 2017; 24(3): 1331-7.
[278]
Pushparaj PN, Tan BK, Tan CH. The mechanism of hypoglycemic action of the semi-purified fractions of Averrhoa bilimbi in streptozotocin-diabetic rats. Life Sci 2001; 70(5): 535-47.
[http://dx.doi.org/10.1016/S0024-3205(01)01423-0] [PMID: 11811898]
[279]
Silva MC, de Paula CA, Ferreira JG, et al. Bauhinia forficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells. Biochim Biophys Acta 2014; 1840(7): 2262-71.
[http://dx.doi.org/10.1016/j.bbagen.2014.03.009] [PMID: 24641823]
[280]
de Sousa E, Zanatta L, Seifriz I, et al. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(alpha)-dirhamnoside from Bauhinia forficata leaves. J Nat Prod 2004; 67(5): 829-32.
[http://dx.doi.org/10.1021/np030513u] [PMID: 15165145]
[281]
Lino Cde S, Diógenes JP, Pereira BA, et al. Antidiabetic activity of Bauhinia forficata extracts in alloxan-diabetic rats. Biol Pharm Bull 2004; 27(1): 125-7.
[http://dx.doi.org/10.1248/bpb.27.125] [PMID: 14709915]
[282]
Kviecinski MR, Benelli P, Felipe KB, et al. SFE from Bidens pilosa Linné to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity. J Supercrit Fluids 2011; 56(3): 243-8.
[http://dx.doi.org/10.1016/j.supflu.2010.12.011]
[283]
Chang SL, Chang CL, Chiang YM, et al. Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmune diabetes in non-obese diabetic mice. Planta Med 2004; 70(11): 1045-51.
[http://dx.doi.org/10.1055/s-2004-832645] [PMID: 15549660]
[284]
Saravanan K, Elavarsi S, Jayabai P, Santhi MP. Anticancer activity of Biophytum Sensitivum in breast cancer MCF-7 cell lines. J Cell Tissue Res 2016; 16(1): 5387-91.
[285]
Puri D. The insulinotropic activity of a Nepalese medicinal plant Biophytum sensitivum: Preliminary experimental study. J Ethnopharmacol 2001; 78(1): 89-93.
[http://dx.doi.org/10.1016/S0378-8741(01)00306-3] [PMID: 11585694]
[286]
Luo M, Liu X, Zu Y, et al. Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem Biol Interact 2010; 188(1): 151-60.
[http://dx.doi.org/10.1016/j.cbi.2010.07.009] [PMID: 20638373]
[287]
Amalraj T, Ignacimuthu S. Hypoglycemic activity of Cajanus cajan (seeds) in mice. Indian J Exp Biol 1998; 36(10): 1032-3.
[288]
Prasanna R, Harish CC, Pichai R, Sakthisekaran D, Gunasekaran P. Anti-cancer effect of Cassia auriculata leaf extract in vitro through cell cycle arrest and induction of apoptosis in human breast and larynx cancer cell lines. Cell Biol Int 2009; 33(2): 127-34.
[http://dx.doi.org/10.1016/j.cellbi.2008.10.006] [PMID: 18996213]
[289]
Gupta S, Sharma SB, Singh UR, Bansal SK, Prabhu KM. Elucidation of mechanism of action of Cassia auriculata leaf extract for its antidiabetic activity in streptozotocin-induced diabetic rats. J Med Food 2010; 13(3): 528-34.
[http://dx.doi.org/10.1089/jmf.2009.1253] [PMID: 20521978]
[290]
Mostafapour Kandelous H, Salimi M, Khori V, Rastkari N, Amanzadeh A, Salimi M. Mitochondrial apoptosis induced by Chamaemelum nobile extract in breast cancer cells. Iran J Pharm Res 2016; 15(Suppl.): 197-204.
[291]
Eddouks M, Lemhadri A, Zeggwagh NA, Michel JB. Potent hypoglycaemic activity of the aqueous extract of Chamaemelum nobile in normal and streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 2005; 67(3): 189-95.
[http://dx.doi.org/10.1016/j.diabres.2004.07.015] [PMID: 15713350]
[292]
Gospodinova Z, Krasteva M. Cichorium intybus L. From bulgaria inhibits viability of human breast cancer cells in vitro. Genet Plant Physiol 2015; 5(1): 15-22.
[293]
Pushparaj PN, Low HK, Manikandan J, Tan BK, Tan CH. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J Ethnopharmacol 2007; 111(2): 430-4.
[http://dx.doi.org/10.1016/j.jep.2006.11.028] [PMID: 17197141]
[294]
Sathishkumar P, Preethi J, Vijayan R, et al. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J Photochem Photobiol B 2016; 163: 69-76.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.005] [PMID: 27541567]
[295]
Eidi M, Eidi A, Saeidi A, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res 2009; 23(3): 404-6.
[http://dx.doi.org/10.1002/ptr.2642] [PMID: 19003941]
[296]
Gray AM, Flatt PR. Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander). Br J Nutr 1999; 81(3): 203-9.
[http://dx.doi.org/10.1017/S0007114599000392] [PMID: 10434846]
[297]
Iweala EEJ, Liu FF, Cheng RR. Li, Yan.; Omonhinmin, C.A.; Zhang, Y.Z. Anti-cancer and free radical sacvenging activity of some nigerian food plants in vitro. Int J Cancer Res 2015; 11(1): 41-51.
[http://dx.doi.org/10.3923/ijcr.2015.41.51]
[298]
Ugochukwu NH, Babady NE. Antihyperglycemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of normal and streptozotocin-induced diabetic rats. Life Sci 2003; 73(15): 1925-38.
[http://dx.doi.org/10.1016/S0024-3205(03)00543-5] [PMID: 12899918]
[299]
Ugochukwu NH, Babady NE. Antioxidant effects of Gongronema latifolium in hepatocytes of rat models of non-insulin dependent diabetes mellitus. Fitoterapia 2002; 73(7-8): 612-8.
[http://dx.doi.org/10.1016/S0367-326X(02)00218-6] [PMID: 12490219]
[300]
Mahassni SH, Al-Reemi RM. Cytotoxic effect of an aqueous extract Lepidium sativum L. Seeds on human breast cancer cells. Indian J Tradit Knowl 2013; 12(4): 605-14. http://nopr.niscair. res.in/handle/123456789/22183
[301]
R.; Afeefi, F. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcibnoma cell line (MCF-7). Sci Pharm 2007; 75(3): 121-46.
[http://dx.doi.org/10.3797/scipharm.2007.75.121]
[302]
Conforti F, Ioele G, Statti GA, Marrelli M, Ragno G, Menichini F. Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food Chem Toxicol 2008; 46(10): 3325-32.
[http://dx.doi.org/10.1016/j.fct.2008.08.004] [PMID: 18768152]
[303]
Eddouks M, Maghrani M. Effect of Lepidium sativum L. on renal glucose reabsorption and urinary TGF-beta 1 levels in diabetic rats. Phytother Res 2008; 22(1): 1-5.
[http://dx.doi.org/10.1002/ptr.2101] [PMID: 18064603]
[304]
Bumidin MS, Johari FA, Risan NF, Nasir MHM. The effect of aqueous extracts of nigella sativa on breast cancer cell line Mcf-7: An in vitro study. Science Heritage Journal 2018; 2(1): 13-7.
[http://dx.doi.org/10.26480/gws.01.2018.13.17]
[305]
Bensiameur-Touati K, Kacimi G, Haffaf EM, Berdja S, Aouichat-Bouguerra S. In vivo subacute toxicity and antidiabetic effect of aqueous extract of Nigella sativa. Evid Based Complement Alternat Med 2017; 20178427034.
[http://dx.doi.org/10.1155/2017/8427034] [PMID: 29479371]
[306]
Kaleem M, Kirmani D, Asif M, Ahmed Q, Bano B. Biochemical effects of Nigella sativa L. seeds in diabetic rats. Indian J Exp Biol 2006; 44(9): 745-8.
[307]
Nangia-Makker P, Tait L, Shekhar MP, et al. Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum gratissimum. Int J Cancer 2007; 121(4): 884-94.
[http://dx.doi.org/10.1002/ijc.22733] [PMID: 17437270]
[308]
Aguiyi JC, Obi CI, Gang SS, Igweh AC. Hypoglycaemic activity of Ocimum gratissimum in rats. Fitoterapia 2000; 71(4): 444-6.
[http://dx.doi.org/10.1016/S0367-326X(00)00143-X] [PMID: 10925022]
[309]
Grbović F, Stanković MS, Ćurčić M, et al. In vitro cytotoxic activity of Origanum vu’lgare L. on HCT-116 and MDA-MB-231 cell lines. Plants (Basel) 2013; 2(3): 371-8.
[http://dx.doi.org/10.3390/plants2030371] [PMID: 27137381]
[310]
Lemhadri A, Zeggwagh NA, Maghrani M, Jouad H, Eddouks M. Anti-hyperglycaemic activity of the aqueous extract of Origanum vulgare growing wild in Tafilalet region. J Ethnopharmacol 2004; 92(2-3): 251-6.
[http://dx.doi.org/10.1016/j.jep.2004.02.026] [PMID: 15138008]
[311]
Kim HJ, Chang EJ, Bae SJ, et al. Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora. Arch Pharm Res 2002; 25(3): 293-9.
[http://dx.doi.org/10.1007/BF02976629] [PMID: 12135100]
[312]
Hsu FL, Lai CW, Cheng JT. Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of Paeonia lactiflora. Planta Med 1997; 63(4): 323-5.
[http://dx.doi.org/10.1055/s-2006-957692] [PMID: 9270377]
[313]
Parvathaneni M, Battu GR, Gray AI, Gummalla P. Investigation of anticancer potential of hypophyllanthin and phyllanthin against breast cancer by in vitro and in vivo methods. Asian Pac J Trop Dis 2014; 4(1): S71-6.
[http://dx.doi.org/10.1016/S2222-1808(14)60417-5]
[314]
Raphael KR, Sabu MC, Kuttan R. Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum & Thonn on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential. Indian J Exp Biol 2002; 40(8): 905-9.
[315]
Chakraborty A, Gupta N, Ghosh K, Roy P. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol In Vitro 2010; 24(4): 1215-28.
[http://dx.doi.org/10.1016/j.tiv.2010.02.007] [PMID: 20152895]
[316]
Mukhtar HM, Ansari SH, Ali M, Bhat ZA, Naved T. Effect of aqueous extract of Pterocarpus marsupium wood on alloxan-induced diabetic rats. Pharmazie 2005; 60(6): 478-9.
[317]
Jahromi MA, Ray AB. Antihyperlipidemic effect of flavonoids from Pterocarpus marsupium. J Nat Prod 1993; 56(7): 989-94.
[http://dx.doi.org/10.1021/np50097a001] [PMID: 8377021]
[318]
Ahmad F, Khalid P, Khan MM, Rastogi AK, Kidwai JR. Insulin like activity in (-) epicatechin. Acta Diabetol Lat 1989; 26(4): 291-300.
[http://dx.doi.org/10.1007/BF02624640] [PMID: 2698039]
[319]
Aravind SR, Joseph MM, Varghese S, Balaram P, Sreelekha TT. Antitumor and immunopotentiating activity of polysaccharide PST001 isolated from the seed kernel of Tamarindus indica: An in vivo study in mice. ScientificWorldJournal 2012; 2012: 361382.
[http://dx.doi.org/10.1100/2012/361382] [PMID: 22593679]
[320]
Maiti R, Das UK, Ghosh D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biol Pharm Bull 2005; 28(7): 1172-6.
[http://dx.doi.org/10.1248/bpb.28.1172] [PMID: 15997092]
[321]
Kamble SS. Evaluation of in vitro anticancer activity of Tinospora cordifolia (stem) Miers. against human breast cancer cells, Sonali S Kamble. J Cancer Sci Ther 2015; 7: 10.
[http://dx.doi.org/10.4172/1948-5956.C1.05]
[322]
Stanely P, Prince M, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 2000; 70(1): 9-15.
[http://dx.doi.org/10.1016/S0378-8741(99)00136-1] [PMID: 10720784]
[323]
Kumar S, Bodla R, Kant R. Non-targeted analysis and cytotoxic activity of Hamelia patens jacq. IJPSR 2018; 9: 1093-9.
[324]
Dhaliwal KS. Method and composition for treatment of diabetes U.S. Patent 5,886,029, 1999.
[325]
Bala A, Mukherjee PK, Braga FC, Matsabisa MG. Comparative inhibition of MCF-7 breast cancer cell growth, invasion and angiogenesis by Cannabis sativa L. sourced from sixteen different geographic locations. S Afr J Bot 2018; 119: 154-62.
[http://dx.doi.org/10.1016/j.sajb.2018.07.022]
[326]
Bala A, Panditharadyula SS. Role of Nuclear Factor Erythroid 2-related factor 2 (NRF-2) mediated antioxidant response on the synergistic antitumor effect of L-Arginine and 5-Fluro Uracil (5FU) in breast adenocarcinoma. Curr Pharm Des 2019; 25(14): 1643-52.
[http://dx.doi.org/10.2174/1381612825666190705205155] [PMID: 31298161]
[327]
Bala A, Matsabisa MG. Possible importance of Cannabis sativa L. in regulation of insulin and IL-6R/MAO-A in cancer cell progression and migration of breast cancer patients with diabetes. S Afr J Sci 2018; 114(7-8): 15-7.
[http://dx.doi.org/10.17159/sajs.2018/a0279]
[328]
Bala A, Kar B, Haldar PK, Mazumder UK, Bera S. Evaluation of anticancer activity of Cleome gynandra on Ehrlich’s Ascites Carcinoma treated mice. J Ethnopharmacol 2010; 129(1): 131-4.
[http://dx.doi.org/10.1016/j.jep.2010.03.010] [PMID: 20307641]
[329]
Bala A, Rademan S, Kevin KN, Maharaj V, Matsabisa MG. UPLC-MS Analysis of Cannabis sativa Using Tetrahydrocannabinol (THC), Cannabidiol (CBD), and Tetrahydrocannabinolic Acid (THCA) as marker compounds: Inhibition of breast cancer cell survival and progression. Nat Prod Commun 2019; 14: 8.
[http://dx.doi.org/10.1177%2F1934578X19872907]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy