Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Perspective Article

Ultrafiltration-based Sample Preparation for Pharmaceutical Analysis

Author(s): Mustafa Çelebier*

Volume 17, Issue 8, 2021

Published on: 29 July, 2020

Page: [951 - 959] Pages: 9

DOI: 10.2174/1573412916999200729172653

Abstract

Pharmaceutical analysis plays an important role in all steps of drug development processes. Analysis of active pharmaceutical ingredients in biological samples needs sample preparation techniques to prevent the signal of the analyte from interferences coming from matrix components. Ultrafiltration is a well-known technique used in the food and pharmaceutical industry. Commercial ultrafiltration devices have been frequently used on proteomics and metabolomics studies for sample preparation. In pharmaceutical analysis, these devices have been employed to analyze the free concentration of drugs in biological fluids after filtration. However, they have been rarely used to determine the total concentration of targeted compounds when it is compared with some other common sample preparation techniques. Ultrafiltration-based sample preparation might be used to clean-up the sample easily from matrix components especially on bioanalysis performed with high-performance liquid chromatography (HPLC). In the case of using protein precipitation agents on filtration procedure, the quantitative recovery of this non-selective unique technique is competitive with solid-phase extraction.

Keywords: Ultrafiltration, pharmaceutical analysis, sample preparation, high-performance liquid chromatography, dendrimers, UF-based sample.

Graphical Abstract
[1]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[2]
Mattrey, F.T.; Makarov, A.A.; Regalado, E.L.; Bernardoni, F.; Figus, M.; Hicks, M.B.; Zheng, J.; Wang, L.; Schafer, W.; Antonucci, V. Current challenges and future prospects in chromatographic method development for pharmaceutical research. Trends Analyt. Chem., 2017, 95, 36-46.
[http://dx.doi.org/10.1016/j.trac.2017.07.021]
[3]
Bakirhan, N.K.; Ozkan, S.A. Recent advances and future perspectives in pharmaceutical analysis. Curr. Pharm. Anal., 2020, 16(1), 2-4.
[http://dx.doi.org/10.2174/157341291601191023100143]
[4]
Gumustas, M.; Kurbanoglu, S.; Uslu, B.; Ozkan, S.A. UPLC versus HPLC on drug analysis: advantageous, applications and their validation parameters. Chromatographia, 2013, 76(21-22), 1365-1427.
[http://dx.doi.org/10.1007/s10337-013-2477-8]
[5]
Taleuzzaman, M.; Ali, S.; Gilani, S.; Imam, S.; Hafeez, A. Ultra performance liquid chromatography (UPLC)–a review. Austin J. Anal. Pharm. Chem., 2015, 2(6), 1056.
[6]
Klimczak, I.; Gliszczyńska-Świgło, A. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chem., 2015, 175, 100-105.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.104] [PMID: 25577057]
[7]
Wu, T.; Wang, C.; Wang, X.; Xiao, H.; Ma, Q.; Zhang, Q. Comparison of UPLC and HPLC for analysis of 12 phthalates. Chromatographia, 2008, 68(9-10), 803-806.
[http://dx.doi.org/10.1365/s10337-008-0788-y]
[8]
Tobin, C.M.; Darville, J.M.; Lovering, A.M.; Macgowan, A.P. An HPLC assay for daptomycin in serum. J. Antimicrob. Chemother., 2008, 62(6), 1462-1463.
[http://dx.doi.org/10.1093/jac/dkn414] [PMID: 18824457]
[9]
Gikas, E.; Bazoti, F.N.; Fanourgiakis, P.; Perivolioti, E.; Roussidis, A.; Skoutelis, A.; Tsarbopoulos, A. Development and validation of a UPLC-UV method for the determination of daptomycin in rabbit plasma. Biomed. Chromatogr., 2010, 24(5), 522-527.
[PMID: 19795522]
[10]
Hamdy, D. A.; Belal, T. S. A comparative study of newly developed HPLC-DAD and UHPLC-UV assays for the determination of posaconazole in bulk powder and suspension dosage form. J. analy. Meth. Chem., 2014.
[http://dx.doi.org/10.1155/2014/241035]
[11]
Nováková, L.; Solichová, D.; Solich, P. Advantages of ultra performance liquid chromatography over high-performance liquid chromatography: comparison of different analytical approaches during analysis of diclofenac gel. J. Sep. Sci., 2006, 29(16), 2433-2443.
[http://dx.doi.org/10.1002/jssc.200600147] [PMID: 17154123]
[12]
Yanamandra, R.; Chaudhary, A.; Bandaru, S.R.; Patro, B.; Murthy, Y.; Ramaiah, P.A.; Sastry, C. UPLC method for simultaneous separation and estimation of secnidazole, fluconazole and azithromycin in pharmaceutical dosage forms. J. Chem., 2010, 7(S1), S363-S371.
[13]
Krishnaiah, Ch.; Vishnu Murthy, M.; Kumar, R.; Mukkanti, K. Development of a stability-indicating UPLC method for determining olanzapine and its associated degradation products present in active pharmaceutical ingredients and pharmaceutical dosage forms. J. Pharm. Biomed. Anal., 2011, 54(4), 667-673.
[http://dx.doi.org/10.1016/j.jpba.2010.10.013] [PMID: 21075576]
[14]
Reddy, G.V.R.; Reddy, B.V.; Haque, S.W.; Gautam, H.D.; Kumar, P.; Kumar, A.P.; Park, J.H. Development and validation of a stability-indicating UPLC method for rosuvastatin and its related impurities in pharmaceutical dosage forms. Quim. Nova, 2011, 34(2), 250-255.
[http://dx.doi.org/10.1590/S0100-40422011000200015]
[15]
Malleswararao, C.S.; Suryanarayana, M.V.; Mukkanti, K. Simultaneous determination of sitagliptin phosphate monohydrate and metformin hydrochloride in tablets by a validated UPLC method. Sci. Pharm., 2012, 80(1), 139-152.
[http://dx.doi.org/10.3797/scipharm.1110-13] [PMID: 22396910]
[16]
Kumar, A.; Saini, G.; Nair, A.; Sharma, R. UPLC: a preeminent technique in pharmaceutical analysis. Acta Pol. Pharm., 2012, 69(3), 371-380.
[PMID: 22594250]
[17]
Han, R.W.; Zheng, N.; Yu, Z.N.; Wang, J.; Xu, X.M.; Qu, X.Y.; Li, S.L.; Zhang, Y.D.; Wang, J.Q. Simultaneous determination of 38 veterinary antibiotic residues in raw milk by UPLC-MS/MS. Food Chem., 2015, 181, 119-126.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.041] [PMID: 25794729]
[18]
Schmitz, E.M.; Boonen, K.; van den Heuvel, D.J.; van Dongen, J.L.; Schellings, M.W.; Emmen, J.M.; van der Graaf, F.; Brunsveld, L.; van de Kerkhof, D. Determination of dabigatran, rivaroxaban and apixaban by ultra-performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS) and coagulation assays for therapy monitoring of novel direct oral anticoagulants. J. Thromb. Haemost., 2014, 12(10), 1636-1646.
[http://dx.doi.org/10.1111/jth.12702] [PMID: 25142183]
[19]
Pan, C.; Chen, Y.; Chen, W.; Zhou, G.; Jin, L.; Zheng, Y.; Lin, W.; Pan, Z. Simultaneous determination of ledipasvir, sofosbuvir and its metabolite in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1008, 255-259.
[http://dx.doi.org/10.1016/j.jchromb.2015.11.056] [PMID: 26684720]
[20]
Rezk, M.R.; Bendas, E.R.; Basalious, E.B.; Karim, I.A. Development and validation of sensitive and rapid UPLC-MS/MS method for quantitative determination of daclatasvir in human plasma: Application to a bioequivalence study. J. Pharm. Biomed. Anal., 2016, 128, 61-66.
[http://dx.doi.org/10.1016/j.jpba.2016.05.016] [PMID: 27232152]
[21]
Wissenbach, D.K.; Meyer, M.R.; Remane, D.; Weber, A.A.; Maurer, H.H. Development of the first metabolite-based LC-MS(n) urine drug screening procedure-exemplified for antidepressants. Anal. Bioanal. Chem., 2011, 400(1), 79-88.
[http://dx.doi.org/10.1007/s00216-010-4398-9] [PMID: 21079926]
[22]
Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt. Chem., 2012, 32, 1-14.
[http://dx.doi.org/10.1016/j.trac.2011.08.009] [PMID: 22345829]
[23]
Chen, C.; Gonzalez, F.J.; Idle, J.R. LC-MS-based metabolomics in drug metabolism. Drug Metab. Rev., 2007, 39(2-3), 581-597.
[http://dx.doi.org/10.1080/03602530701497804] [PMID: 17786640]
[24]
Zhu, J.; Djukovic, D.; Deng, L.; Gu, H.; Himmati, F.; Abu Zaid, M.; Chiorean, E.G.; Raftery, D. Targeted serum metabolite profiling and sequential metabolite ratio analysis for colorectal cancer progression monitoring. Anal. Bioanal. Chem., 2015, 407(26), 7857-7863.
[http://dx.doi.org/10.1007/s00216-015-8984-8] [PMID: 26342311]
[25]
Han, D.; Chen, C.; Zhang, C.; Zhang, Y.; Tang, X. Determination of mangiferin in rat plasma by liquid-liquid extraction with UPLC-MS/MS. J. Pharm. Biomed. Anal., 2010, 51(1), 260-263.
[http://dx.doi.org/10.1016/j.jpba.2009.07.021] [PMID: 19699046]
[26]
Du, X.; Li, C.; Sun, H.K.; Nightingale, C.H.; Nicolau, D.P. A sensitive assay of amoxicillin in mouse serum and broncho-alveolar lavage fluid by liquid-liquid extraction and reversed-phase HPLC. J. Pharm. Biomed. Anal., 2005, 39(3-4), 648-652.
[http://dx.doi.org/10.1016/j.jpba.2005.04.021] [PMID: 15935600]
[27]
Sanson, A.L.; Silva, S.C.R.; Martins, M.C.G.; Giusti-Paiva, A.; Maia, P.P.; Martins, I. Liquid-liquid extraction combined with high performance liquid chromatography-diode array-ultra-violet for simultaneous determination of antineoplastic drugs in plasma. Braz. J. Pharm. Sci., 2011, 47(2), 363-371.
[http://dx.doi.org/10.1590/S1984-82502011000200017]
[28]
Chauhan, B.; Rani, S.; Nivsarkar, M.; Padh, H. A new liquid-liquid extraction method for determination of montelukast in small volume human plasma samples using HPLC with fluorescence detector. Indian J. Pharm. Sci., 2006, 68(4)
[http://dx.doi.org/10.4103/0250-474X.27834]
[29]
Nirogi, R.; Kandikere, V.; Komarneni, P.; Aleti, R.; Padala, N.; Kalaikadiban, I. Quantification of cinacalcet by LC-MS/MS using liquid-liquid extraction from 50 μL of plasma. J. Pharm. Biomed. Anal., 2011, 56(2), 373-381.
[http://dx.doi.org/10.1016/j.jpba.2011.05.032] [PMID: 21696904]
[30]
Li, K.M.; Rivory, L.P.; Clarke, S.J. Solid-phase extraction (SPE) techniques for sample preparation in clinical and pharmaceutical analysis: a brief overview. Curr. Pharm. Anal., 2006, 2(2), 95-102.
[http://dx.doi.org/10.2174/157341206776819346]
[31]
Buszewski, B.; Szultka, M. Past, present, and future of solid phase extraction: a review. Crit. Rev. Anal. Chem., 2012, 42(3), 198-213.
[http://dx.doi.org/10.1080/07373937.2011.645413]
[32]
Whittington, D.; Kharasch, E.D. Determination of morphine and morphine glucuronides in human plasma by 96-well plate solid-phase extraction and liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 796(1), 95-103.
[http://dx.doi.org/10.1016/j.jchromb.2003.08.007] [PMID: 14552820]
[33]
Venn, R.F.; Merson, J.; Cole, S.; Macrae, P. 96-Well solid-phase extraction: a brief history of its development. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 817(1), 77-80.
[http://dx.doi.org/10.1016/j.jchromb.2004.08.029] [PMID: 15680790]
[34]
Cudjoe, E.; Pawliszyn, J. A new approach to the application of solid phase extraction disks with LC-MS/MS for the analysis of drugs on a 96-well plate format. J. Pharm. Biomed. Anal., 2009, 50(4), 556-562.
[http://dx.doi.org/10.1016/j.jpba.2008.07.014] [PMID: 18771872]
[35]
Bouchet, S.; Chauzit, E.; Ducint, D.; Castaing, N.; Canal-Raffin, M.; Moore, N.; Titier, K.; Molimard, M. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clin. Chim. Acta, 2011, 412(11-12), 1060-1067.
[http://dx.doi.org/10.1016/j.cca.2011.02.023] [PMID: 21345336]
[36]
Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Modern trends in solid phase extraction: new sorbent media. Trends Analyt. Chem., 2016, 77, 23-43.
[http://dx.doi.org/10.1016/j.trac.2015.10.010]
[37]
Ravelo-Pérez, L.M.; Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Carbon nanotubes: Solid-phase extraction. J. Chromatogr. A, 2010, 1217(16), 2618-2641.
[http://dx.doi.org/10.1016/j.chroma.2009.10.083] [PMID: 19914625]
[38]
Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Anal. Chem., 2003, 75(10), 2517-2521.
[http://dx.doi.org/10.1021/ac0263566] [PMID: 12919000]
[39]
Chigome, S.; Torto, N. Electrospun nanofiber-based solid-phase extraction. Trends Analyt. Chem., 2012, 38, 21-31.
[http://dx.doi.org/10.1016/j.trac.2012.04.011]
[40]
Sajid, M. Dendrimers based sorbents: Promising materials for analytical extractions. Trends Analyt. Chem., 2018, 98, 114-127.
[http://dx.doi.org/10.1016/j.trac.2017.11.005]
[41]
Valcárcel, M.; Cárdenas, S.; Simonet, B.M. Role of carbon nanotubes in analytical science. Anal. Chem., 2007, 79(13), 4788-4797.
[http://dx.doi.org/10.1021/ac070196m] [PMID: 17542556]
[42]
Trojanowicz, M. Analytical applications of carbon nanotubes: a review. Trends Analyt. Chem., 2006, 25(5), 480-489.
[http://dx.doi.org/10.1016/j.trac.2005.11.008]
[43]
Merkoçi, A. Carbon nanotubes in analytical sciences. Mikrochim. Acta, 2006, 152(3-4), 157-174.
[http://dx.doi.org/10.1007/s00604-005-0439-z]
[44]
Valcárcel, M.; Simonet, B.M.; Cárdenas, S.; Suárez, B. Present and future applications of carbon nanotubes to analytical science. Anal. Bioanal. Chem., 2005, 382(8), 1783-1790.
[http://dx.doi.org/10.1007/s00216-005-3373-3] [PMID: 16007437]
[45]
Wang, S.; Zhao, P.; Min, G.; Fang, G. Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A, 2007, 1165(1-2), 166-171.
[http://dx.doi.org/10.1016/j.chroma.2007.07.061] [PMID: 17697685]
[46]
Zhou, Q.; Xiao, J.; Ding, Y. Sensitive determination of fungicides and prometryn in environmental water samples using multiwalled carbon nanotubes solid-phase extraction cartridge. Anal. Chim. Acta, 2007, 602(2), 223-228.
[http://dx.doi.org/10.1016/j.aca.2007.09.038] [PMID: 17933607]
[47]
Cai, Y.Q.; Cai, Y.E.; Mou, S.F.; Lu, Y.Q. Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J. Chromatogr. A, 2005, 1081(2), 245-247.
[http://dx.doi.org/10.1016/j.chroma.2005.05.080] [PMID: 16038216]
[48]
Ma, J.; Jiang, L.; Wu, G.; Xia, Y.; Lu, W.; Li, J.; Chen, L. Determination of six sulfonylurea herbicides in environmental water samples by magnetic solid-phase extraction using multi-walled carbon nanotubes as adsorbents coupled with high-performance liquid chromatography. J. Chromatogr. A, 2016, 1466, 12-20.
[http://dx.doi.org/10.1016/j.chroma.2016.08.065] [PMID: 27590086]
[49]
Dahane, S.; Gil García, M.D.; Martínez Bueno, M.J.; Uclés Moreno, A.; Martínez Galera, M.; Derdour, A. Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J. Chromatogr. A, 2013, 1297, 17-28.
[http://dx.doi.org/10.1016/j.chroma.2013.05.002] [PMID: 23726087]
[50]
Márquez-Sillero, I.; Aguilera-Herrador, E.; Cárdenas, S.; Valcárcel, M. Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. J. Chromatogr. A, 2010, 1217(1), 1-6.
[http://dx.doi.org/10.1016/j.chroma.2009.11.005] [PMID: 19932486]
[51]
Kahkha, M.R.R.; Kaykhaii, M.; Afarani, M.S.; Sepehri, Z. Determination of mefenamic acid in urine and pharmaceutical samples by HPLC after pipette-tip solid phase microextraction using zinc sulfide modified carbon nanotubes. Anal. Methods, 2016, 8(30), 5978-5983.
[http://dx.doi.org/10.1039/C6AY01674J]
[52]
Ding, J.; Gao, Q.; Li, X.S.; Huang, W.; Shi, Z.G.; Feng, Y.Q. Magnetic solid-phase extraction based on magnetic carbon nanotube for the determination of estrogens in milk. J. Sep. Sci., 2011, 34(18), 2498-2504.
[http://dx.doi.org/10.1002/jssc.201100323] [PMID: 21780288]
[53]
Paszkiewicz, M.; Tyma, M.; Jakubus, A.; Stepnowski, P. Recent applications of carbon nanotubes as sorbents for the extraction of pharmaceutical residues. Curr. Anal. Chem., 2016, 12(4), 268-279.
[http://dx.doi.org/10.2174/1573411012666151009194721]
[54]
Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res., 2008, 41(1), 60-68.
[http://dx.doi.org/10.1021/ar700089b] [PMID: 17867649]
[55]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68(16), 6652-6660.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1468] [PMID: 18701489]
[56]
Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev., 2013, 65(15), 1964-2015.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[57]
Xie, L.; Huang, J.; Han, Q.; Song, Y.; Liu, P.; Kang, X. Solid phase extraction with Polypyrrole nanofibers for simultaneously determination of three water-soluble vitamins in urine. J. Chromatogr. A, 2019, 1589, 30-38.
[http://dx.doi.org/10.1016/j.chroma.2018.12.062] [PMID: 30609958]
[58]
Nanjwade, B.K.; Bechra, H.M.; Derkar, G.K.; Manvi, F.V.; Nanjwade, V.K. Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci., 2009, 38(3), 185-196.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[59]
Gillies, E.R.; Fréchet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[60]
Li, Y.; Yang, J.; Huang, C.; Wang, L.; Wang, J.; Chen, J. Dendrimer-functionalized mesoporous silica as a reversed-phase/anion-exchange mixed-mode sorbent for solid phase extraction of acid drugs in human urine. J. Chromatogr. A, 2015, 1392, 28-36.
[http://dx.doi.org/10.1016/j.chroma.2015.03.003] [PMID: 25795396]
[61]
Alinezhad, H.; Amiri, A.; Tarahomi, M.; Maleki, B. Magnetic solid-phase extraction of non-steroidal anti-inflammatory drugs from environmental water samples using polyamidoamine dendrimer functionalized with magnetite nanoparticles as a sorbent. Talanta, 2018, 183, 149-157.
[http://dx.doi.org/10.1016/j.talanta.2018.02.069] [PMID: 29567157]
[62]
Zhu, Y.; Liao, L. Applications of nanoparticles for anticancer drug delivery: a review. J. Nanosci. Nanotechnol., 2015, 15(7), 4753-4773.
[http://dx.doi.org/10.1166/jnn.2015.10298] [PMID: 26373036]
[63]
Kurczewska, J.; Cegłowski, M.; Messyasz, B.; Schroeder, G. Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Appl. Clay Sci., 2018, 153, 134-143.
[http://dx.doi.org/10.1016/j.clay.2017.12.019]
[64]
Kalhapure, R.S.; Kathiravan, M.K.; Akamanchi, K.G.; Govender, T. Dendrimers - from organic synthesis to pharmaceutical applications: an update. Pharm. Dev. Technol., 2015, 20(1), 22-40.
[http://dx.doi.org/10.3109/10837450.2013.862264] [PMID: 24299011]
[65]
El Mubarak, M.A.; Stylos, E.K.; Chatziathanasiadou, M.V.; Danika, C.; Alexiou, G.A.; Tsekeris, P.; Renziehausen, A.; Crook, T.; Syed, N.; Sivolapenko, G.B.; Tzakos, A.G. Development and validation of simple step protein precipitation UHPLC-MS/MS methods for quantitation of temozolomide in cancer patient plasma samples. J. Pharm. Biomed. Anal., 2019, 162, 164-170.
[http://dx.doi.org/10.1016/j.jpba.2018.09.019] [PMID: 30243056]
[66]
Resende, L.A.; da Silva, P.H.R.; Fernandes, C. Quantitative determination of the antimalarials artemether and lumefantrine in biological samples: A review. J. Pharm. Biomed. Anal., 2019, 165, 304-314.
[http://dx.doi.org/10.1016/j.jpba.2018.12.021] [PMID: 30579231]
[67]
Mannemala, S.S.; Nagarajan, J.S.K. Development and validation of a HPLC-PDA bioanalytical method for the simultaneous estimation of Aliskiren and Amlodipine in human plasma. Biomed. Chromatogr., 2015, 29(3), 346-352.
[http://dx.doi.org/10.1002/bmc.3279] [PMID: 24931898]
[68]
Vella, J.; Busuttil, F.; Bartolo, N.S.; Sammut, C.; Ferrito, V.; Serracino-Inglott, A.; Azzopardi, L.M.; LaFerla, G. A simple HPLC-UV method for the determination of ciprofloxacin in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 989, 80-85.
[http://dx.doi.org/10.1016/j.jchromb.2015.01.006] [PMID: 25813900]
[69]
Attimarad, M.; Nagaraja, S.H.; Nair, A.B.; Aldhubaib, B.E.; Katharigatta, V.N. Development of validated RP HPLC method with fluorescence detection for simultaneous quantification of sacubitril and valsartan from rat plasma. J. Liq. Chromatogr. Relat. Technol., 2018, 41(5), 246-252.
[http://dx.doi.org/10.1080/10826076.2018.1436070]
[70]
Porwal, P.K.; Talele, G.S. Development of validated HPLC-UV method for simultaneous determination of metformin, amlodipine, glibenclamide and atorvastatin in human plasma and application to protein binding studies. Bull. Fac. Pharm. Cairo Univ., 2017, 55(1), 129-139.
[http://dx.doi.org/10.1016/j.bfopcu.2016.10.002]
[71]
Kataoka, H. New trends in sample preparation for clinical and pharmaceutical analysis. Trends Analyt. Chem., 2003, 22(4), 232-244.
[http://dx.doi.org/10.1016/S0165-9936(03)00402-3]
[72]
Kataoka, H. Recent developments and applications of microextraction techniques in drug analysis. Anal. Bioanal. Chem., 2010, 396(1), 339-364.
[http://dx.doi.org/10.1007/s00216-009-3076-2] [PMID: 19727680]
[73]
Kataoka, H. Current developments and future trends in solid-phase microextraction techniques for pharmaceutical and biomedical analyses. Anal. Sci., 2011, 27(9), 893-905.
[http://dx.doi.org/10.2116/analsci.27.893] [PMID: 21908918]
[74]
Muthukumaran, S.; Yang, K.; Seuren, A.; Kentish, S.; Ashokkumar, M.; Stevens, G.W.; Grieser, F. The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separ. Purif. Tech., 2004, 39(1-2), 99-107.
[http://dx.doi.org/10.1016/j.seppur.2003.12.013]
[75]
Kazemimoghadam, M.; Mohammadi, T. Chemical cleaning of ultrafiltration membranes in the milk industry. Desalination, 2007, 204(1-3), 213-218.
[http://dx.doi.org/10.1016/j.desal.2006.04.030]
[76]
Mohammad, A.W.; Ng, C.Y.; Lim, Y.P.; Ng, G.H. Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control. Food Bioprocess Technol., 2012, 5(4), 1143-1156.
[http://dx.doi.org/10.1007/s11947-012-0806-9]
[77]
Porter, M.; Nelson, L. Utrafiltration in the Chemical, Food Processing, Pharmaceutical, and Medical Industries. InRecent developments in separation science; CRC Press, 2018, pp. 227-267.
[http://dx.doi.org/10.1201/9781351076227-11]
[78]
Pabby, A.K.; Rizvi, S.S.H.; Requena, A.M.S. The Handbook of Membrane Separations: Chemical, Pharmaceutical, and Biotechnological Applications; CRC Press, 2008.
[http://dx.doi.org/10.1201/9781420009484]
[79]
Juang, R-S.; Xu, Y-Y.; Chen, C-L. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. J. Membr. Sci., 2003, 218(1-2), 257-267.
[http://dx.doi.org/10.1016/S0376-7388(03)00183-2]
[80]
Mungray, A.A.; Kulkarni, S.V.; Mungray, A.K. Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review. Cent. Eur. J. Chem., 2012, 10(1), 27-46.
[81]
Huang, J.; Yuan, F.; Zeng, G.; Li, X.; Gu, Y.; Shi, L.; Liu, W.; Shi, Y. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere, 2017, 173, 199-206.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.137] [PMID: 28110009]
[82]
Huang, J-H.; Zeng, G-M.; Zhou, C-F.; Li, X.; Shi, L-J.; He, S-B. Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration. J. Hazard. Mater., 2010, 183(1-3), 287-293.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.022] [PMID: 20692091]
[83]
Landaburu-Aguirre, J.; Pongrácz, E.; Perämäki, P.; Keiski, R.L. Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation. J. Hazard. Mater., 2010, 180(1-3), 524-534.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.066] [PMID: 20488619]
[84]
Rahmanian, B.; Pakizeh, M.; Maskooki, A. Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane. J. Hazard. Mater., 2010, 184(1-3), 261-267.
[http://dx.doi.org/10.1016/j.jhazmat.2010.08.031] [PMID: 20832940]
[85]
Yenphan, P.; Chanachai, A.; Jiraratananon, R. Experimental study on micellar-enhanced ultrafiltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants. Desalination, 2010, 253(1-3), 30-37.
[http://dx.doi.org/10.1016/j.desal.2009.11.040]
[86]
Bade, R.; Lee, S.H. A review of studies on micellar enhanced ultrafiltration for heavy metals removal from wastewater. J Water Sustain, 2011, 1(1), 85-102.
[87]
El Zeftawy, M.M.; Mulligan, C.N. Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF). Separ. Purif. Tech., 2011, 77(1), 120-127.
[http://dx.doi.org/10.1016/j.seppur.2010.11.030]
[88]
Huang, J-H.; Zhou, C-F.; Zeng, G-M.; Li, X.; Niu, J.; Huang, H-J.; Shi, L-J.; He, S-B. Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. J. Membr. Sci., 2010, 365(1-2), 138-144.
[http://dx.doi.org/10.1016/j.memsci.2010.08.052]
[89]
Huang, J.; Peng, L.; Zeng, G.; Li, X.; Zhao, Y.; Liu, L.; Li, F.; Chai, Q. Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants. Separ. Purif. Tech., 2014, 125, 83-89.
[http://dx.doi.org/10.1016/j.seppur.2014.01.020]
[90]
Schwarze, M. Micellar-enhanced ultrafiltration (MEUF)–state of the art. Environ. Sci. Water Res. Technol., 2017, 3(4), 598-624.
[http://dx.doi.org/10.1039/C6EW00324A]
[91]
Chernokalskaya, E.; Gutierrez, S.; Pitt, A.M.; Leonard, J.T. Ultrafiltration for proteomic sample preparation. Electrophoresis, 2004, 25(15), 2461-2468.
[http://dx.doi.org/10.1002/elps.200405998] [PMID: 15300763]
[92]
Jiang, L.; He, L.; Fountoulakis, M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J. Chromatogr. A, 2004, 1023(2), 317-320.
[http://dx.doi.org/10.1016/j.chroma.2003.10.029] [PMID: 14753699]
[93]
Greening, D.W.; Simpson, R.J. A centrifugal ultrafiltration strategy for isolating the low-molecular weight (<or=25K) component of human plasma proteome. J. Proteomics, 2010, 73(3), 637-648.
[http://dx.doi.org/10.1016/j.jprot.2009.09.013] [PMID: 19782775]
[94]
Greening, D.W.; Simpson, R.J. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration. Serum/Plasma Proteomics; Springer, 2011, pp. 109-124.
[http://dx.doi.org/10.1007/978-1-61779-068-3_6]
[95]
Ananthi, S.; Santhosh, R.S.; Nila, M.V.; Prajna, N.V.; Lalitha, P.; Dharmalingam, K. Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp. Eye Res., 2011, 92(6), 454-463.
[http://dx.doi.org/10.1016/j.exer.2011.03.002] [PMID: 21396361]
[96]
An, Y.; Goldman, R. Analysis of peptides by denaturing ultrafiltration and LC-MALDI-TOF-MS. The Low Molecular Weight Proteome; Springer, 2013, pp. 13-19.
[http://dx.doi.org/10.1007/978-1-4614-7209-4_2]
[97]
Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Piovesana, S.; Samperi, R.; Laganà, A. Comparison of three different enrichment strategies for serum low molecular weight protein identification using shotgun proteomics approach. Anal. Chim. Acta, 2012, 740, 58-65.
[http://dx.doi.org/10.1016/j.aca.2012.06.033] [PMID: 22840651]
[98]
Zwang, L.; Blijenberg, B. Validation of the ultrafiltration technique for creatinine analysis by HPLC: A comparison with direct serum injection 1992.
[http://dx.doi.org/10.1515/cclm.1992.30.12.861]
[99]
Lux, O.; Naidoo, D.; Salonikas, C. Improved HPLC method for the simultaneous measurement of allantoin and uric acid in plasma. Ann. Clin. Biochem., 1992, 29(Pt 6), 674-675.
[http://dx.doi.org/10.1177/000456329202900611] [PMID: 1489166]
[100]
Nebinger, P.; Koel, M. Determination of acyclovir by ultrafiltration and high-performance liquid chromatography. J. Chromatogr. A, 1993, 619(2), 342-344.
[http://dx.doi.org/10.1016/0378-4347(93)80128-Q] [PMID: 8263110]
[101]
Palfrey, S.M.; Labib, M.H. A simple method for measuring neopterin in serum using HPLC. Ann. Clin. Biochem., 1993, 30(Pt 2), 209-210.
[http://dx.doi.org/10.1177/000456329303000221] [PMID: 8466158]
[102]
Vesterqvist, O.; Nabbie, F.; Swanson, B. Determination of metformin in plasma by high-performance liquid chromatography after ultrafiltration. J. Chromatogr. B Biomed. Sci. Appl., 1998, 716(1-2), 299-304.
[http://dx.doi.org/10.1016/S0378-4347(98)00305-3] [PMID: 9824244]
[103]
Breilh, D.; Lavallee, C.; Fratta, A.; Ducint, D.; Cony-Makhoul, P.; Saux, M.C. Determination of cefepime and cefpirome in human serum by high-performance liquid chromatography using an ultrafiltration for antibiotics serum extraction. J. Chromatogr. B Biomed. Sci. Appl., 1999, 734(1), 121-127.
[http://dx.doi.org/10.1016/S0378-4347(99)00343-6] [PMID: 10574197]
[104]
Burns, R.B.; Embree, L. Validation of high-performance liquid chromatographic assay methods for the analysis of carboplatin in plasma ultrafiltrate. J. Chromatogr. B Biomed. Sci. Appl., 2000, 744(2), 367-376.
[http://dx.doi.org/10.1016/S0378-4347(00)00262-0] [PMID: 10993526]
[105]
Kenney, K.B.; Wring, S.A.; Carr, R.M.; Wells, G.N.; Dunn, J.A. Simultaneous determination of zidovudine and lamivudine in human serum using HPLC with tandem mass spectrometry. J. Pharm. Biomed. Anal., 2000, 22(6), 967-983.
[http://dx.doi.org/10.1016/S0731-7085(00)00248-X] [PMID: 10857566]
[106]
Pearson, H. Meet the human metabolome. Nature, 2007, 446(7131), 8-8.
[http://dx.doi.org/10.1038/446008a] [PMID: 17330009]
[107]
Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; Sayeeda, Z.; Lo, E.; Assempour, N.; Berjanskii, M.; Singhal, S.; Arndt, D.; Liang, Y.; Badran, H.; Grant, J.; Serra-Cayuela, A.; Liu, Y.; Mandal, R.; Neveu, V.; Pon, A.; Knox, C.; Wilson, M.; Manach, C.; Scalbert, A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res., 2018, 46(D1), D608-D617.
[http://dx.doi.org/10.1093/nar/gkx1089] [PMID: 29140435]
[108]
Gowda, G.A.; Djukovic, D. Overview of mass spectrometry-based metabolomics: opportunities and challenges. Methods Mol. Biol., 2014, 1198, 3-12.
[http://dx.doi.org/10.1007/978-1-4939-1258-2_1] [PMID: 25270919]
[109]
Nemkov, T.; Hansen, K.C.; Dumont, L.J.; D’Alessandro, A. Metabolomics in transfusion medicine. Transfusion, 2016, 56(4), 980-993.
[http://dx.doi.org/10.1111/trf.13442] [PMID: 26662506]
[110]
Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom. Rev., 2018, 37(6), 772-792.
[http://dx.doi.org/10.1002/mas.21562] [PMID: 29486047]
[111]
Gika, H.; Virgiliou, C.; Theodoridis, G.; Plumb, R.S.; Wilson, I.D. Untargeted LC/MS-based metabolic phenotyping (metabonomics/metabolomics): The state of the art. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1117, 136-147.
[http://dx.doi.org/10.1016/j.jchromb.2019.04.009] [PMID: 31009899]
[112]
Vuckovic, D. Chapter 4 - Sample preparation in global metabolomics of biological fluids and tissues. Proteomic and Metabolomic Approaches to Biomarker Discovery (Second Edition), Issaq, H. J.; Veenstra, T. D., Eds;, Academic Press: Boston, 2020, pp. 53-83.
[113]
Swart, R.; Koivisto, P.; Markides, K.E. Capillary solid-phase extraction-tandem mass spectrometry for fast quantification of free concentrations of tolterodine and two metabolites in ultrafiltered plasma samples. J. Chromatogr. B Biomed. Sci. Appl., 1999, 736(1-2), 247-253.
[http://dx.doi.org/10.1016/S0378-4347(99)00462-4] [PMID: 10677005]
[114]
Fu, X.; Liao, Y.; Liu, H. Sample preparation for pharmaceutical analysis. Anal. Bioanal. Chem., 2005, 381(1), 75-77.
[http://dx.doi.org/10.1007/s00216-004-2894-5] [PMID: 15599498]
[115]
Pavlović, D.M.; Babić, S.; Horvat, A.J.; Kaštelan-Macan, M. Sample preparation in analysis of pharmaceuticals. Trends Analyt. Chem., 2007, 26(11), 1062-1075.
[http://dx.doi.org/10.1016/j.trac.2007.09.010]
[116]
Clark, K.D.; Zhang, C.; Anderson, J.L. Sample preparation for bioanalytical and pharmaceutical analysis. Anal. Chem., 2016, 88(23), 11262-11270.
[http://dx.doi.org/10.1021/acs.analchem.6b02935] [PMID: 27779849]
[117]
Kratzer, A.; Schießer, S.; Matzneller, P.; Wulkersdorfer, B.; Zeitlinger, M.; Schlossmann, J.; Kees, F.; Dorn, C. Determination of total and free ceftolozane and tazobactam in human plasma and interstitial fluid by HPLC-UV. J. Pharm. Biomed. Anal., 2019, 163, 34-38.
[http://dx.doi.org/10.1016/j.jpba.2018.09.044] [PMID: 30278324]
[118]
Kratzer, A.; Liebchen, U.; Schleibinger, M.; Kees, M.G.; Kees, F. Determination of free vancomycin, ceftriaxone, cefazolin and ertapenem in plasma by ultrafiltration: impact of experimental conditions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 961, 97-102.
[http://dx.doi.org/10.1016/j.jchromb.2014.05.021] [PMID: 24878831]
[119]
Kratzer, A.; Kees, F.; Dorn, C. Unbound fraction of fluconazole and linezolid in human plasma as determined by ultrafiltration: Impact of membrane type. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1039, 74-78.
[http://dx.doi.org/10.1016/j.jchromb.2016.10.040] [PMID: 27825625]
[120]
Pranger, A.D.; Alffenaar, J-W.C.; Wessels, A.M.; Greijdanus, B.; Uges, D.R.; Uges, D.R.A. Determination of moxifloxacin in human plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid chromatography- tandem mass spectrometry method. J. Anal. Toxicol., 2010, 34(3), 135-141.
[http://dx.doi.org/10.1093/jat/34.3.135] [PMID: 20406537]
[121]
Dong, W.C.; Zhang, Z.Q.; Jiang, X.H.; Sun, Y.G.; Jiang, Y. Effect of volume ratio of ultrafiltrate to sample solution on the analysis of free drug and measurement of free carbamazepine in clinical drug monitoring. Eur. J. Pharm. Sci., 2013, 48(1-2), 332-338.
[http://dx.doi.org/10.1016/j.ejps.2012.11.006] [PMID: 23201310]
[122]
Li, W.; Lin, H.; Smith, H.T.; Tse, F.L. Developing a robust ultrafiltration-LC-MS/MS method for quantitative analysis of unbound vadimezan (ASA404) in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(21), 1927-1933.
[http://dx.doi.org/10.1016/j.jchromb.2011.05.012] [PMID: 21680264]
[123]
Rigo-Bonnin, R.; Tiraboschi, J.M.; Álvarez-Álvarez, M.; Pérez-Fernández, G.A.; Sanjuás-Iglesias, M.; Scévola, S.; Niubó, J.; Videla, S.; Podzamczer, D. Measurement of total and unbound bictegravir concentrations in plasma and cerebrospinal fluid by UHPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 185, 113250.
[http://dx.doi.org/10.1016/j.jpba.2020.113250] [PMID: 32199329]
[124]
Wang, C.; Williams, N.S. A mass balance approach for calculation of recovery and binding enables the use of ultrafiltration as a rapid method for measurement of plasma protein binding for even highly lipophilic compounds. J. Pharm. Biomed. Anal., 2013, 75, 112-117.
[http://dx.doi.org/10.1016/j.jpba.2012.11.018] [PMID: 23312388]
[125]
Montesano, C.; Curini, R.; Sergi, M.; Compagnone, D.; Celani, G.; Varasano, V.; Petrizzi, L.; Amorena, M. Determination of marbofloxacin in plasma and synovial fluid by ultrafiltration followed by HPLC-MS/MS. J. Pharm. Biomed. Anal., 2016, 123, 31-36.
[http://dx.doi.org/10.1016/j.jpba.2016.01.061] [PMID: 26859613]
[126]
Çelebier, M.; Nenni, M.; Altınöz, S. Ultrafiltration-based extraction and hplc analysis of naproxen sodium in human plasma samples: an innovative approach to pharmaceutical analysis. Pharm. Chem. J., 2016, 50(4), 275-279.
[http://dx.doi.org/10.1007/s11094-016-1437-7]

© 2024 Bentham Science Publishers | Privacy Policy