Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

COVID-19: Pathogenesis and Pharmacological Basis for Use of Passive Antibody Therapy

Author(s): Smriti Ojha*, Hina Chadha and Seema Mahor

Volume 15, Issue 5, 2020

Page: [448 - 456] Pages: 9

DOI: 10.2174/1574885515999200813193747

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Coronaviruses (CoVs), having enveloped RNA of positive strand, are mainly responsible for enzootic infections in mammals. The mortality of CoVs has been proved as they can cross the species barrier very easily and infect humans. Most recently, the outbreak of coronavirus induced COVID-19 emerged in the city of Wuhan, Hubei province of China and became the third highly pathogenic coronavirus infecting nearly 230 countries.

Objective: To review the literature available about pathogenic Coronavirures with emphasis on pathogenesis of COVID-19, and passive antibody therapy prospective.

Methods: This study reviewed relevant published literature to provide (1) structural similarities between coronaviruses and therapeutic methodologies used on SARS-CoV, MERS treatment which might help scientists in understanding novel COVID-19 infection, (2) understanding COVID-19 pathogenesis that may help in identification of appropriate therapeutic targets to develop specific and effective anti-viral drugs as well as immunizing agents against this novel emerging pathogen and (3) to discuss existing knowledge on the passive immune therapy against similar coronaviruses SARS-CoV and MERS-CoV with emphasis on COVID-19 pandemic treatment.

Conclusion: COVID 19 coronavirus has shown resemblance to viral infections like SARS-CoV, MERS infection. Historically, it has been proved that the prevention of disease, when exposed to a biological system, is mainly a function of the immune response of that infected individual. To fight against these infections, passive antibody therapy is the only available countermeasure that could provide immediate immunity against infection. Passive antibody results in protection irrespective of the immune status of the host. This therapy can be advantageous in countering the biological attack, post exposure preventions, low toxicity and peculiar activity.

Keywords: Coronavirus, COVID 19, emerging threat, monoclonal antibody, immunotherapy, infectious diseases.

Graphical Abstract
[1]
Gorbalenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[2]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Chan JF, To KK, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 2013; 21(10): 544-55.
[http://dx.doi.org/10.1016/j.tim.2013.05.005] [PMID: 23770275]
[4]
Zhu N, Zhang D, Wang W, et al. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China. N Engl J Med 2019; 382: 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[5]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[6]
Casadevall A. Passive antibody therapies: progress and continuing challenges. Clin Immunol 1999; 93(1): 5-15.
[http://dx.doi.org/10.1006/clim.1999.4768] [PMID: 10497006]
[7]
Stiehm ER. Appropriate therapeutic use of immunoglobulin. Transfus Med Rev 1996; 10(3): 203-21.
[http://dx.doi.org/10.1016/S0887-7963(96)80060-5] [PMID: 8809970]
[8]
Vaswani SK, Hamilton RG. Humanized antibodies as potential therapeutic drugs. Ann Allergy Asthma Immunol 1998; 81(2): 105-15.
[http://dx.doi.org/10.1016/S1081-1206(10)62794-9] [PMID: 9723555]
[9]
Li B, Si H-R, Zhu Y, et al. discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing. MSphere 2020; 5(1): 807-19.
[http://dx.doi.org/10.1128/mSphere.00807-19] [PMID: 31996413]
[10]
Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1967-76.
[http://dx.doi.org/10.1056/NEJMoa030747] [PMID: 12690091]
[11]
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA 2004; 101(12): 4240-5.
[http://dx.doi.org/10.1073/pnas.0306446101] [PMID: 15010527]
[12]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[13]
Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1953-66.
[http://dx.doi.org/10.1056/NEJMoa030781] [PMID: 12690092]
[14]
Marra MA, Jones SJ, Astell CR, et al. The Genome sequence of the SARS-associated coronavirus. Science 2003; 300(5624): 1399-404.
[http://dx.doi.org/10.1126/science.1085953] [PMID: 12730501]
[15]
Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003; 300(5624): 1394-9.
[http://dx.doi.org/10.1126/science.1085952] [PMID: 12730500]
[16]
Du L, Kao RY, Zhou Y, et al. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun 2007; 359(1): 174-9.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.092] [PMID: 17533109]
[17]
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[18]
WHO. Middle East Respiratory Syndrome Coronavirus (MERSCoV), WHO, Geneva, Switzerland 2019.https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
[19]
Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 2014; 160(6): 389-97.
[http://dx.doi.org/10.7326/M13-2486] [PMID: 24474051]
[20]
Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. Family cluster of Middle East respiratory syndrome coronavirus infections. N Engl J Med 2013; 368(26): 2487-94.
[http://dx.doi.org/10.1056/NEJMoa1303729] [PMID: 23718156]
[21]
Omrani AS, Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction. Pathog Glob Health 2015; 109(8): 354-62.
[http://dx.doi.org/10.1080/20477724.2015.1122852] [PMID: 26924345]
[22]
Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 2015; 28(2): 465-522.
[http://dx.doi.org/10.1128/CMR.00102-14] [PMID: 25810418]
[23]
van Boheemen S, de Graaf M, Lauber C, et al. Genomic charac-terization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 2012; 3(6): 473-12.
[http://dx.doi.org/10.1128/mBio.00473-12] [PMID: 23170002]
[24]
Thornbrough JM, Jha BK, Yount B, et al. Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation. MBio 2016; 7(2)e00258
[http://dx.doi.org/10.1128/mBio.00258-16] [PMID: 27025250]
[25]
Almazán F, DeDiego ML, Sola I, et al. Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio 2013; 4(5): e00650-13.
[http://dx.doi.org/10.1128/mBio.00650-13] [PMID: 24023385]
[26]
Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses 2019; 11(1)E59
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[27]
Wernery U, El Rasoul IH, Wong EY, et al. A phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age. Emerg Microbes Infect 2015; 4(12)e74
[http://dx.doi.org/10.1038/emi.2015.74] [PMID: 26632876]
[28]
Coronavirus disease 2019. (COVID-19) Situation Report–69 [Accessed: Mar 29, [2020]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200329-sitrep-69- covid-19.pdf
[29]
Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 2020; 58(7): 1116-20.
[http://dx.doi.org/10.1515/cclm-2020-0188] [PMID: 32172226]
[30]
Wang YD, Zhang SP, Wei QZ, et al. COVID-19 complicated with DIC: 2 cases report and literatures review. Zhonghua Xue Ye Xue Za Zhi 2020; 41(3): 245-7.
[PMID: 32133824]
[31]
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-7.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[32]
van Gorp ECM, Suharti C, ten Cate H, et al. Review: infectious diseases and coagulation disorders. J Infect Dis 1999; 180(1): 176-86.
[http://dx.doi.org/10.1086/314829] [PMID: 10353876]
[33]
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[34]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[35]
Jeffers SA, Tusell SM, Gillim-Ross L, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 2004; 101(44): 15748-53.
[http://dx.doi.org/10.1073/pnas.0403812101] [PMID: 15496474]
[36]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[37]
Wang Q, Wu J. Structural basis for RNA Replication by the SARSCoV-2 Polymerase. Cell 2020; 182: 1-12.
[38]
Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[39]
Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol 2017; 25(1): 35-48.
[http://dx.doi.org/10.1016/j.tim.2016.09.001] [PMID: 27743750]
[40]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[41]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically-proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[42]
Li F. Structure, Function, and Evolution of Coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[43]
Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis 2016; 49: 129-33.
[http://dx.doi.org/10.1016/j.ijid.2016.06.015] [PMID: 27352628]
[44]
Keicho N, Itoyama S, Kashiwase K, et al. Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Hum Immunol 2009; 70(7): 527-31.
[http://dx.doi.org/10.1016/j.humimm.2009.05.006] [PMID: 19445991]
[45]
Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 2006; 80(12): 5927-40.
[http://dx.doi.org/10.1128/JVI.02501-05] [PMID: 16731931]
[46]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585]
[47]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[48]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[49]
Chen ZM, Fu JF, Shu Q, et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J Pediatr 2020; 16(3): 240-6.
[http://dx.doi.org/10.1007/s12519-020-00345-5] [PMID: 32026148]
[50]
Shen K, Yang Y, Wang T, et al. Diagnosis, treatment, and prevention of 2019 novel Coronavirus infection in children: experts’ consensus statement. World J Pediatr 2020; 16(3): 223-31.
[51]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579: 265-9.
[52]
Yang Y, Zhang L, Geng H, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 2013; 4(12): 951-61.
[http://dx.doi.org/10.1007/s13238-013-3096-8] [PMID: 24318862]
[53]
Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[54]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[55]
Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[56]
Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[57]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[58]
Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020; 10(2): 102-8.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[59]
Yang Y, Liu MJ, Wang YX, et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. MedRxiv 2020.
[60]
Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther 2010; 128(1): 119-28.
[http://dx.doi.org/10.1016/j.pharmthera.2010.06.003] [PMID: 20599443]
[61]
Peiris JSM, Lai ST, Poon LLM, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361(9366): 1319-25.
[http://dx.doi.org/10.1016/S0140-6736(03)13077-2] [PMID: 12711465]
[62]
Rajam G, Sampson J, Carlone GM, Ades EW. An augmented passive immune therapy to treat fulminant bacterial infections. Recent Pat Antiinfect Drug Discov 2010; 5(2): 157-67.
[http://dx.doi.org/10.2174/157489110791233496] [PMID: 20370679]
[63]
Keller MA, Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 2000; 13(4): 602-14.
[http://dx.doi.org/10.1128/CMR.13.4.602] [PMID: 11023960]
[64]
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176104742
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[65]
Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics? BioMed Res Int 2020; 20204389089
[http://dx.doi.org/10.1155/2020/4389089] [PMID: 32596311]
[66]
Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during outbreaks. Interim guidance for national health authorities and blood transfusion services Geneva: World Health Organization 2014.
[67]
Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med 2006; 145(8): 599-609.
[http://dx.doi.org/10.7326/0003-4819-145-8-200610170-00139] [PMID: 16940336]
[68]
Janeway CA. Use of Concentrated Human Serum gamma-Globulin in the Prevention and Attenuation of Measles. Bull N Y Acad Med 1945; 21(4): 202-22.
[PMID: 19312433]
[69]
Alexander H, Leidy G. Hemophilus influenzae meningitis treated with streptomycin. Am Med Assoc 1946; 132: 434-40.
[http://dx.doi.org/10.1001/jama.1946.02870430014005]
[70]
Casadevall A, Scharff MD. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob Agents Chemother 1994; 38(8): 1695-702.
[http://dx.doi.org/10.1128/AAC.38.8.1695] [PMID: 7985997]
[71]
Ojha S, Kumar B. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. J of Cell Immune Ther 2018; 4(2): 56-64.
[http://dx.doi.org/10.1016/j.jocit.2017.12.001]
[72]
Yeh KM, Chiueh TS, Siu LK, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother 2005; 56(5): 919-22.
[http://dx.doi.org/10.1093/jac/dki346] [PMID: 16183666]
[73]
Mupapa K, Massamba M, Kibadi K, et al. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. J Infect Dis 1999; 179(1): S18-23.
[http://dx.doi.org/10.1086/514298] [PMID: 9988160]
[74]
Enria DA, Briggiler AM, Sánchez Z. Treatment of Argentine hemorrhagic fever. Antiviral Res 2008; 78(1): 132-9.
[http://dx.doi.org/10.1016/j.antiviral.2007.10.010] [PMID: 18054395]
[75]
Kraft CS, Hewlett AL, Koepsell S, et al. The Use of TKM-100802 and Convalescent Plasma in 2 Patients With Ebola Virus Disease in the United States. Clin Infect Dis 2015; 61(4): 496-502.
[http://dx.doi.org/10.1093/cid/civ334] [PMID: 25904375]
[76]
Leider JP, Brunker PA, Ness PM. Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product? Transfusion 2010; 50(6): 1384-98.
[http://dx.doi.org/10.1111/j.1537-2995.2010.02590.x] [PMID: 20158681]
[77]
Dean CL, Hooper JW, Dye JM, et al. Characterization of Ebola convalescent plasma donor immune response and psoralen treated plasma in the United States. Transfusion 2020; 60(5): 1024-31.
[http://dx.doi.org/10.1111/trf.15739] [PMID: 32129478]
[78]
Florescu DF, Kalil AC, Hewlett AL, et al. Administration of brincidofovir and convalescent plasma in a patient with Ebola virus disease. Clin Infect Dis 2015; 61(6): 969-73.
[http://dx.doi.org/10.1093/cid/civ395] [PMID: 25991468]
[79]
Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest 2020; 130(4): 1545-8.
[http://dx.doi.org/10.1172/JCI138003] [PMID: 32167489]
[80]
Graham BS, Ambrosino DM. History of passive antibody administration for prevention and treatment of infectious diseases. Curr Opin HIV AIDS 2015; 10(3): 129-34.
[http://dx.doi.org/10.1097/COH.0000000000000154] [PMID: 25760933]
[81]
Syal K. COVID-19: Herd immunity and convalescent plasma transfer therapy. J Med Virol 2020; 92(9): 1380-2.
[http://dx.doi.org/10.1002/jmv.25870] [PMID: 32281679]
[82]
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92(5): 479-90.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[83]
Zhang B, Liu S, Tan T. Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection. Chest 2020; S0012-3692.
[84]
Ahn JY, Sohn Y, Lee SH, et al. Use of convalescent plasma therapy in two covid-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci 2020; 35(14)e149
[http://dx.doi.org/10.3346/jkms.2020.35.e149] [PMID: 32281317]
[85]
Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517): 495-7.
[http://dx.doi.org/10.1038/256495a0] [PMID: 1172191]
[86]
Yu X, Tsibane T, McGraw PA, et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 2008; 455(7212): 532-6.
[http://dx.doi.org/10.1038/nature07231] [PMID: 18716625]
[87]
Steinitz M, Klein G, Koskimies S, Makel O. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 1977; 269(5627): 420-2.
[http://dx.doi.org/10.1038/269420a0] [PMID: 198669]
[88]
Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science 2003; 301(5638): 1374-7.
[http://dx.doi.org/10.1126/science.1086907] [PMID: 12920303]
[89]
Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 2008; 329(1-2): 112-24.
[http://dx.doi.org/10.1016/j.jim.2007.09.017] [PMID: 17996249]
[90]
Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002; 298(5601): 2199-202.
[http://dx.doi.org/10.1126/science.1076071] [PMID: 12481138]
[91]
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14(1): 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[92]
Nieto-Torres JL, Dediego ML, Alvarez E, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011; 415(2): 69-82.
[http://dx.doi.org/10.1016/j.virol.2011.03.029] [PMID: 21524776]
[93]
Berry JD, Jones S, Drebot MA, et al. Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. J Virol Methods 2004; 120(1): 87-96.
[http://dx.doi.org/10.1016/j.jviromet.2004.04.009] [PMID: 15234813]
[94]
State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans. PLoS Curr 2013; 5: 5.
[PMID: 24270606]
[95]
Tabor E. The epidemiology of virus transmission by plasma derivatives: clinical studies verifying the lack of transmission of hepatitis B and C viruses and HIV type 1. Transfusion 1999; 39(11-12): 1160-8.
[http://dx.doi.org/10.1046/j.1537-2995.1999.39111160.x] [PMID: 10604241]
[96]
Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus 2016; 14(2): 152-7.
[PMID: 26674811]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy