Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

ZnO-nanocatalyst Promoted the Production of Imidazole Derivatives via four-component Reaction of Aminoacid: Study of Antioxidant and Antimicrobial Activity

Author(s): Maryam Ghazvini*, Fatemeh Sheikholeslami-Farahani, Shahin Shafiee, Masoomeh Salimifard and Ali Akbar Eslami

Volume 24, Issue 6, 2021

Published on: 20 August, 2020

Page: [841 - 848] Pages: 8

DOI: 10.2174/1386207323999200820163129

Price: $65

Open Access Journals Promotions 2
Abstract

Aim and Objective: In current research, imidazole derivatives are synthesized via a new process of four component reaction of trichloroacetonitrile, amides, alkyl bromides and amino acids catalyzed by zinc oxide nanoparticles (ZnO-NPs) as a simple and recyclable catalyst in water at room temperature. Among investigated compounds, compounds 5b have good results relative to butylated hydroxytoluene (BHT) and 2-tert-butylhydroquinone (TBHQ) as standard antioxidant. The achieved outcomes of disk diffusion experiment showed that these compounds avoided the growth of bacterial.

Materials and Methods: In this research, all chemicals are purchased from Fluka (Buchs, Switzerland) and employed with any purification. For measuring infrared spectroscopy and melting point, a Shimadzu IR-460 spectrometer and Electrothermal 9100 apparatus are utilized respectively. BRUKER DRX-400 AVANCE spectrometer is used for giving the 1H, and 13CNMR spectra at 400.1 and 100 MHz respectively. For recording mass spectra, A FINNIGAN-MAT 8430 spectrometer with an ionization potential of 70 eV was utilized. The scanning electron microscopy (SEM) employing a Holland Philips XL30 microscope was used for determination of ZnO nanocomposites morphology. X-ray diffraction (XRD) analysis at room temperature using a Holland Philips Xpert X-ray powder diffractometer, with CuKα radiation (λ=0.15406 nm), with 2θ ranging from 20 to 80° was employed for characterization of crystalline structure of Fe3O4/CuO nanocomposites. Scherrer’s formula; D= 0.9λ/β cosθ was employed for calculating the average crystallite size where D is the diameter of the nanoparticles, λ (CuKα) =1.5406 Å and β is the fullwidth at half-maximum of the diffraction lines. A general way to prepare of compounds 5 The trichloroacetonitrile 1 (2 mmol) and amides 2 (2 mmol) mixed with ZnO-NPs (10 mol%) in water (5 mL). after 45 min amino acids 3 (2 mmol) was added to previous mixture at room temperature. After 30 min α-haloketones 4 (2 mmol) was added to mixture and stirred for 3 h. After 3 h, the reaction is completed and TLC confirms progress of the reaction. At last, the solid residue was collected by filtration and cleaned with EtOAC to removing ZnO-NPs and after evaporating solvent and washing solid with Et2O compounds 5 afforded as pure product.

Results: Without employing catalyst, these reactions have low yield and busy mixture. The synthesis of compound 5a as sample reaction and displayed the ZnO nanoparticles (10 mol%) is the best catalyst for sample reaction and H2O is the very better than other solvent in sample raection. Structures of 5 are confirmed by IR, 1H NMR, 13C NMR mass spectra.

Conclusion: In summary, imdazole derivatives were produced in excellent yield from the reaction of trichloroacetonitrile, amides, alkyl bromides and amino acids using ZnO-NPs in water at room temperature. In addition, the power of synthesized imidazole as antioxidant was determined by radical trapping of DPPH and power of reducing ferric analyzes. The tested imidazoles display good radical trapping of DPPH but exhibitted moderate FRAP relative to BHT and TBHQ as synthetic antioxidants.The outcomes of disk diffusion experiment exhibite that synthesized imidazole avoided the bacterial growth. The superiorities of this procedure are environmental, high yield of product and low amounts of catalyst and short time of reaction.

Keywords: Alkyl bromides, aminoacides, multicomponent reactions, imidazole, zinc oxide nanoparticles (ZnO-NPs), catalyst.

[1]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[2]
Tietze, L.F.; Rackelmann, N.N. Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl. Chem., 2004, 11, 1967.
[http://dx.doi.org/10.1351/pac200476111967]
[3]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AIDANIE3168>3.0.CO;2-U] [PMID: 11028061]
[4]
Kolb, J.; Beck, B.; Almstetter, M.; Heck, S.; Herdtweck, E.; Dömling, A. New MCRs: the first 4-component reaction leading to 2,4-disubstituted thiazoles. Mol. Divers., 2003, 6(3-4), 297-313.
[http://dx.doi.org/10.1023/B:MODI.0000006827.35029.e4] [PMID: 15068094]
[5]
Domling, A.; Ugi, I.; Werner, B. The chemistry of isocyanides, their multi component reactions and their libraries. Molecules, 2003, 8, 53.
[6]
Bon, R.S.; van Vliet, B.; Sprenkels, N.E.; Schmitz, R.F.; de Kanter, F.J.; Stevens, C.V.; Swart, M.; Bickelhaupt, F.M.; Groen, M.B.; Orru, R.V. Multicomponent synthesis of 2-imidazolines. J. Org. Chem., 2005, 70(9), 3542-3553.
[http://dx.doi.org/10.1021/jo050132g] [PMID: 15844989]
[7]
Banfi, L.; Basso, A.; Guanti, G.; Kielland, N.; Repetto, C.; Riva, R. Ugi multicomponent reaction followed by an intramolecular nucleophilic substitution: convergent multicomponent synthesis of 1-sulfonyl 1,4-diazepan-5-ones and of their benzo-fused derivatives. J. Org. Chem., 2007, 72(6), 2151-2160.
[http://dx.doi.org/10.1021/jo062626z] [PMID: 17309311]
[8]
Galliford, C.V.; Scheidt, K.A. Catalytic multicomponent reactions for the synthesis of N-aryl trisubstituted pyrroles. J. Org. Chem., 2007, 72(5), 1811-1813.
[http://dx.doi.org/10.1021/jo0624086] [PMID: 17256992]
[9]
Erdmenger, T.; Guerrero-Sanchez, C.; Vitz, J.; Hoogenboom, R.; Schubert, U.S. Recent developments in the utilization of green solvents in polymer chemistry. Chem. Soc. Rev., 2010, 39(8), 3317-3333.
[http://dx.doi.org/10.1039/b909964f] [PMID: 20601997]
[10]
(a)Mukesh, D.; Anil Kumar, K. Green Chemistry and Engineering; Elsevier Academic Press: Oxford, 2007.
(b)Anastas, P.T.; Lankey, R.L. Sustainability through green chemistry and engineering.ACS Symp. Ser; , 2002, 823, pp. 1-11.
[http://dx.doi.org/10.1021/bk-2002-0823.ch001]
(c)Anastas, P.T.; Williamson, T.C. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes; Oxford University Press: Oxford, 1998.
(d)Clark, J.H.; Macquarrie, D.J. Handbook of Green Chemistry and Technology; Blackwell: Oxford, 2002.
[http://dx.doi.org/10.1002/9780470988305]
[11]
Butler, R.N.; Coyne, A.G. Organic synthesis reactions on-water at the organic-liquid water interface. Org. Biomol. Chem., 2016, 14(42), 9945-9960.
[http://dx.doi.org/10.1039/C6OB01724J] [PMID: 27714194]
[12]
Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[13]
Mishra, R.; Ganguly, S. Imidazole as an anti-epileptic: An overview. Med. Chem. Res., 2012, 21, 3929-3939.
[http://dx.doi.org/10.1007/s00044-012-9972-6]
[14]
Zhang, L.; Peng, X.M.; Damu, G.L.; Geng, R.X.; Zhou, C.H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev., 2014, 34(2), 340-437.
[http://dx.doi.org/10.1002/med.21290] [PMID: 23740514]
[15]
Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2015, 25, 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5]
[16]
Fan, Y.L.; Jin, X.H.; Huang, Z.P.; Yu, H.F.; Zeng, Z.G.; Gao, T.; Feng, L.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.016] [PMID: 29544148]
[17]
Daraji, D.G.; Prajapati, N.P.; Patel, H.D. Synthesis and applications of 2-substituted imidazole and its derivatives: A review. J. Heterocycl. Chem., 2019, 56, 2299-2317.
[http://dx.doi.org/10.1002/jhet.3641]
[18]
Narasimhan, B.; Kumar, P.; Sharma, D. Biological importance of imidazole nucleus in the new millennium. Med. Chem. Res., 2011, 20, 1119-1140.
[19]
(a)Leone-Bay, A.; Timony, P.E.; Green, L.; Glaser, L. Structureactivity relationships in a group of N-substituted tribromoimidazoles. J. Agric. Food Chem., 1888, 34, 733-736.
[http://dx.doi.org/10.1021/jf00070a035]
(b)Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J.F.N. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg. Med. Chem., 2015, 23(15), 4172-4180.
[http://dx.doi.org/10.1016/j.bmc.2015.06.053] [PMID: 26164624]
[20]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. J. Mol. Catal. Chem., 2013, 374–375, 102-110.
[http://dx.doi.org/10.1016/j.molcata.2013.04.002]
[21]
Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. Role of Nanoparticles in Photocatalysis. J. Nanopart. Res., 1999, 1, 439-458.
[http://dx.doi.org/10.1023/A:1010044830871]
[22]
Mirjafary, Z.; Saeidian, H.; Sadeghi, A.; Moghaddam, F.M. ZnO nanoparticles: An efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multi-component reaction. Catal. Commun., 2008, 9, 299-306.
[http://dx.doi.org/10.1016/j.catcom.2007.06.018]
[23]
Moghaddam, F.M.; Saeidian, H. Controlled microwave-assisted synthesis of ZnO nanopowder and its catalytic activity for O-acylation of alcohol and phenol. Mater. Sci. Eng. B, 2007, 139, 265-269.
[http://dx.doi.org/10.1016/j.mseb.2007.03.002]
[24]
Lietti, L.; Tronconi, E.; Forzatti, P.; Busca, G. Surface properties of zno-based catalysts and related mechanistic features of the higher alcohol synthesis by FT-IR spectroscopy and TPSR. J. Mol. Catal., 1989, 55, 43-54.
[25]
Gupta, M.; Paul, S.; Gupta, R.; Loupy, A. Tetrahedron Lett., 2005, 46, 4957-4960.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.104]
[26]
(a)Halliwell, B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res., 1999, 31(4), 261-272.
[http://dx.doi.org/10.1080/10715769900300841] [PMID: 10517532]
(b)Ahmadi, F.; Kadivar, M.; Shahedi, M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem., 2007, 105, 57-64.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.056]
[27]
Babizhayev, M.A.; Deyev, A.I.; Yermakova, V.N.; Brikman, I.V.; Bours, J. Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs R D., 2004, 5(3), 125-139.
[http://dx.doi.org/10.2165/00126839-200405030-00001] [PMID: 15139774]
[28]
Liu, L.; Meydani, M. Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients. Nutr. Rev., 2002, 60(11), 368-371.
[http://dx.doi.org/10.1301/00296640260385810] [PMID: 12462519]
[29]
Rajabi, M.; Hossaini, Z.; Khalilzadeh, M.A.; Datta, S.; Halder, M.; Mousa, S.A. Synthesis of a new class of furo[3,2-c]coumarins and its anticancer activity. J. Photochem. Photobiol. B, 2015, 148, 66-72.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.027] [PMID: 25889947]
[30]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Efficient synthesis of functionalized 2,5-dihydrofurans and 1,5-dihydro-2H-pyrrol-2-ones by reaction of isocyanides with activated acetylenes in the presence of hexachloroacetone. Chemical Monthly, 2008, 139, 625-628.
[http://dx.doi.org/10.1007/s00706-007-0810-3]
[31]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Proline-promoted efficient synthesis of 4-aryl-3,4-dihydro-2h,5h-pyrano[3,2-c]chromene-2,5-diones in aqueous media. Synlett, 2008, 1153-1154.
[http://dx.doi.org/10.1055/s-2008-1072656]
[32]
(a)Rostami-Charati, F.; Hossaini, Z.; Sheikholeslami-Farahani, F.; Azizi, Z.; Siadati, S.A. Synthesis of 9H-furo [2,3-f]Chromene Derivatives by Promoting ZnO Nanoparticles. Comb. Chem. High Throughput Screen., 2015, 18(9), 872-880.
[http://dx.doi.org/10.2174/1386207318666150525094109] [PMID: 26004051]
(b)Asadi-Ojaee, S.S.; Mirabi, A.; Shokuhi Rad, A.; Movaghgharnezhad, Sh.; Hallajian, S. Removal of Bismuth (III) ions from water solution using a cellulose-based nanocomposite: A detailed study by DFT and experimental insights. J. Mol. Liq., 2019, 295, 111723.
[http://dx.doi.org/10.1016/j.molliq.2019.111723]
(c)Shokuhi Rad, A.; Samipour, V.; Movaghgharnezhad, Sh.; Mirabi, A.; Shahavie, M.H. Kamyab Moghadasf, X12N12 (X = Al, B) clusters for protection of vitamin C; molecular modeling investigation. B. Surf. Interfaces, 2019, 15, 30-37.
[http://dx.doi.org/10.1016/j.surfin.2019.02.001]
(d)Movaghgharnezhad, Sh.; Mirabi, A. Advanced Nanostructure Amplified Strategy for Voltammetric Determination of Folic Acid. Int. J. Electrochem. Sci., 2019, 14, 10956-10961.
[http://dx.doi.org/10.20964/2019.12.79]
(e)Hossaini, Z.S.; Zareyee, D.; Sheikholeslami-Farahani, F.; Vaseghi, S.; Zamani, A. ZnO‐NR as the efficient catalyst for the synthesis of new thiazole and cyclopentadienone phosphonate derivatives in water. Heteroatom Chem., 2017, 28, e21362.
[http://dx.doi.org/10.1002/hc.21362]
[33]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S.; Ghazanfarpour-Darjani, M. Surprising Formation of chlorinated butenolides from dialkyl acetylenedicarboxylates and hexachloro¬acetone in the presence of triphenyl phosphite. Helv. Chim. Acta, 2008, 91, 1144-1147.
[http://dx.doi.org/10.1002/hlca.200890123]
[34]
Rostami-Charati, F. Efficient synthesis of functionalized hydroindoles via catalyst-free multicomponent reactions of ninhydrin in water. Chin. Chem. Lett., 2014, 1, 169-171.
[http://dx.doi.org/10.1016/j.cclet.2013.09.016]
[35]
Rostami‐Charati, F.; Hossaini, Z.S.; Khalilzadeh, M.A.; Jafaryan, H. Solvent‐free synthesis of pyrrole derivatives. J. Heterocycl. Chem., 2012, 49, 217-220.
[http://dx.doi.org/10.1002/jhet.785]
[36]
Hajinasiri, R.; Hossaini, Z.S.; Rostami‐Charati, F. Efficient synthesis of α‐aminophosphonates via one‐pot reactions of aldehydes, amines, and phosphates in ionic liquid. Heteroatom Chem., 2011, 22, 625-629.
[http://dx.doi.org/10.1002/hc.20724]
[37]
Rostami Charati, F.; Hossaini, Z.S.; Hosseini-Tabatabaei, M.R. A simple synthesis of oxaphospholes. Phosphorus, Sulfur. Silicon Related Elements A., 2011, 186, 1443-1448.
[http://dx.doi.org/10.1080/10426507.2010.515953]
[38]
Sabbaghan, M.; Anaraki Firooz, A.; Jan Ahmadi, V. The effect of template on morphology, optical and photocatalytic properties of ZnO nanostructures. J. Mol. Liq., 2012, 175, 135.
[http://dx.doi.org/10.1016/j.molliq.2012.08.019]
[39]
Shimada, K.; Fujikawa, K.; Yahara, N.T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945.
[http://dx.doi.org/10.1021/jf00018a005]
[40]
Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem., 1994, 42, 629.
[http://dx.doi.org/10.1021/jf00039a005]
[41]
Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 2001, 49(8), 4083-4089.
[http://dx.doi.org/10.1021/jf0103572] [PMID: 11513714]
[42]
Bidchol, A.M.; Wilfred, A.; Abhijna, P.; Harish, R. Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italic. Food Bioprocess Technol., 2011, 4, 1137-1143.
[http://dx.doi.org/10.1007/s11947-009-0196-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy