Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Role of Glucose Transporters in Drug Membrane Transport

Author(s): Xin Wang, Kunkun Guo, Baolin Huang, Zimin Lin and Zheng Cai*

Volume 21, Issue 12, 2020

Page: [947 - 958] Pages: 12

DOI: 10.2174/1389200221666200810125924

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Glucose is the main energy component of cellular activities. However, as a polar molecule, glucose cannot freely pass through the phospholipid bilayer structure of the cell membrane. Thus, glucose must rely on specific transporters in the membrane. Drugs with a similar chemical structure to glucose may also be transported through this pathway.

Methods: This review describes the structure, distribution, action mechanism and influencing factors of glucose transporters and introduces the natural drugs mediated by these transporters and drug design strategies on the basis of this pathway.

Results: The glucose transporters involved in glucose transport are of two major types, namely, Na+-dependent and Na+-independent transporters. Glucose transporters can help some glycoside drugs cross the biological membrane. The transmembrane potential is influenced by the chemical structure of drugs. Glucose can be used to modify drugs and improve their ability to cross biological barriers.

Conclusion: The membrane transport mechanism of some glycoside drugs may be related to glucose transporters. Glucose modification may improve the oral bioavailability of drugs or achieve targeted drug delivery.

Keywords: Glucose transporter, Na+-glucose transporter, membrane transport, intestinal absorption, blood-brain barrier, drug design, prodrug.

Graphical Abstract
[1]
Lizák, B.; Szarka, A.; Kim, Y.; Choi, K.S.; Németh, C.E.; Marcolongo, P.; Benedetti, A.; Bánhegyi, G.; Margittai, É. Glucose. Transport and transporters in the endomembranes. Int. J. Mol. Sci., 2019, 20(23), 5898.
[PMID: 31771288]
[2]
Lu, Y.; Sun, P.; Song, D.J. Intestinal epithelium major glucose transporters and their action mechanisms. Chinese Journal of Animal Nutrition, 2018, 30(1), 50-58.
[3]
Feng, L.; Frommer, W.B. Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem. Sci., 2015, 40(8), 480-486.
[PMID: 26071195]
[4]
Deng, D.; Yan, N. GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci., 2016, 25(3), 546-558.
[PMID: 26650681]
[5]
Chen, L.Q.; Cheung, L.S.; Feng, L.; Tanner, W.; Frommer, W.B. Transport of sugars. Annu. Rev. Biochem., 2015, 84(1), 865-894.
[PMID: 25747398]
[6]
Augustin, R. The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life, 2010, 62(5), 315-333.
[PMID: 20209635]
[7]
Thorens, B.; Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab., 2010, 298(2), E141-E145.
[PMID: 20009031]
[8]
Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev., 2011, 91(2), 733-794.
[PMID: 21527736]
[9]
Gorboulev, V.; Schurmann, A.; Vallon, V. Na(+)-D-glocose cotransporter SGLT1 is pivotal for intestinal glucose absportion. Diabetes, 2012, 61, 187-196.
[PMID: 22124465]
[10]
Archana, M. Navale; Archana, N. Glucose trasporters: physiological and pathological roles. Biophys. Rev., 2016, 8, 5-9.
[11]
Wright, E.M. Glucose transport families SLC5 and SLC50. Mol. Aspects Med., 2013, 34(2-3), 183-196.
[PMID: 23506865]
[12]
Diez-Sampedro, A.; Hirayama, B.A.; Osswald, C.; Gorboulev, V.; Baumgarten, K.; Volk, C.; Wright, E.M.; Koepsell, H. A glucose sensor hiding in a family of transporters. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11753-11758.
[PMID: 13130073]
[13]
Tazawa, S.; Yamato, T.; Fujikura, H.; Hiratochi, M.; Itoh, F.; Tomae, M.; Takemura, Y.; Maruyama, H.; Sugiyama, T.; Wakamatsu, A.; Isogai, T.; Isaji, M. SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci., 2005, 76(9), 1039-1050.
[PMID: 15607332]
[14]
Schäfer, N.; Rikkala, P.R.; Veyhl-Wichmann, M.; Keller, T.; Jurowich, C.F.; Geiger, D.; Koepsell, H. A modified tripeptide motif of RS1 (RSC1A1) down-regulates exocytotic pathways of human Na+-D-glucose cotransporters SGLT1, SGLT2, and glucose sensor SGLT3 in the presence of glucose. Mol. Pharmacol., 2019, 95(1), 82-96.
[PMID: 30355744]
[15]
Grempler, R.; Augustin, R.; Froehner, S.; Hildebrandt, T.; Simon, E.; Mark, M.; Eickelmann, P. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. FEBS Lett., 2012, 586(3), 248-253.
[PMID: 22212718]
[16]
Sabino-Silva, R.; Mori, R.C.; David-Silva, A.; Okamoto, M.M.; Freitas, H.S.; Machado, U.F. The Na(+)/glucose cotransporters: from genes to therapy. Braz. J. Med. Biol. Res., 2010, 43(11), 1019-1026.
[PMID: 21049241]
[17]
Coady, M.J.; Wallendorff, B.; Gagnon, D.G.; Lapointe, J.Y. Identification of a novel Na+/myo-inositol cotransporter. J. Biol. Chem., 2002, 277(38), 35219-35224.
[PMID: 12133831]
[18]
Fukuzawa, T.; Fukazawa, M.; Ueda, O.; Shimada, H.; Kito, A.; Kakefuda, M.; Kawase, Y.; Wada, N.A.; Goto, C.; Fukushima, N.; Jishage, K.; Honda, K.; King, G.L.; Kawabe, Y. SGLT5 reabsorbs fructose in the kidney but its deficiency paradoxically exacerbates hepatic steatosis induced by fructose. PLoS One, 2013, 8(2)e56681
[PMID: 23451068]
[19]
Lin, X.; Ma, L.; Fitzgerald, R.L.; Ostlund, R.E. Jr Human sodium/inositol cotransporter 2 (SMIT2) transports inositols but not glucose in L6 cells. Arch. Biochem. Biophys., 2009, 481(2), 197-201.
[PMID: 19032932]
[20]
Faham, S.; Watanabe, A.; Besserer, G.M.; Cascio, D.; Specht, A.; Hirayama, B.A.; Wright, E.M.; Abramson, J. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science, 2008, 321(5890), 810-814.
[PMID: 18599740]
[21]
Sala-Rabanal, M.; Hirayama, B.A.; Loo, D.D.; Chaptal, V.; Abramson, J.; Wright, E.M. Bridging the gap between structure and kinetics of human SGLT1. Am. J. Physiol. Cell Physiol., 2012, 302(9), C1293-C1305.
[PMID: 22159082]
[22]
Yang, C.; Albin, D.M.; Wang, Z.; Stoll, B.; Lackeyram, D.; Swanson, K.C; Yin, Y.; Tappenden, K.C; Swanson, K.A; Mine, Y.; Yada, R.Y; Burrin, D.G; Fan, M. Apical Na+-D-glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal cryptvillus axis in the neonatal pig Am. J. Physiol-Gastr. L., 2010, 300(1), G60-G70.
[23]
Erokhova, L.; Horner, A.; Ollinger, N.; Siligan, C.; Pohl, P. The sodium glucose cotransporter SGLT1 is an extremely efficient facilitator of passive water transport. J. Biol. Chem., 2016, 291(18), 9712-9720.
[PMID: 26945065]
[24]
Chen, L.; Tuo, B.; Dong, H. Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients, 2016, 8(1), 43-53.
[PMID: 26784222]
[25]
Röder, P.V.; Geillinger, K.E.; Zietek, T.S.; Thorens, B.; Koepsell, H.; Daniel, H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One, 2014, 9(2)e89977
[PMID: 24587162]
[26]
Kuhre, R.E.; Frost, C.R.; Svendsen, B.; Holst, J.J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes, 2015, 64(2), 370-382.
[PMID: 25157092]
[27]
Margolskee, R.F.; Dyer, J.; Kokrashvili, Z.; Salmon, K.S.; Ilegems, E.; Daly, K.; Maillet, E.L.; Ninomiya, Y.; Mosinger, B.; Shirazi-Beechey, S.P. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl. Acad. Sci. USA, 2007, 104(38), 15075-15080.
[PMID: 17724332]
[28]
Kuhre, R.E.; Bechmann, L.E.; Wewer Albrechtsen, N.J.; Hartmann, B.; Holst, J.J. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2, leading to cell depolarization and calcium influx. Am. J. Physiol. Endocrinol. Metab., 2015, 308(12), E1123-E1130.
[PMID: 25898949]
[29]
Egerod, K.L.; Engelstoft, M.S.; Grunddal, K.V.; Nøhr, M.K.; Secher, A.; Sakata, I.; Pedersen, J.; Windeløv, J.A.; Füchtbauer, E.M.; Olsen, J.; Sundler, F.; Christensen, J.P.; Wierup, N.; Olsen, J.V.; Holst, J.J.; Zigman, J.M.; Poulsen, S.S.; Schwartz, T.W. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology, 2012, 153(12), 5782-5795.
[PMID: 23064014]
[30]
Yang, C.; Albin, D.M.; Wang, Z.; Stoll, B.; Lackeyram, D.; Swanson, K.C.; Yin, Y.; Tappenden, K.A.; Mine, Y. Yada. RY.; Burrin, D.G.; Fan, M.Z. Apical Na+-D-glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal cryptvillus axis in the neonatal pig. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 300(1), G60-G70.
[PMID: 21030609]
[31]
Yasutake, H.; Goda, T.; Takase, S. Dietary regulation of sucrase-isomaltase gene expression in rat jejunum. Biochim. Biophys. Acta, 1995, 1243(2), 270-276.
[PMID: 7873573]
[32]
Ren, J.; Bollu, L.R.; Su, F.; Gao, G.; Xu, L.; Huang, W.C.; Hung, M.C.; Weihua, Z. EGFR-SGLT1 interaction does not respond to EGFR modulators, but inhibition of SGLT1 sensitizes prostate cancer cells to EGFR tyrosine kinase inhibitors. Prostate, 2013, 73(13), 1453-1461.
[PMID: 23765757]
[33]
Park, J.; Lee, I.S.; Kim, K.H.; Kim, Y.; An, E.J.; Jang, H.J. GI inflammation increases sodium-glucose cotransporter SGLT1. Int. J. Mol. Sci., 2019, 20(10), 2537.
[PMID: 31126070]
[34]
Wang, C.W.; Chang, W.L.; Huang, Y.C.; Chou, F.C.; Chan, F.N.; Su, S.C.; Huang, S.F.; Ko, H.H.; Ko, Y.L.; Lin, H.C.; Chang, T.C. An essential role of cAMP response element-binding protein in epidermal growth factor-mediated induction of sodium/glucose cotransporter 1 gene expression and intestinal glucose uptake. Int. J. Biochem. Cell Biol., 2015, 64, 239-251.
[PMID: 25936754]
[35]
Yamauchi, H.; Honma, K.; Mochizuki, K.; Goda, T. Regulation of the circadian rhythmic expression of Sglt1 in the mouse small intestine through histone acetylation and the mRNA elongation factor, BRD4-P-TEFb. Biosci. Biotechnol. Biochem., 2018, 82(7), 1176-1179.
[PMID: 29557282]
[36]
Solocinski, K.; Richards, J.; All, S.; Cheng, K.Y.; Khundmiri, S.J.; Gumz, M.L. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am. J. Physiol. Renal Physiol., 2015, 309(11), F933-F942.
[PMID: 26377793]
[37]
Zhang, Y.Y.; Ma, X.H. Shen. J. Research Advances in Sodium Glucose Cotransporter2. Medi. Recapitulate, 2011, 17(4), 501-503.
[38]
Vrhovac, I.; Balen Eror, D.; Klessen, D.; Burger, C.; Breljak, D.; Kraus, O.; Radović, N.; Jadrijević, S.; Aleksic, I.; Walles, T.; Sauvant, C.; Sabolić, I.; Koepsell, H. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch., 2015, 467(9), 1881-1898.
[PMID: 25304002]
[39]
Vallon, V.; Platt, K.A.; Cunard, R.; Schroth, J.; Whaley, J.; Thomson, S.C.; Koepsell, H.; Rieg, T. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol., 2011, 22(1), 104-112.
[PMID: 20616166]
[40]
Hirsch, J.R.; Loo, D.D.F.; Wright, E.M. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. J. Biol. Chem., 1996, 271(25), 14740-14746.
[PMID: 8663046]
[41]
Zhao, F.Q.; Keating, A.F. Functional properties and genomics of glucose transporters. Curr. Genomics, 2007, 8(2), 113-128.
[PMID: 18660845]
[42]
Wright, E.M.; Loo, D.D.; Hirayama, B.A.; Turk, E. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda), 2004, 19, 370-376.
[PMID: 15546855]
[43]
Wells, R.G.; Pajor, A.M.; Kanai, Y.; Turk, E.; Wright, E.M.; Hediger, M.A. Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am. J. Physiol., 1992, 263(3 Pt 2), F459-F465.
[PMID: 1415574]
[44]
You, G.; Lee, W.S.; Barros, E.J.; Kanai, Y.; Huo, T.L.; Khawaja, S.; Wells, R.G.; Nigam, S.K.; Hediger, M.A. Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J. Biol. Chem., 1995, 270(49), 29365-29371.
[PMID: 7493971]
[45]
Mackenzie, B.; Loo, D.D.; Panayotova-Heiermann, M.; Wright, E.M. Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. J. Biol. Chem., 1996, 271(51), 32678-32683.
[PMID: 8955098]
[46]
Schmidt, C.; Höcherl, K.; Bucher, M. Regulation of renal glucose transporters during severe inflammation. Am. J. Physiol. Renal Physiol., 2007, 292(2), F804-F811.
[PMID: 17032938]
[47]
Pontoglio, M.; Prié, D.; Cheret, C.; Doyen, A.; Leroy, C.; Froguel, P.; Velho, G.; Yaniv, M.; Friedlander, G. HNF1α controls renal glucose reabsorption in mouse and man. EMBO Rep., 2000, 1(4), 359-365.
[PMID: 11269503]
[48]
Majowicz, M.P.; Gonzalez Bosc, L.V.; Albertoni Borghese, M.F.; Delgado, M.F.; Ortiz, M.C.; Sterin Speziale, N.; Vidal, N.A. Atrial natriuretic peptide and endothelin-3 target renal sodium-glucose cotransporter. Peptides, 2003, 24(12), 1971-1976.
[PMID: 15127950]
[49]
Bautista, R.; Manning, R.; Martinez, F. Avila-Casado, Mdel.C.; Soto, V.; Medina, A.; Escalante, B. Angiotensin II-dependent increased expression of Na+-glucose cotransporter in hypertension. Am. J. Physiol. Renal Physiol., 2004, 286(1), F127-F133.
[PMID: 14506074]
[50]
Kim, E.J.; Lee, Y.J.; Lee, J.H.; Han, H.J. Effect of epinephrine on α-methyl-D-glucopyranoside uptake in renal proximal tubule cells. Cell. Physiol. Biochem., 2004, 14(4-6), 395-406.
[PMID: 15319543]
[51]
Lee, Y.J.; Park, S.H.; Han, H.J. ATP stimulates Na+-glucose cotransporter activity via cAMP and p38 MAPK in renal proximal tubule cells. Am. J. Physiol. Cell Physiol., 2005, 289(5), C1268-C1276.
[PMID: 16014705]
[52]
Kothinti, R.K.; Blodgett, A.B.; Petering, D.H.; Tabatabai, N.M. Cadmium down-regulation of kidney Sp1 binding to mouse SGLT1 and SGLT2 gene promoters: possible reaction of cadmium with the zinc finger domain of Sp1. Toxicol. Appl. Pharmacol., 2010, 244(3), 254-262.
[PMID: 20060848]
[53]
Maldonado-Cervantes, M.I.; Galicia, O.G.; Moreno-Jaime, B.; Zapata-Morales, J.R.; Montoya-Contreras, A.; Bautista-Perez, R.; Martinez-Morales, F. Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK(1) cells. J. Physiol. Biochem., 2012, 68(3), 411-420.
[PMID: 22351116]
[54]
Panchapakesan, U.; Pegg, K.; Gross, S.; Komala, M.G.; Mudaliar, H.; Forbes, J.; Pollock, C.; Mather, A. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy? PLoS One, 2013, 8(2)e54442
[PMID: 23390498]
[55]
Zapata-Morales, J.R.; Galicia-Cruz, O.G.; Franco, M.; Martinez, Y. Morales, F. Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J. Biol. Chem., 2014, 289(1), 346-357.
[PMID: 24196951]
[56]
Fu, X.; Zhang, G.; Liu, R.; Wei, J.; Zhang-Negrerie, D.; Jian, X.; Gao, Q. Mechanistic study of human glucose transport mediated by GLUT1. J. Chem. Inf. Model., 2016, 56(3), 517-526.
[PMID: 26821218]
[57]
Yu, H.K. New advances in glucose transporters. Int. J. Clin. Exp. Med., 2007, 6(8), 155-157.
[58]
Manolescu, A.R.; Witkowska, K.; Kinnaird, A.; Cessford, T.; Cheeseman, C. Facilitated hexose transporters: new perspectives on form and function. Physiology (Bethesda), 2007, 22, 234-240.
[PMID: 17699876]
[59]
Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med., 2013, 34(2-3), 121-138.
[PMID: 23506862]
[60]
Shen, M.X. Research progress on facilitated glucose carriers. Chem. Life, 2003, 23(1), 20-22.
[61]
Birnbaum, M.J.; Haspel, H.C.; Rosen, O.M. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc. Natl. Acad. Sci. USA, 1986, 83(16), 5784-5788.
[PMID: 3016720]
[62]
Deng, D.; Xu, C.; Sun, P.; Wu, J.; Yan, C.; Hu, M.; Yan, N. Crystal structure of the human glucose transporter GLUT1. Nature, 2014, 510(7503), 121-125.
[PMID: 24847886]
[63]
Jiang, C.; Xie, J.; Chen, H.F. Study on the transport mechanism of glucose transporter. Jiyinzuxue Yu Yingyong Shengwuxue, 2015, 34(7), 1372-1377.
[64]
Kitagawa, T.; Tanaka, M.; Akamatsu, Y. Regulation of glucose transport activity and expression of glucose transporter mRNA by serum, growth factors and phorbol ester in quiescent mouse fibroblasts. Biochim. Biophys. Acta, 1989, 980(1), 100-108.
[PMID: 2923892]
[65]
Kitagawa, T.; Masumi, A.; Akamatsu, Y. Transforming growth factor-β 1 stimulates glucose uptake and the expression of glucose transporter mRNA in quiescent Swiss mouse 3T3 cells. J. Biol. Chem., 1991, 266(27), 18066-18071.
[PMID: 1917944]
[66]
Klip, A.; Tsakiridis, T.; Marette, A.; Ortiz, P.A. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J., 1994, 8(1), 43-53.
[PMID: 8299889]
[67]
Semenza, G.L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J., 2007, 405(1), 1-9.
[PMID: 17555402]
[68]
Chavez, J.C.; Almhanna, K.; Berti-Mattera, L.N. Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats. Neurosci. Lett., 2005, 374(3), 179-182.
[PMID: 15663958]
[69]
Jiang, N.; Xiao, L.C.; Zhang, J.J. Mild hypothermia was associated with chronic brain loss in rats hypoxia-inducible factor-1 and glucose-1 were transferred to egg whites during blood reperfusion The influence of expression. Chin. J. Anesth., 2011, 31(1), 91-94.
[70]
Yeh, W.L.; Lin, C.J.; Fu, W.M. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol. Pharmacol., 2008, 73(1), 170-177.
[PMID: 17942749]
[71]
Szablewski, L. Expression of glucose transporters in cancers. Biochim. Biophys. Acta, 2013, 1835(2), 164-169.
[PMID: 23266512]
[72]
Burant, C.F.; Takeda, J.; Brot-Laroche, E.; Bell, G.I.; Davidson, N.O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J. Biol. Chem., 1992, 267(21), 14523-14526.
[PMID: 1634504]
[73]
Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem., 1994, 219(3), 713-725.
[PMID: 8112322]
[74]
Baldwin, S.A. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim. Biophys. Acta, 1993, 1154(1), 17-49.
[PMID: 8507645]
[75]
Chen, L.Q.; Hou, B.H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X.Q.; Guo, W.J.; Kim, J.G.; Underwood, W.; Chaudhuri, B.; Chermak, D.; Antony, G.; White, F.F.; Somerville, S.C.; Mudgett, M.B.; Frommer, W.B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468(7323), 527-532.
[PMID: 21107422]
[76]
Nakano, Y. Stories of spinster with various faces: from courtship rejection to tumor metastasis rejection. J. Neurogenet., 2019, 33(2), 90-95.
[PMID: 30939968]
[77]
Liu, Y.; Gao, J.; Peng, M.; Meng, H.; Ma, H.; Cai, P.; Xu, Y.; Zhao, Q.; Si, G. A review on central nervous system effects of Gastrodin. Front. Pharmacol., 2018, 9, 24.
[PMID: 29456504]
[78]
Cai, Z.; Huang, J.; Luo, H.; Lei, X.; Yang, Z.; Mai, Y.; Liu, Z. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability. J. Drug Target., 2013, 21(6), 574-580.
[PMID: 23480725]
[79]
Ojelabi, O.A.; Lloyd, K.P.; De Zutter, J.K.; Carruthers, A. Red wine and green tea flavonoids are cis-allosteric activators and competitive inhibitors of glucose transporter 1 (GLUT1)-mediated sugar uptake. J. Biol. Chem., 2018, 293(51), 19823-19834.
[PMID: 30361436]
[80]
Sun, Y.; Xun, L.; Jin, G.; Shi, L. Salidroside protects renal tubular epithelial cells from hypoxia/reoxygenation injury in vitro. J. Pharmacol. Sci., 2018, 137(2), 170-176.
[PMID: 29960844]
[81]
Akanda, M.R.; Uddin, M.N.; Kim, I.S.; Ahn, D.; Tae, H.J.; Park, B.Y. The biological and pharmacological roles of polyphenol flavonoid tilianin. Eur. J. Pharmacol., 2019, 842(5), 291-297.
[PMID: 30389634]
[82]
Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Absorption and metabolism of cyanidin-3-glucoside and cyanidin-3-rutinoside extracted from wild mulberry (Morus nigra L.) in rats. Nutr. Res., 2008, 28(3), 198-207.
[PMID: 19083408]
[83]
Felgines, C.; Talavéra, S.; Texier, O.; Besson, C.; Fogliano, V.; Lamaison, J.L.; la Fauci, L.; Galvano, G.; Rémésy, C.; Galvano, F. Absorption and metabolism of red orange juice anthocyanins in rats. Br. J. Nutr., 2006, 95(5), 898-904.
[PMID: 16611379]
[84]
Zou, T.B.; Feng, D.; Song, G.; Li, H.W.; Tang, H.W.; Ling, W.H. The role of sodium-dependent glucose transporter 1 and glucose transporter 2 in the absorption of cyanidin-3-o-β-glucoside in Caco-2 cells. Nutrients, 2014, 6(10), 4165-4177.
[PMID: 25314643]
[85]
Tian, X.; Chen, S.; Zhang, Y.; Chen, L.; Guo, X.; Xu, Z.; Liu, H.; Hu, P.; Chen, Z.; Li, Z.; Huang, C. Absorption, liver first-pass effect, pharmacokinetics and tissue distribution of calycosin-7-O-ß-d-glucopyranoside (C7G) and its major active metabolite, calycosin, following oral administration of C7G in rats by LC-MS/MS. J. Pharm. Biomed. Anal., 2018, 148, 350-354.
[PMID: 29111489]
[86]
Zhao, Y.; Zhang, L.; Peng, Y.; Yue, Q.; Hai, L.; Guo, L.; Wang, Q.; Wu, Y. GLUT1-mediated venlafaxine-thiamine disulfide system-glucose conjugates with “lock-in” function for central nervous system delivery. Chem. Biol. Drug Des., 2018, 91(3), 707-716.
[PMID: 29063718]
[87]
Chen, Q.; Gong, T.; Liu, J.; Wang, X.; Fu, H.; Zhang, Z. Synthesis, in vitro and in vivo characterization of glycosyl derivatives of ibuprofen as novel prodrugs for brain drug delivery. J. Drug Target., 2009, 17(4), 318-328.
[PMID: 19558357]
[88]
Qu, B.; Li, X.; Guan, M.; Li, X.; Hai, L.; Wu, Y. Design, synthesis and biological evaluation of multivalent glucosides with high affinity as ligands for brain targeting liposomes. Eur. J. Med. Chem., 2014, 72, 110-118.
[PMID: 24361523]
[89]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[PMID: 19460998]
[90]
Tekade, R.K.; Sun, X. The Warburg effect and glucose-derived cancer theranostics. Drug Discov. Today, 2017, 22(11), 1637-1653.
[PMID: 28843632]
[91]
Kanjanapan, Y.; Deb, S.; Young, R.J.; Bressel, M.; Mileshkin, L.; Rischin, D.; Hofman, M.S.; Narayan, K.; Siva, S. Glut-1 expression in small cervical biopsies is prognostic in cervical cancers treated with chemoradiation. Clin Transl Radiat Oncol, 2017, 2, 53-58.
[PMID: 29658001]
[92]
Singer, K.; Kastenberger, M.; Gottfried, E.; Hammerschmied, C.G.; Büttner, M.; Aigner, M.; Seliger, B.; Walter, B.; Schlösser, H.; Hartmann, A.; Andreesen, R.; Mackensen, A.; Kreutz, M. Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int. J. Cancer, 2011, 128(9), 2085-2095.
[PMID: 20607826]
[93]
Kunkel, M.; Reichert, T.E.; Benz, P.; Lehr, H.A.; Jeong, J.H.; Wieand, S.; Bartenstein, P.; Wagner, W.; Whiteside, T.L. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer, 2003, 97(4), 1015-1024.
[PMID: 12569601]
[94]
Calvaresi, E.C.; Hergenrother, P.J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. (Camb.), 2013, 4(6), 2319-2333.
[PMID: 24077675]
[95]
Kaira, K.; Serizawa, M.; Koh, Y.; Takahashi, T.; Yamaguchi, A.; Hanaoka, H.; Oriuchi, N.; Endo, M.; Ohde, Y.; Nakajima, T.; Yamamoto, N. Biological significance of 18F-FDG uptake on PET in patients with non-small-cell lung cancer. Lung Cancer, 2014, 83(2), 197-204.
[PMID: 24365102]
[96]
Pohl, J.; Bertram, B.; Hilgard, P.; Nowrousian, M.R.; Stüben, J.; Wiessler, M. D-19575-a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport. Cancer Chemother. Pharmacol., 1995, 35(5), 364-370.
[PMID: 7850916]
[97]
Liu, D.Z.; Sinchaikul, S.; Reddy, P.V.; Chang, M.Y.; Chen, S.T. Synthesis of 2′-paclitaxel methyl 2-glucopyranosyl succinate for specific targeted delivery to cancer cells. Bioorg. Med. Chem. Lett., 2007, 17(3), 617-620.
[PMID: 17113288]
[98]
Kumar, P.; Shustov, G.; Liang, H.; Khlebnikov, V.; Zheng, W.; Yang, X.H.; Cheeseman, C.; Wiebe, L.I. Design, synthesis, and preliminary biological evaluation of 6-O-glucose-azomycin adducts for diagnosis and therapy of hypoxic tumors. J. Med. Chem., 2012, 55(13), 6033-6046.
[PMID: 22708968]
[99]
Patra, M.; Awuah, S.G.; Lippard, S.J. Chemical approach to positional isomers of glucose-platinum conjugates reveals specific cancer targeting through glucose-transporter mediated uptake in vitro and in vivo. J. Am. Chem. Soc., 2016, 138(38), 12541-12551.
[PMID: 27570149]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy