Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Challenges in Oral Drug Delivery and Applications of Lipid Nanoparticles as Potent Oral Drug Carriers for Managing Cardiovascular Risk Factors

Author(s): Neslihan Ü. Okur, Panoraia I. Siafaka and Evren H. Gökçe*

Volume 22, Issue 7, 2021

Published on: 04 August, 2020

Page: [892 - 905] Pages: 14

DOI: 10.2174/1389201021666200804155535

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The oral application of drugs is the most popular route through which the systemic effect can be achieved. Nevertheless, oral administration is limited by difficulties related to the physicochemical properties of the drug molecule, including low aqueous solubility, instability, low permeability, and rapid metabolism, all of which result in low and irregular oral bioavailability.

Objective: The enhancement of oral bioavailability of drug molecules with such properties could lead to extreme complications in drug preparations. Oral lipid-based nanoparticles seem to possess extensive advantages due to their ability to increase the solubility, simplifying intestinal absorption and decrease or eradicate the effect of food on the absorption of low soluble, lipophilic drugs and therefore improving the oral bioavailability.

Methods: The present review provides a summary of the general theory of lipid-based nanoparticles, their preparation methods, as well as their oral applications. Moreover, oral drug delivery challenges are discussed.

Results: According to this review, the most frequent types of lipid-based nanoparticle, the solid lipid nanoparticles and nanostructured lipid carriers are potent oral carriers due to their ability to penetrate the oral drug adsorption barriers. Moreover, such lipid nanoparticles can be beneficial drug carriers against cardiovascular risk disorders as diabetes, hypertension, etc.

Conclusion: In this review, the most current and promising studies involving Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as oral drug carriers are reported aiming to assist researchers who focus their research on lipid-based nanoparticles.

Keywords: Oral drug delivery, bioavailability, nanoscience, lipid nanoparticles, cardiovascular risk disorders, nanotechnology.

Graphical Abstract
[1]
Siafaka, P.I.; Üstündağ Okur, N.; Karavas, E.; Bikiaris, D.N. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int. J. Mol. Sci., 2016, 17(9), 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[2]
Mu, H.; Holm, R.; Müllertz, A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int. J. Pharm., 2013, 453(1), 215-224.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.054] [PMID: 23578826]
[3]
Ebrahimi, H.A.; Javadzadeh, Y.; Hamidi, M.; Jalali, M.B. Repaglinide-loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru, 2015, 23(1), 46.
[http://dx.doi.org/10.1186/s40199-015-0128-3] [PMID: 26392174]
[4]
Date, A.A.; Hanes, J.; Ensign, L.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J. Control. Release, 2016, 240, 504-526.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.016] [PMID: 27292178]
[5]
Talegaonkar, S.; Bhattacharyya, A. Potential of Lipid Nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech, 2019, 20(3), 121.
[http://dx.doi.org/10.1208/s12249-019-1337-8] [PMID: 30805893]
[6]
Siafaka, P.; Betsiou, M.; Tsolou, A.; Angelou, E.; Agianian, B.; Koffa, M.; Chaitidou, S.; Karavas, E.; Avgoustakis, K.; Bikiaris, D. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. J. Mater. Sci. Mater. Med., 2015, 26(12), 275.
[http://dx.doi.org/10.1007/s10856-015-5609-x] [PMID: 26543021]
[7]
Shreyas, S.; Sailor, G.; Shah, N.; Chauhan, S.; Aundhia, C.; Seth, A.K. Formulation and evaluatiom of irbesartan loaded solid lipid nanoparticles by solvent injection method. Pharma Sci. Monitor, 2015, 6(1), 159-170.
[8]
Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Lipid Nanoparticles: Production, Characterization and Stability; SpringerBriefs in Pharmaceutical Science & Drug Development; Springer International Publishing: Cham, 2015.
[9]
Lin, C.; Chen, F.; Ye, T.; Zhang, L.; Zhang, W.; Liu, D.; Xiong, W.; Yang, X.; Pan, W. A novel oral delivery system consisting in “drug-in cyclodextrin-in nanostructured lipid carriers” for poorly water-soluble drug. Vinpocetine. Int. J. Pharm., 2014, 465(1-2), 90-96.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.013] [PMID: 24530388]
[10]
Zhang, T.; Chen, J.; Zhang, Y.; Shen, Q.; Pan, W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur. J. Pharm. Sci., 2011, 43(3), 174-179.
[http://dx.doi.org/10.1016/j.ejps.2011.04.005] [PMID: 21530654]
[11]
Roger, E.; Lagarce, F.; Benoit, J-P. Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. Eur. J. Pharm. Biopharm., 2011, 79(1), 181-188.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.021] [PMID: 21303693]
[12]
Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems - an overview. Acta Pharm. Sin. B, 2013, 3(6), 361-372.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[13]
Desai, P.P.; Date, A.A.; Patravale, V.B. Overcoming poor oral bioavailability using nanoparticle formulations - opportunities and limitations. Drug Discov. Today. Technol., 2012, 9(2), e71-e174.
[http://dx.doi.org/10.1016/j.ddtec.2011.12.001] [PMID: 24064268]
[14]
Siafaka, P.I.; Üstündağ Okur, N.; Mone, M.; Giannakopoulou, S.; Er, S.; Pavlidou, E.; Karavas, E.; Bikiaris, D.N. Two different approaches for oral administration of voriconazole loaded formulations: Electrospun fibers versus β-cyclodextrin complexes. Int. J. Mol. Sci., 2016, 17(3), 282.
[http://dx.doi.org/10.3390/ijms17030282] [PMID: 26927072]
[15]
Siafaka, P.I.; Okur, M.E.; Ayla, Ş.; Er, S.; Cağlar, E.Ş.; Okur, N.Ü. Design and characterization of nanocarriers loaded with levofloxacin for enhanced antimicrobial activity; physicochemical properties, in vitro release and oral acute toxicity. Braz. J. Pharm. Sci., 2019, 55, 1-13.
[http://dx.doi.org/10.1590/s2175-97902019000118295]
[16]
Üstündağ-Okur, N.; Yurdasiper, A.; Gündoğdu, E.; Gökçe, E.H. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: Polyethylene glycol versus chitosan oligosaccharide lactate. J. Microencapsul., 2016, 33(1), 30-42.
[http://dx.doi.org/10.3109/02652048.2015.1094532] [PMID: 26444187]
[17]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[18]
Yun, Y.; Cho, Y.W.; Park, K. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev., 2013, 65(6), 822-832.
[http://dx.doi.org/10.1016/j.addr.2012.10.007] [PMID: 23123292]
[19]
Ayman El-Kattan and Manthena Varma (February 22nd 2012).. Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability, Topics on Drug Metabolism, James Paxton, IntechOpen Available from: https://www.intechopen.com/books/topics-on-drug-metabolism/oral-absorption-intestinal-metabolism-and-human-oral-bioavailability-
[http://dx.doi.org/10.5772/31087]
[20]
Laksitorini, M.; Prasasty, V.D.; Kiptoo, P.K.; Siahaan, T.J. Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther. Deliv., 2014, 5(10), 1143-1163.
[http://dx.doi.org/10.4155/tde.14.67] [PMID: 25418271]
[21]
Shakweh, M.; Ponchel, G.; Fattal, E. Particle uptake by Peyer’s patches: A pathway for drug and vaccine delivery. Expert Opin. Drug Deliv., 2004, 1(1), 141-163.
[http://dx.doi.org/10.1517/17425247.1.1.141] [PMID: 16296726]
[22]
Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv., 2013, 4(11), 1443-1467.
[http://dx.doi.org/10.4155/tde.13.104] [PMID: 24228993]
[23]
Grassl, S.M. Mechanisms of carrier-mediated transport. Cell Physiology Source Book; Elsevier, 2001, pp. 249-259.
[http://dx.doi.org/10.1016/B978-012656976-6/50108-6]
[24]
Da Silva, C.; Wagner, C.; Bonnardel, J.; Gorvel, J-P.; Lelouard, H. The Peyer’s Patch mononuclear phagocyte system at steady state and during infection. Front. Immunol., 2017, 8, 1254.
[http://dx.doi.org/10.3389/fimmu.2017.01254] [PMID: 29038658]
[25]
Komban, R.J.; Strömberg, A.; Biram, A.; Cervin, J.; Lebrero-Fernández, C.; Mabbott, N.; Yrlid, U.; Shulman, Z.; Bemark, M.; Lycke, N. Activated Peyer’s patch B cells sample antigen directly from M cells in the subepithelial dome. Nat. Commun., 2019, 10(1), 2423.
[http://dx.doi.org/10.1038/s41467-019-10144-w] [PMID: 31160559]
[26]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[27]
Bakhru, S.H.; Furtado, S.; Morello, A.P.; Mathiowitz, E. Oral delivery of proteins by biodegradable nanoparticles. Adv. Drug Deliv. Rev., 2013, 65(6), 811-821.
[http://dx.doi.org/10.1016/j.addr.2013.04.006] [PMID: 23608641]
[28]
Viswanathan, P.; Muralidaran, Y.; Ragavan, G. Challenges in oral drug delivery: A nano-based strategy to overcome; Nanostruct. Oral Med, 2017, pp. 173-201.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00008-0]
[29]
Brown, T.D.; Whitehead, K.A.; Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater., 2020, 5, 127-148.
[30]
Berg, J.; Tymoczko, J.; Stryer, L. Proteins are degraded to amino acids. Biochemistry; Freeman, WH: New York, 2002, p. 1.
[31]
Boegh, M.; Nielsen, H.M. Mucus as a barrier to drug delivery - understanding and mimicking the barrier properties. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 179-186.
[http://dx.doi.org/10.1111/bcpt.12342] [PMID: 25349046]
[32]
France, M.M.; Turner, J.R. The mucosal barrier at a glance. J. Cell Sci., 2017, 130(2), 307-314.
[http://dx.doi.org/10.1242/jcs.193482] [PMID: 28062847]
[33]
Tscheik, C.; Blasig, I.E.; Winkler, L. Trends in drug delivery through tissue barriers containing tight junctions. Tissue Barriers, 2013, 1(2), e24565.
[http://dx.doi.org/10.4161/tisb.24565] [PMID: 24665392]
[34]
Takano, J.; Maeda, K.; Bolger, M.B.; Sugiyama, Y. The Prediction of the relative importance of CYP3a/p-glycoprotein to the nonlinear intestinal absorption of drugs by advanced compartmental absorption and transit model. Drug Metab. Dispos., 2016, 44(11), 1808-1818.
[http://dx.doi.org/10.1124/dmd.116.070011] [PMID: 27538919]
[35]
Tsume, Y.; Mudie, D.M.; Langguth, P.; Amidon, G.E.; Amidon, G.L. The biopharmaceutics classification system: Subclasses for In vivo Predictive Dissolution (IPD) methodology and IVIVC. Eur. J. Pharm. Sci., 2014, 57, 152-163.
[http://dx.doi.org/10.1016/j.ejps.2014.01.009] [PMID: 24486482]
[36]
Weng, T.; Qi, J.; Lu, Y.; Wang, K.; Tian, Z.; Hu, K.; Yin, Z.; Wu, W. The role of lipid-based nano delivery systems on oral bioavailability enhancement of fenofibrate, a BCS II drug: Comparison with fast-release formulations. J. Nanobiotechnology, 2014, 12(1), 39.
[http://dx.doi.org/10.1186/s12951-014-0039-3] [PMID: 25248304]
[37]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 195727.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[38]
Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[39]
Li, P.; Nielsen, H.M.; Müllertz, A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin. Drug Deliv., 2012, 9(10), 1289-1304.
[http://dx.doi.org/10.1517/17425247.2012.717068] [PMID: 22897647]
[40]
Joshi, K.; Chandra, A.; Jain, K.; Talegaonkar, S. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm. Nanotechnol., 2019, 7(4), 259-278.
[http://dx.doi.org/10.2174/2211738507666190405182524] [PMID: 30961518]
[41]
Loh, Z.H.; Samanta, A.K.; Sia Heng, P.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. Sci., 2015, 10(4), 255-274.
[http://dx.doi.org/10.1016/j.ajps.2014.12.006]
[42]
Banerjee, S.; Pillai, J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin. Drug Metab. Toxicol., 2019, 15(6), 499-515.
[http://dx.doi.org/10.1080/17425255.2019.1621289] [PMID: 31104522]
[43]
Schneider, K.W. In vitro and in vivo test methods for the evaluation of gastroretentive dosage forms. Pharmaceutics, 2019, 11(8), 416.
[http://dx.doi.org/10.3390/pharmaceutics11080416]
[44]
Gupta, S.; Kesarla, R.; Chotai, N.; Misra, A.; Omri, A. systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res. Int., 2017, 2017, 5984014.
[http://dx.doi.org/10.1155/2017/5984014] [PMID: 28243600]
[45]
Jawahar, N.; Meyyanathan, S.N.; Reddy, G.; Sood, S. Solid lipid nanoparticles for oral delivery of poorly soluble drugs. J. Pharm. Sci. Res., 2012, 4(7), 1848-1855.
[46]
Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm. (Cairo), 2014, 2014, 801-820.
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[47]
Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[48]
Liu, Y.; Wang, L.; Zhao, Y.; He, M.; Zhang, X.; Niu, M.; Feng, N. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin. Int. J. Pharm., 2014, 476(1-2), 169-177.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.052] [PMID: 25280882]
[49]
Attama, A.; Momoh, M.; Builders, P. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development.In: Recent Advances in Novel Drug Carrier Systems; J., Paxton, Ed.; IntechOpen, 2012.
[50]
Ibrahim, W.M.; AlOmrani, A.H.; Yassin, A.E. Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability. Int. J. Nanomedicine, 2014, 9, 129-144.
[PMID: 24379671]
[51]
Patil-Gadhe, A.; Pokharkar, V. Montelukast-loaded nanostructured lipid carriers: Part I oral bioavailability improvement. Eur. J. Pharm. Biopharm., 2014, 88(1), 160-168.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.019] [PMID: 24878424]
[52]
Tsai, M-J.; Wu, P-C.; Huang, Y-B.; Chang, J-S.; Lin, C-L.; Tsai, Y-H.; Fang, J-Y. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int. J. Pharm., 2012, 423(2), 461-470.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.009] [PMID: 22193056]
[53]
Singh, J.; Garg, T.; Rath, G.; Goyal, A.K. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review. Drug Deliv., 2016, 23(5), 1676-1698.
[http://dx.doi.org/10.3109/10717544.2015.1074765] [PMID: 26289212]
[54]
Sharma, D.; Sharma, N.; Pathak, M.; Agrawala, P.K.; Basu, M.; Ojha, H. Nanotechnology-based drug delivery systems. Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Elsevier, 2018, pp. 39-79.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00002-1]
[55]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H-S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[56]
Luo, Y.; Wang, Q. Zein-based micro- and nano-particles for drug and nutrient delivery: A review. J. Appl. Polym. Sci., 2014, 131(16), 1-12.
[http://dx.doi.org/10.1002/app.40696]
[57]
Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-Based nanomaterials for drug delivery. Molecules, 2018, 23(10), 2661.
[http://dx.doi.org/10.3390/molecules23102661] [PMID: 30332830]
[58]
Siafaka, P.I.; Titopoulou, A.; Koukaras, E.N.; Kostoglou, M.; Koutris, E.; Karavas, E.; Bikiaris, D.N. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int. J. Pharm., 2015, 495(1), 249-264.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.100] [PMID: 26341322]
[59]
Luo, Y.; Teng, Z.; Li, Y.; Wang, Q. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym., 2015, 122, 221-229.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.084] [PMID: 25817662]
[60]
Patel, S.G.; Patel, M.D.; Patel, A.J.; Chougule, M.B.; Choudhury, H. Solid lipid nanoparticles for targeted brain drug delivery.In: Nanotechnology-based targeted drug delivery systems for Brain Tumors; Elsevier, 2018, pp. 191-244.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00008-7]
[61]
Neupane, Y.R.; Srivastava, M.; Ahmad, N.; Kumar, N.; Bhatnagar, A.; Kohli, K. Lipid based nanocarrier system for the potential oral delivery of decitabine: Formulation design, characterization, ex vivo, and in vivo assessment. Int. J. Pharm., 2014, 477(1-2), 601-612.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.001] [PMID: 25445972]
[62]
Scheffel, U.; Rhodes, B.A.; Natarajan, T.K.; Wagner, H.N., Jr; Medical, H. Albumin microspheres for study of the reticuloendothelial system. J. Nucl. Med., 1972, 13(7), 498-503.
[PMID: 5033902]
[63]
Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S93-S98.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6] [PMID: 11033431]
[64]
Shukla, D.; Chakraborty, S.; Singh, S.; Mishra, B. Lipid-based oral multiparticulate formulations - advantages, technological advances and industrial applications. Expert Opin. Drug Deliv., 2011, 8(2), 207-224.
[http://dx.doi.org/10.1517/17425247.2011.547469] [PMID: 21210754]
[65]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[66]
Rege, B.D.; Kao, J.P.Y.; Polli, J.E. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur. J. Pharm. Sci., 2002, 16(4-5), 237-246.
[http://dx.doi.org/10.1016/S0928-0987(02)00055-6] [PMID: 12208453]
[67]
Hauss, D.J. Oral lipid-based formulations. Adv. Drug Deliv. Rev., 2007, 59(7), 667-676.
[http://dx.doi.org/10.1016/j.addr.2007.05.006] [PMID: 17618704]
[68]
Severino, P.; Andreani, T.; Macedo, A.S.; Fangueiro, J.F.; Santana, M.H.; Silva, A.M.; Souto, E.B. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J. Drug Deliv., 2012, 2012, 750891.
[http://dx.doi.org/10.1155/2012/750891] [PMID: 22175030]
[69]
Rawat, M.K.; Jain, A.; Singh, S. Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: In vitro and in vivo evaluation. J. Pharm. Sci., 2011, 100(6), 2366-2378.
[http://dx.doi.org/10.1002/jps.22435] [PMID: 21491449]
[70]
Yang, R.; Gao, R.; Li, F.; He, H.; Tang, X. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev. Ind. Pharm., 2011, 37(2), 139-148.
[http://dx.doi.org/10.3109/03639045.2010.497151] [PMID: 20578879]
[71]
Garud, A.; Singh, D.; Garud, N. Solid Lipid Nanoparticles (SLN): Method, characterization and applications. Int. Curr. Pharm. J., 2012, 1(11), 384-393.
[http://dx.doi.org/10.3329/icpj.v1i11.12065]
[72]
Singh, M.; Guzman-Aranguez, A.; Hussain, A.; Srinivas, C.S.; Kaur, I.P. Solid lipid nanoparticles for ocular delivery of isoniazid: Evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine (Lond.), 2019, 14(4), 465-491.
[http://dx.doi.org/10.2217/nnm-2018-0278] [PMID: 30694726]
[73]
Gokce, E.H.; Korkmaz, E.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: Evaluation of antioxidant potential for dermal applications. Int. J. Nanomedicine, 2012, 7, 1841-1850.
[http://dx.doi.org/10.2147/IJN.S29710] [PMID: 22605933]
[74]
Korkm, E.; Gokce, E.H.; Ozer, O. Development and evaluation of coenzyme Q10 loaded solid lipid nanoparticle hydrogel for enhanced dermal delivery. Acta Pharm., 2013, 63(4), 517-529.
[http://dx.doi.org/10.2478/acph-2013-0039] [PMID: 24451076]
[75]
Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[76]
Hosseini, S.M.; Farmany, A.; Abbasalipourkabir, R.; Soleimani Asl, S.; Nourian, A.; Arabestani, M.R. Doxycycline-encapsulated solid lipid nanoparticles for the enhanced antibacterial potential to treat the chronic brucellosis and preventing its relapse: In vivo study. Ann. Clin. Microbiol. Antimicrob., 2019, 18(1), 33.
[http://dx.doi.org/10.1186/s12941-019-0333-x] [PMID: 31706304]
[77]
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 9(3), 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[78]
Nasirizadeh, S.; Malaekeh-Nikouei, B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol., 2020, 55, 101458.
[http://dx.doi.org/10.1016/j.jddst.2019.101458]
[79]
Singhal, G.B.; Patel, R.P.; Prajapati, B.G.; Patel, N.A. Solid lipid nanoparticles and nano lipid carriers: As novel solid lipid based drug carrier. Int. Res. J. Pharm., 2011, 2(2), 40-52.
[80]
Yadav, N.; Khatak, S.; Vir, U.; Sara, S. Solid lipid nanoparticles - a review. Int. J. Appl. Pharm., 2013, 5(2), 8-18.
[81]
Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Das Kurmi, B.; Sahu, M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat., 2020, 30(3), 179-194.
[http://dx.doi.org/10.1080/13543776.2020.1720649]
[82]
Le, N.D.T.; Tran, P.H.L.; Lee, B-J.; Tran, T.T.D. Solid lipid particle-based tablets for buccal delivery: The role of solid lipid particles in drug release. J. Drug Deliv. Sci. Technol., 2019, 52, 96-102.
[http://dx.doi.org/10.1016/j.jddst.2019.04.037]
[83]
Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[84]
Ghaderkhani, J.; Yousefimashouf, R.; Arabestani, M.; Roshanaei, G.; Asl, S.S.; Abbasalipourkabir, R. Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1181-1193.
[http://dx.doi.org/10.1080/21691401.2019.1593858] [PMID: 30942627]
[85]
Kakkar, V.; Muppu, S.K.; Chopra, K.; Kaur, I.P. Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A), 339-345.
[http://dx.doi.org/10.1016/j.ejpb.2013.02.005] [PMID: 23454202]
[86]
Kakkar, V.; Singh, S.; Singla, D.; Kaur, I.P. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol. Nutr. Food Res., 2011, 55(3), 495-503.
[http://dx.doi.org/10.1002/mnfr.201000310] [PMID: 20938993]
[87]
Kumar, R.; Singh, A.; Garg, N. Acoustic cavitation-assisted formulation of solid lipid nanoparticles using different stabilizers. ACS Omega, 2019, 4(8), 13360-13370.
[http://dx.doi.org/10.1021/acsomega.9b01532] [PMID: 31460464]
[88]
Raza, A.; Sime, F.B.; Cabot, P.J.; Maqbool, F.; Roberts, J.A.; Falconer, J.R. Solid nanoparticles for oral antimicrobial drug delivery: A review. Drug Discov. Today, 2019, 24(3), 858-866.
[http://dx.doi.org/10.1016/j.drudis.2019.01.004] [PMID: 30654055]
[89]
Souto, E.B.; Müller, R.H. Drug Delivery; Schäfer-Korting, M; Heidelberg, S.B., Ed.; Berlin, Heidelberg, 2010, pp. 115-141.
[http://dx.doi.org/10.1007/978-3-642-00477-3_4]
[90]
Ma, L.; Yang, D.; Li, Z.; Zhang, X.; Pu, L. Co-delivery of paclitaxel and tanespimycin in lipid nanoparticles enhanced anti-gastric-tumor effect in vitro and in vivo. Artif. Cells Nanomedicine, Biotechnol., 2018, 46(Suppl. 2), 904-911.
[http://dx.doi.org/10.1080/21691401.2018.1472101]
[91]
Baig, M.S.; Ahad, A.; Aslam, M.; Imam, S.S.; Aqil, M.; Ali, A. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol., 2016, 85, 258-270.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.077] [PMID: 26740466]
[92]
Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm., 2016, 109, 214-223.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[93]
Pandya, N.T.; Jani, P.; Vanza, J.; Tandel, H. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. Colloids Surf. B Biointerfaces, 2018, 165, 37-44.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.011] [PMID: 29453084]
[94]
Li, R.; Jiang, S.; Liu, D.; Bi, X.; Wang, F.; Zhang, Q.; Xu, Q. A potential new therapeutic system for glaucoma: Solid lipid nanoparticles containing methazolamide. J. Microencapsul., 2011, 28(2), 134-141.
[http://dx.doi.org/10.3109/02652048.2010.539304] [PMID: 21142697]
[95]
Wang, F.; Chen, L.; Zhang, D.; Jiang, S.; Shi, K.; Huang, Y.; Li, R.; Xu, Q. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J. Drug Target., 2014, 22(9), 849-858.
[http://dx.doi.org/10.3109/1061186X.2014.939983] [PMID: 25045926]
[96]
Cho, H.J.; Park, J.W.; Yoon, I.S.; Kim, D.D. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: Enhanced intestinal absorption and lymphatic uptake. Int. J. Nanomedicine, 2014, 9(1), 495-504.
[PMID: 24531717]
[97]
Patel, S.; Chavhan, S.; Soni, H.; Babbar, A.K.; Mathur, R.; Mishra, A.K.; Sawant, K. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J. Drug Target., 2011, 19(6), 468-474.
[http://dx.doi.org/10.3109/1061186X.2010.523787] [PMID: 20958095]
[98]
Soma, D.; Attari, Z.; Reddy, M.S.; Damodaram, A.; Koteshwara, K.B.G. Solid lipid nanoparticles of irbesartan: Preparation, characterization, optimization and pharmacokinetic studies. Brazilian J. Pharm. Sci., 2017, 53(1), e15012.
[99]
Pham, D.T.T.; Tran, P.H.L.; Tran, T.T.D. Development of solid dispersion lipid nanoparticles for improving skin delivery. Saudi Pharm. J., 2019, 27(7), 1019-1024.
[http://dx.doi.org/10.1016/j.jsps.2019.08.004] [PMID: 31997909]
[100]
Khames, A.; Khaleel, M.A.; El-Badawy, M.F.; El-Nezhawy, A.O.H. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: Preparation and optimization. Int. J. Nanomedicine, 2019, 14, 2515-2531.
[http://dx.doi.org/10.2147/IJN.S190502] [PMID: 31040672]
[101]
Agarwal, S.; Murthy, R.S.R.; Harikumar, S.L.; Garg, R. Quality by design approach for development and characterisation of solid lipid nanoparticles of quetiapine fumarate. Curr. Comput. Aided Drug Des., 2020, 16(1), 73-91.
[http://dx.doi.org/10.2174/1573409915666190722122827] [PMID: 31429691]
[102]
da Rocha, M.C.O.; da Silva, P.B.; Radicchi, M.A.; Andrade, B.Y.G.; de Oliveira, J.V.; Venus, T.; Merker, C.; Estrela-Lopis, I.; Longo, J.P.F.; Báo, S.N. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J. Nanobiotechnology, 2020, 18(1), 43.
[http://dx.doi.org/10.1186/s12951-020-00604-7] [PMID: 32164731]
[103]
Bilia, A.R.; Isacchi, B.; Righeschi, C.; Guccione, C.; Bergonzi, M.C. Flavonoids loaded in nanocarriers: An opportunity to increase oral bioavailability and bioefficacy. Food Nutr. Sci., 2014, 5(5), 1212-1227.
[http://dx.doi.org/10.4236/fns.2014.513132]
[104]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[105]
Ustündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.I.; Eğrilmez, S.; Özer, O.; Ertan, G. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci., 2014, 63, 204-215.
[http://dx.doi.org/10.1016/j.ejps.2014.07.013] [PMID: 25111119]
[106]
Naguib, Y.W.; Rodriguez, B.L.; Li, X.; Hursting, S.D.; Williams, R.O., III; Cui, Z. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: In vitro and in vivo evaluation. Mol. Pharm., 2014, 11(4), 1239-1249.
[http://dx.doi.org/10.1021/mp4006968] [PMID: 24621456]
[107]
Müller, R.H.; Rühl, D.; Runge, S.; Schulze-Forster, K.; Mehnert, W. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res., 1997, 14(4), 458-462.
[http://dx.doi.org/10.1023/A:1012043315093] [PMID: 9144731]
[108]
Hirlekar, R.; Garse, H.; Kadam, V. Solid lipid nanoparticles and nanostructured lipid carriers: A review. Curr. Drug Ther., 2011, 6(4), 240-250.
[http://dx.doi.org/10.2174/157488511798109637]
[109]
Luo, Q.; Zhao, J.; Zhang, X.; Pan, W. Nanostructured Lipid Carrier (NLC) coated with chitosan oligosaccharides and its potential use in ocular drug delivery system. Int. J. Pharm., 2011, 403(1-2), 185-191.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.013] [PMID: 20951778]
[110]
Pavlović, N.; Goločorbin-Kon, S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front. Pharmacol., 2018, 9, 1283.
[http://dx.doi.org/10.3389/fphar.2018.01283] [PMID: 30467479]
[111]
Poonia, N.; Kharb, R.; Lather, V.; Pandita, D. Nanostructured lipid carriers: Versatile oral delivery vehicle. Futur. Sci., , OA2016,2(3), FSO135.
[112]
Wang, L.; Luo, Q.; Lin, T.; Li, R.; Zhu, T.; Zhou, K.; Ji, Z.; Song, J.; Jia, B.; Zhang, C.; Chen, W.; Zhu, G. PEGylated Nanostructured Lipid Carriers (PEG-NLC) as a novel drug delivery system for biochanin A. Drug Dev. Ind. Pharm., 2015, 41(7), 1204-1212.
[http://dx.doi.org/10.3109/03639045.2014.938082] [PMID: 25010850]
[113]
Jenning, V.; Thünemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm., 2000, 199(2), 167-177.
[http://dx.doi.org/10.1016/S0378-5173(00)00378-1] [PMID: 10802410]
[114]
Das, S.; Ng, W.K.; Tan, R.B.H. Are Nanostructured Lipid Carriers (NLCs) better than Solid Lipid Nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci., 2012, 47(1), 139-151.
[http://dx.doi.org/10.1016/j.ejps.2012.05.010] [PMID: 22664358]
[115]
Qushawy, M.; Prabahar, K.; Abd-Alhaseeb, M.; Swidan, S.; Nasr, A. Preparation and evaluation of carbamazepine solid lipid nanoparticle for Allevia ting seizure activity in pentylenetetrazole-kindled mice. Molecules, 2019, 24(21), 3971.
[http://dx.doi.org/10.3390/molecules24213971] [PMID: 31684021]
[116]
Patrignani, F.; Lanciotti, R. Applications of high and ultra high pressure homogenization for food safety. Front. Microbiol., 2016, 7, 1132.
[http://dx.doi.org/10.3389/fmicb.2016.01132] [PMID: 27536270]
[117]
Patwekar, S.; Gattani, S.; Giri, R.; Bade, A.; Balaji, S.; Raut, V. Review on nanoparticles used in cosmetics and dermal products. World J. Pharm. Pharm. Sci., 2014, 3(8), 1407-1421.
[118]
García-Fuentes, M.; Torres, D.; Alonso, M. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf. B Biointerfaces, 2003, 27(2-3), 159-168.
[http://dx.doi.org/10.1016/S0927-7765(02)00053-X]
[119]
Yoon, G.; Park, J.W.; Yoon, I-S. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs): Recent advances in drug delivery. J. Pharm. Investig., 2013, 43(5), 353-362.
[http://dx.doi.org/10.1007/s40005-013-0087-y]
[120]
Kotmakçı, M.; Akbaba, H.; Erel, G.; Ertan, G.; Kantarcı, G. Improved method for solid lipid nanoparticle preparation based on hot microemulsions: Preparation, characterization, cytotoxicity, and hemocompatibility evaluation. AAPS PharmSciTech, 2017, 18(4), 1355-1365.
[http://dx.doi.org/10.1208/s12249-016-0606-z] [PMID: 27502405]
[121]
Mojahedian, M.M.; Daneshamouz, S.; Samani, S.M.; Zargaran, A. A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the O/W microemulsion quenching technique. Chem. Phys. Lipids, 2013, 174, 32-38.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.05.001] [PMID: 23743405]
[122]
Parhi, R.; Suresh, P. Preparation and characterization of solid lipid nanoparticles-a review. Curr. Drug Discov. Technol., 2012, 9(1), 2-16.
[http://dx.doi.org/10.2174/157016312799304552] [PMID: 22235925]
[123]
Kumar, R.; Singh, A.; Garg, N. Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. J. Drug Deliv. Sci. Technol., 2019, 54, 101277.
[http://dx.doi.org/10.1016/j.jddst.2019.101277]
[124]
Nair, R.; Kumar, A.C.; Priya, V.K.; Yadav, C.M.; Raju, P.Y. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis., 2012, 11(1), 72.
[http://dx.doi.org/10.1186/1476-511X-11-72] [PMID: 22695222]
[125]
Charcosset, C.; El-Harati, A.; Fessi, H. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release, 2005, 108(1), 112-120.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.023] [PMID: 16169111]
[126]
Glaubitt, K.; Ricci, M.; Giovagnoli, S. Exploring the nano spray-drying technology as an innovative manufacturing method for solid lipid nanoparticle dry powders. AAPS PharmSciTech, 2019, 20(1), 19.
[http://dx.doi.org/10.1208/s12249-018-1203-0] [PMID: 30604256]
[127]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[128]
Sarangi, B.; Jana, U.; Palei, N.N.; Mohanta, G.P.; Manna, P.K. Solid lipid nanoparticles: A potential approach for drug delivery system. Nanosci. Nanotechnol. Asia, 2019, 9(2), 142-156.
[http://dx.doi.org/10.2174/2210681208666180321144536]
[129]
Wang, H.; Li, L.; Ye, J.; Wang, R.; Wang, R.; Hu, J.; Wang, Y.; Dong, W.; Xia, X.; Yang, Y.; Gao, Y.; Gao, L.; Liu, Y. Improving the oral bioavailability of an anti-glioma prodrug CAT3 using novel solid lipid nanoparticles containing oleic acid-CAT3 conjugates. Pharmaceutics, 2020, 12(2), 126.
[http://dx.doi.org/10.3390/pharmaceutics12020126] [PMID: 32028734]
[130]
Poovi, G.; Damodharan, N. Lipid nanoparticles: A challenging approach for oral delivery of BCS class-II drugs. Futur. J. Pharm. Sci., 2018, 4(2), 191-205.
[http://dx.doi.org/10.1016/j.fjps.2018.04.001]
[131]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, Ž.; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; Špinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[132]
Okur, M.E.; Karantas, I.D.; Okur, N.U.; Siafaka, P.I. Hypertension in 2017: Update in treatment and pharmaceutical innovations. Curr. Pharm. Des., 2017, 23(44), 6795-6814.
[http://dx.doi.org/10.2174/1381612823666170927123454] [PMID: 28969533]
[133]
Okur, M.E.; Karantas, I.D.; Siafaka, P.I. Diabetes mellitus: A review on pathophysiology, current status of oral medications and future perspectives. Acta Pharm. Sci., 2017, 55(1), 61-82.
[134]
Pollin, T.I.; Quartuccio, M. What we know about diet, genes, and dyslipidemia: Is there potential for translation? Curr. Nutr. Rep., 2013, 2(4), 236-242.
[http://dx.doi.org/10.1007/s13668-013-0065-z] [PMID: 24524012]
[135]
Siafaka, P.I.; Cağlar, E.Ş.; Papadopoulou, K.; Tsanaktsis, V.; Karantas, I.D.; Üstündağ Okur, N.; Karasulu, H.Y. Polymeric microparticles as alternative carriers for antidiabetic glibenclamide drug. Pharm. Biomed. Res., 2019, 5(4), 17-20.
[136]
Padhye, S.G.; Nagarsenker, M.S. Simvastatin solid lipid nanoparticles for oral delivery: Formulation development and in vivo evaluation. Indian J. Pharm. Sci., 2013, 75(5), 591-598.
[PMID: 24403661]
[137]
Dudhipala, N.; Veerabrahma, K. Improved anti-hyperlipidemic activity of Rosuvastatin Calcium via lipid nanoparticles: Pharmacokinetic and pharmacodynamic evaluation. Eur. J. Pharm. Biopharm., 2017, 110, 47-57.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.022] [PMID: 27810472]
[138]
Kumar, R.; Singh, A.; Sharma, K.; Dhasmana, D.; Garg, N.; Siril, P.F. Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. Mater. Sci. Eng. C, 2020, 106, 110184.
[http://dx.doi.org/10.1016/j.msec.2019.110184] [PMID: 31753394]
[139]
Sarker, S.; Ali, M.A.; Barman, R.K.; Noguchi, S.; Iwao, Y.; Itai, S.; Wahed, M.I.I. Preparation and antidiabetic effect of orally administered Nifedipine‐loaded solid lipid nanoparticles in fructose-induced diabetic rats. Pharmacol. Pharm., 2018, 09(10), 457-471.
[http://dx.doi.org/10.4236/pp.2018.910035]
[140]
Mukherjee, S.; Maity, S.; Ghosh, B.; Chakraborty, T.; Mondal, A.; Bishayee, A. Assessment of the antidiabetic potentiality of glyburide loaded glyceryl monostearate solid lipid nanoparticles. J. Drug Deliv. Sci. Technol., 2020, 55, 101451.
[http://dx.doi.org/10.1016/j.jddst.2019.101451]
[141]
Elbahwy, I.A.; Ibrahim, H.M.; Ismael, H.R.; Kasem, A.A. Enhancing bioavailability and controlling the release of glibenclamide from optimized solid lipid nanoparticles. J. Drug Deliv. Sci. Technol., 2017, 38, 78-89.
[http://dx.doi.org/10.1016/j.jddst.2017.02.001]
[142]
Hecq, J.; Amighi, K.; Goole, J. Development and evaluation of insulin-loaded cationic solid lipid nanoparticles for oral delivery. J. Drug Deliv. Sci. Technol., 2016, 36, 192-200.
[http://dx.doi.org/10.1016/j.jddst.2016.10.012]
[143]
Xia, D.; Shrestha, N.; van de Streek, J.; Mu, H.; Yang, M. Spray drying of Fenofibrate loaded nanostructured lipid carriers. Asian J. Pharm. Sci., 2016, 11(4), 507-515.
[http://dx.doi.org/10.1016/j.ajps.2016.01.001]
[144]
Harisa, G.I.; Alomrani, A.H.; Badran, M.M. Simvastatin-loaded nanostructured lipid carriers attenuate the atherogenic risk of erythrocytes in hyperlipidemic rats. Eur. J. Pharm. Sci., 2017, 96, 62-71.
[http://dx.doi.org/10.1016/j.ejps.2016.09.004] [PMID: 27613383]
[145]
Fathi, H.A.; Allam, A.; Elsabahy, M.; Fetih, G.; El-Badry, M. Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin. Colloids Surf. B Biointerfaces, 2018, 162, 236-245.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.064] [PMID: 29197789]
[146]
Chen, C-C.; Tsai, T-H.; Huang, Z-R.; Fang, J-Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm., 2010, 74(3), 474-482.
[http://dx.doi.org/10.1016/j.ejpb.2009.12.008] [PMID: 20060469]
[147]
Zhou, J.; Zhou, D. Improvement of oral bioavailability of lovastatin by using nanostructured lipid carriers. Drug Des. Devel. Ther., 2015, 9, 5269-5275.
[http://dx.doi.org/10.2147/DDDT.S90016] [PMID: 26425076]
[148]
Qi, R.; Li, Y.Z.; Chen, C.; Cao, Y.N.; Yu, M.M.; Xu, L.; He, B.; Jie, X.; Shen, W.W.; Wang, Y.N.; van Dongen, M.A.; Liu, G.Q.; Banaszak Holl, M.M.; Zhang, Q.; Ke, X. G5-PEG PAMAM dendrimer incorporating nanostructured lipid carriers enhance oral bioavailability and plasma lipid-lowering effect of probucol. J. Control. Release, 2015, 210, 160-168.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.281] [PMID: 26003044]
[149]
Alam, T.; Khan, S.; Gaba, B.; Haider, M.F.; Baboota, S.; Ali, J. Adaptation of quality by design-based development of isradipine nanostructured-lipid carrier and its evaluation for in vitro gut permeation and in vivo solubilization fate. J. Pharm. Sci., 2018, 107(11), 2914-2926.
[http://dx.doi.org/10.1016/j.xphs.2018.07.021] [PMID: 30076853]
[150]
Kaithwas, V.; Dora, C.P.; Kushwah, V.; Jain, S. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf. B Biointerfaces, 2017, 154, 10-20.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.006] [PMID: 28284054]
[151]
Thapa, C.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of nanostructured lipid carriers to enhance oral bioavailability of Telmisartan using box-behnken design. J. Drug Deliv. Sci. Technol., 2018, 44, 431-439.
[http://dx.doi.org/10.1016/j.jddst.2018.02.003]
[152]
Piazzini, V.; Micheli, L.; Luceri, C.; D’Ambrosio, M.; Cinci, L.; Ghelardini, C.; Bilia, A.R.; Di Cesare Mannelli, L.; Bergonzi, M.C. Nanostructured lipid carriers for oral delivery of silymarin: Improving its absorption and in vivo efficacy in type 2 diabetes and metabolic syndrome model. Int. J. Pharm., 2019., 572118838.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118838] [PMID: 31715362]
[153]
Yin, J.; Hou, Y.; Yin, Y.; Song, X. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. Int. J. Nanomedicine, 2017, 12, 8671-8680.
[http://dx.doi.org/10.2147/IJN.S144615] [PMID: 29263662]
[154]
Shi, F.; Wei, Z.; Zhao, Y.; Xu, X. Nanostructured lipid carriers loaded with baicalin: An efficient carrier for enhanced antidiabetic effects Pharmacogn. Mag., 2016, 12(47), 198-202.
[http://dx.doi.org/10.4103/0973-1296.186347] [PMID: 27601850]
[155]
Chaudhary, H.M.; Jadhav, K.R.; Kadam, V.J. Formulation and evaluation of nanostructured lipid carriers containing glipizide. World J. Pharm. Pharm. Sci., 2016, 5(4), 1424-1437.
[156]
Praveen, S.; Gowda, D.V.; Srivastava, A.; Riyaz, A.M.O. Formulation and evaluation of Nanostructured Lipid Carrier (NLC) for glimepiride. Der Pharm. Lett., 2016, 8(7), 251-256.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy