Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Melatonin and its Relationships with Diabetes and Obesity: A Literature Review

Author(s): Ana V.G. Ramirez*, Durval R. Filho and Larissa B.P. Cunha de Sá

Volume 17, Issue 7, 2021

Published on: 27 July, 2020

Article ID: e072620184137 Pages: 13

DOI: 10.2174/1573399816666200727102357

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Obesity is an important clinical entity, causing many public health issues. Around two billion people in the world are overweight and obese. Almost 40% of American adults are obese and Brazil has about 18 million obese people. Nowadays, 415 million people have diabetes, around 1 in every 11 adults. These numbers will rise to 650 million people within 20 years. Melatonin shows a positive profile on the regulation of the metabolism of the human body.

Objective: This study aimed to carry out a broad narrative review of the metabolic profile and associations between melatonin, diabetes and obesity.

Methods: Article reviews, systematic reviews, prospective studies, retrospective studies, randomized, double-blind, and placebo-controlled trials in humans recently published were selected and analyzed. A total of 368 articles were collated and submitted to the eligibility analysis. Subsequently, 215 studies were selected to compose the content part of the paper, and 153 studies composed the narrative review.

Results: Studies suggest a possible role of melatonin in metabolic diseases such as obesity, T2DM and metabolic syndrome. Intervention studies using this hormone in metabolic diseases are still unclear regarding the possible benefit of it. There is so far no consensus about the possible role of melatonin as an adjuvant in the treatment of metabolic diseases. More studies are necessary to define possible risks and benefits of melatonin as a therapeutic agent.

Keywords: Melatonin. diabetes. obesity. metabolism. clinical study. systematic review, T2DM.

[1]
Sociedade Brasileira de Cirurgia Bariátrica e Metabólica (SBCBM). 2019. https://www.sbcbm.org.br/endoscopia-e-obesidade/
[2]
Instituto Brasileiro de Geografia e Estatística (IBGE). http://www.ibge.gov.br
[3]
Karamitri A, Jockers R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol 2019; 15(2): 105-25.
[http://dx.doi.org/10.1038/s41574-018-0130-1] [PMID: 30531911]
[4]
Finelli C, Sommella L, Gioia S, La Sala N, Tarantino G. Should visceral fat be reduced to increase longevity? Ageing Res Rev 2013; 12(4): 996-1004.
[http://dx.doi.org/10.1016/j.arr.2013.05.007] [PMID: 23764746]
[5]
Boga JA, Caballero B, Potes Y, et al. Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J Pineal Res 2019; 66(1): e12534.
[http://dx.doi.org/10.1111/jpi.12534] [PMID: 30329173]
[6]
Forrestel AC, Miedlich SU, Yurcheshen M, Wittlin SD, Sellix MT. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia 2017; 60(5): 808-22.
[http://dx.doi.org/10.1007/s00125-016-4175-1] [PMID: 27981356]
[7]
Challet E. Keeping circadian time with hormones. Diabetes Obes Metab 2015; 17(Suppl. 1): 76-83.
[http://dx.doi.org/10.1111/dom.12516] [PMID: 26332971]
[8]
Zybina NN, Tikhomirova OV. Disturbances in melatonin secretion and the efficacy of replacement therapy in sleep disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118(8): 92-8.
[http://dx.doi.org/10.17116/jnevro20181184292]
[9]
Meng X, Li Y, Li S, et al. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017; 9(4): E367.
[http://dx.doi.org/10.3390/nu9040367] [PMID: 28387721]
[10]
Rybnikova NA, Haim A, Portnov BA. Does artificial light-at-night exposure contribute to the worldwide obesity pandemic? Int J Obes 2016; 40(5): 815-23.
[http://dx.doi.org/10.1038/ijo.2015.255] [PMID: 26795746]
[11]
Cho Y, Ryu SH, Lee BR, Kim KH, Lee E, Choi J. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chronobiol Int 2015; 32(9): 1294-310.
[http://dx.doi.org/10.3109/07420528.2015.1073158] [PMID: 26375320]
[12]
Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 2004; 25(3-4): 177-95.
[http://dx.doi.org/10.1016/j.yfrne.2004.08.001] [PMID: 15589268]
[13]
Hatori M, Gronfier C, Van Gelder RN, et al. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis 2017; 3: 9.
[http://dx.doi.org/10.1038/s41514-017-0010-2] [PMID: 28649427]
[14]
Erren TC, Reiter RJ. Melatonin: a universal time messenger. Neuroendocrinol Lett 2015; 36(3): 187-92.
[PMID: 26313381]
[15]
Reiter RJ. Melatonin: the chemical expression of darkness. Mol Cell Endocrinol 1991; 79(1-3): C153-8.
[http://dx.doi.org/10.1016/0303-7207(91)90087-9] [PMID: 1936532]
[16]
Reid KJ, Santostasi G, Baron KG, Wilson J, Kang J, Zee PC. Timing and intensity of light correlate with body weight in adults. PLoS One 2014; 9(4): e92251.
[http://dx.doi.org/10.1371/journal.pone.0092251] [PMID: 24694994]
[17]
Chepesiuk R. Missing the dark: health effects of light pollution. Environ Health Perspect 2009; 117(1): A20-7.
[http://dx.doi.org/10.1289/ehp.117-a20] [PMID: 19165374]
[18]
Bartness TJ, Wade GN. Photoperiodic control of body weight and energy metabolism in Syrian hamsters (Mesocricetus auratus): role of pineal gland, melatonin, gonads, and diet. Endocrinology 1984; 114(2): 492-8.
[http://dx.doi.org/10.1210/endo-114-2-492] [PMID: 6690288]
[19]
Bartness TJ, Goldman BD. Peak duration of serum melatonin and short-day responses in adult Siberian hamsters. Am J Physiol 1988; 255(5 Pt 2): R812-22.
[PMID: 3189592]
[20]
Lynch GR, Epstein AL. Melatonin induced changes in gonads; pelage and thermogenic characters in the white-footed mouse, Peromyscus leucopus. Comp Biochem Physiol C Comp Pharmacol 1976; 53(2): 67-8.
[http://dx.doi.org/10.1016/0306-4492(76)90054-X] [PMID: 5240]
[21]
Fernández Vázquez G, Reiter RJ, Agil A. Melatonin increases brown adipose tissue mass and function in Zücker diabetic fatty rats: implications for obesity control. J Pineal Res 2018; 64(4): e12472.
[http://dx.doi.org/10.1111/jpi.12472] [PMID: 29405372]
[22]
Diaz B, Blázquez E. Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Horm Metab Res 1986; 18(4): 225-9.
[http://dx.doi.org/10.1055/s-2007-1012279] [PMID: 3519410]
[23]
Mellado C, Rodríguez V, de Diego JG, Alvarez E, Blázquez E. Effect of pinealectomy and of diabetes on liver insulin and glucagon receptor concentrations in the rat. J Pineal Res 1989; 6(4): 295-306.
[http://dx.doi.org/10.1111/j.1600-079X.1989.tb00425.x] [PMID: 2543806]
[24]
Cipolla-Neto J. O papel da melatonina no controle do metabolismo energético: ações centrais, periféricas e a regulação da função metabólica. Projeto Temático FAPESP 2016.
[25]
Korkmaz A, Topal T, Tan DX, Reiter RJ. Role of melatonin in metabolic regulation. Rev Endocr Metab Disord 2009; 10(4): 261-70.
[http://dx.doi.org/10.1007/s11154-009-9117-5] [PMID: 19911281]
[26]
Picinato MC, Haber EP, Cipolla-Neto J, Curi R, de Oliveira Carvalho CR, Carpinelli AR. Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. J Pineal Res 2002; 33(3): 156-60.
[http://dx.doi.org/10.1034/j.1600-079X.2002.02903.x] [PMID: 12220330]
[27]
Ha E, Yim SV, Chung JH, et al. Melatonin stimulates glucose transport via insulin receptor substrate-1/phosphatidylinositol 3-kinase pathway in C2C12 murine skeletal muscle cells. J Pineal Res 2006; 41(1): 67-72.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00334.x] [PMID: 16842543]
[28]
Prunet-Marcassus B, Desbazeille M, Bros A, et al. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology 2003; 144(12): 5347-52.
[http://dx.doi.org/10.1210/en.2003-0693] [PMID: 12970162]
[29]
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39(6): 990-1028.
[http://dx.doi.org/10.1210/er.2018-00084] [PMID: 30215696]
[30]
Suofu Y, Li W, Jean-Alphonse FG, et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 2017; 114(38): E7997-8006.
[http://dx.doi.org/10.1073/pnas.1705768114] [PMID: 28874589]
[31]
Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 2015; 58(1): 1-11.
[http://dx.doi.org/10.1111/jpi.12189] [PMID: 25369242]
[32]
Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 2017; 63(1): e12416.
[http://dx.doi.org/10.1111/jpi.12416] [PMID: 28439991]
[33]
Mayo JC, Sainz RM, González Menéndez P, Cepas V, Tan DX, Reiter RJ. Melatonin and sirtuins: A “not-so unexpected” relationship. J Pineal Res 2017; 62(2): e12391.
[http://dx.doi.org/10.1111/jpi.12391] [PMID: 28109165]
[34]
Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 2015; 59(3): 292-307.
[http://dx.doi.org/10.1111/jpi.12264] [PMID: 26201382]
[35]
Vriend J, Reiter RJ. Melatonin as a proteasome inhibitor. Is there any clinical evidence? Life Sci 2014; 115(1-2): 8-14.
[http://dx.doi.org/10.1016/j.lfs.2014.08.024] [PMID: 25219883]
[36]
Hoijman E, Rocha Viegas L, Keller Sarmiento MI, Rosenstein RE, Pecci A. Involvement of Bax protein in the prevention of glucocorticoid-induced thymocytes apoptosis by melatonin. Endocrinology 2004; 145(1): 418-25.
[http://dx.doi.org/10.1210/en.2003-0764] [PMID: 14500572]
[37]
Rivara S, Mor M, Bedini A, Spadoni G, Tarzia G. Melatonin receptor agonists: SAR and applications to the treatment of sleep-wake disorders. Curr Top Med Chem 2008; 8(11): 954-68.
[http://dx.doi.org/10.2174/156802608784936719] [PMID: 18673165]
[38]
Posadzki PP, Bajpai R, Kyaw BM, et al. Melatonin and health: an umbrella review of health outcomes and biological mechanisms of action. BMC Med 2018; 16(1): 18.
[http://dx.doi.org/10.1186/s12916-017-1000-8] [PMID: 29397794]
[39]
Rivara S, Pala D, Bedini A, Spadoni G. Therapeutic uses of melatonin and melatonin derivatives: a patent review (2012–2014). Expert Opin Ther Pat 2015; 25(4): 425-41.
[40]
Carpentieri A, Díaz de Barboza G, Areco V, Peralta López M, Tolosa de Talamoni N. New perspectives in melatonin uses. Pharmacol Res 2012; 65(4): 437-44.
[http://dx.doi.org/10.1016/j.phrs.2012.01.003] [PMID: 22311380]
[41]
De Crescenzo F, Lennox A, Gibson JC, et al. Melatonin as a treatment for mood disorders: a systematic review. Acta Psychiatr Scand 2017; 136(6): 549-58.
[http://dx.doi.org/10.1111/acps.12755] [PMID: 28612993]
[42]
Pandi-Perumal SR, BaHammam AS, Ojike NI, et al. Melatonin and human cardiovascular disease. J Cardiovasc Pharmacol Ther 2017; 22(2): 122-32.
[http://dx.doi.org/10.1177/1074248416660622] [PMID: 27450357]
[43]
Sánchez-Barceló EJ, Mediavilla MD, Reiter RJ. Clinical uses of melatonin in pediatrics. Int J Pediatr 2011; 2011892624.
[http://dx.doi.org/10.1155/2011/892624] [PMID: 21760817]
[44]
Sánchez-Barceló EJ, Mediavilla MD, Tan DX, Reiter RJ. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 2010; 17(19): 2070-95.
[http://dx.doi.org/10.2174/092986710791233689] [PMID: 20423309]
[45]
Sanchez-Barcelo EJ, Rueda N, Mediavilla MD, Martinez-Cue C, Reiter RJ. Clinical uses of melatonin in neurological diseases and mental and behavioural disorders. Curr Med Chem 2017; 24(35): 3851-78.
[http://dx.doi.org/10.2174/0929867324666170718105557] [PMID: 28721826]
[46]
Srinivasan V, Brzezinski A, Oter S, Shillcutt SD, Eds. Melatonin and melatonergic drugs in clinical practice. New Delhi, India: Springer India 2014.
[http://dx.doi.org/10.1007/978-81-322-0825-9]
[47]
Goni L, Sun D, Heianza Y, et al. A circadian rhythm-related MTNR1B genetic variant modulates the effect of weight-loss diets on changes in adiposity and body composition: the POUNDS Lost trial. Eur J Nutr 2019; 58(4): 1381-9.
[http://dx.doi.org/10.1007/s00394-018-1660-y] [PMID: 29516223]
[48]
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84(1): 277-359.
[http://dx.doi.org/10.1152/physrev.00015.2003] [PMID: 14715917]
[49]
Tan DX, Manchester LC, Fuentes-Broto L, Paredes SD, Reiter RJ. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev 2011; 12(3): 167-88.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00756.x] [PMID: 20557470]
[50]
Heldmaier G, Hoffmann K. Melatonin stimulates growth of brown adipose tissue. Nature 1974; 247(5438): 224-5.
[http://dx.doi.org/10.1038/247224a0] [PMID: 4810431]
[51]
Andrews RV, Belknap RW. Metabolic and thermoregulatory effects of photoperiod and melatonin on Peromyscus maniculatus acclimatization. Comp Biochem Physiol A Comp Physiol 1985; 82(3): 725-9.
[http://dx.doi.org/10.1016/0300-9629(85)90458-X] [PMID: 2866895]
[52]
Bartness TJ, Demas GE, Song CK. Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp Biol Med (Maywood) 2002; 227(6): 363-76.
[http://dx.doi.org/10.1177/153537020222700601] [PMID: 12037125]
[53]
Dark J, Zucker I, Wade GN. Photoperiodic regulation of body mass, food intake, and reproduction in meadow voles. Am J Physiol 1983; 245(3): R334-8.
[PMID: 6351638]
[54]
Zhang L, Zhu W, Wang Z. Role of photoperiod on hormone concentrations and adaptive capacity in tree shrews, Tupaia belangeri. Comp Biochem Physiol A Mol Integr Physiol 2012; 163(3-4): 253-9.
[http://dx.doi.org/10.1016/j.cbpa.2012.08.008] [PMID: 22955104]
[55]
Wade GN, Bartness TJ. Seasonal obesity in Syrian hamsters: effects of age, diet, photoperiod, and melatonin. Am J Physiol 1984; 247(2 Pt 2): R328-34.
[PMID: 6465348]
[56]
Viswanathan M, Hissa R, George JC. Effects of short photoperiod and melatonin treatment on thermogenesis in the Syrian hamster. J Pineal Res 1986; 3(4): 311-21.
[http://dx.doi.org/10.1111/j.1600-079X.1986.tb00754.x] [PMID: 3783415]
[57]
Hagelstein KA, Folk GE Jr. Effects of photoperiod, cold acclimation and melatonin on the white rat. Comp Biochem Physiol C Comp Pharmacol 1979; 62C(2): 225-9.
[http://dx.doi.org/10.1016/0306-4492(79)90015-7] [PMID: 37031]
[58]
Heldmaier G, Steinlechner S, Rafael J, Vsiansky P. Photoperiodic control and effects of melatonin on nonshivering thermogenesis and brown adipose tissue. Science 1981; 212(4497): 917-9.
[http://dx.doi.org/10.1126/science.7233183] [PMID: 7233183]
[59]
Reiter RJ. Influence of pinealectomy on the breeding capability of hamsters maintained under natural photoperiodic and temperature conditions. Neuroendocrinology 1974; 13(6): 366-70.
[http://dx.doi.org/10.1159/000122222] [PMID: 4841981]
[60]
Smit-Vis JH. The effect of pinealectomy and of testosterone administration on the occurrence of hibernation in adult male golden hamsters. Acta Morphol Neerl Scand 1972; 10(3): 269-82.
[PMID: 4642122]
[61]
Ralph CL, Harlow HJ, Phillips JA. Delayed effect of pinealectomy on hibernation of the golden-mantled ground squirrel. Int J Biometeorol 1982; 26(4): 311-28.
[http://dx.doi.org/10.1007/BF02219502] [PMID: 7166441]
[62]
Wade GN, Bartness TJ. Effects of photoperiod and gonadectomy on food intake, body weight, and body composition in Siberian hamsters. Am J Physiol 1984; 246(1 Pt 2): R26-30.
[PMID: 6696099]
[63]
Glass JD, Lynch GR. Evidence for a brain site of melatonin action in the white-footed mouse, Peromyscus leucopus. Neuroendocrinology 1982; 34(1): 1-6.
[http://dx.doi.org/10.1159/000123269] [PMID: 7057959]
[64]
Vaughan MK, Richardson BA, Johnson LY, et al. Natural and synthetic analogues of melatonin and related compounds. II. Effects on plasma thyroid hormones and cholesterol levels in male Syrian hamsters. J Neural Transm (Vienna) 1983; 56(4): 279-91.
[http://dx.doi.org/10.1007/BF01243496] [PMID: 6875534]
[65]
Holtorf AP, Heldmaier G, Thiele G, Steinlechner S. Diurnal changes in sensitivity to melatonin in intact and pinealectomized Djungarian hamsters: effects on thermogenesis, cold tolerance, and gonads. J Pineal Res 1985; 2(4): 393-403.
[http://dx.doi.org/10.1111/j.1600-079X.1985.tb00719.x] [PMID: 3831320]
[66]
Buonfiglio D, Parthimos R, Dantas R, et al. Melatonin absence leads to long-term leptin resistance and overweight in rats. Front Endocrinol (Lausanne) 2018; 9: 122.
[http://dx.doi.org/10.3389/fendo.2018.00122] [PMID: 29636725]
[67]
Ryu V, Zarebidaki E, Albers HE, Xue B, Bartness TJ. Short photoperiod reverses obesity in Siberian hamsters via sympathetically induced lipolysis and Browning in adipose tissue. Physiol Behav 2018; 190: 11-20.
[http://dx.doi.org/10.1016/j.physbeh.2017.07.011] [PMID: 28694154]
[68]
Bamshad M, Song CK, Bartness TJ. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Physiol 1999; 276(6): R1569-78.
[PMID: 10362733]
[69]
Sinnamon WB, Pivorun EB. Melatonin induces hypertrophy of brown adipose tissue in Spermophilus tridecemlineatus. Cryobiology 1981; 18(6): 603-7.
[http://dx.doi.org/10.1016/0011-2240(81)90129-2] [PMID: 7318484]
[70]
Hardeland R. Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors 2009; 35(2): 183-92.
[http://dx.doi.org/10.1002/biof.23] [PMID: 19449447]
[71]
Aarseth JJ, Nordøy ES, Stokkan KA. Melatonin potentiates the vasoconstrictive effect of noradrenaline in renal artery from newborn hooded seals (Cystophora cristata) and harp seals (Phoca groenlandica). J Comp Physiol B 2001; 171(6): 491-6.
[http://dx.doi.org/10.1007/s003600100199] [PMID: 11585261]
[72]
Prunet-Marcassus B, Ambid L, Viguerie-Bascands N, Pénicaud L, Casteilla L. Evidence for a direct effect of melatonin on mitochondrial genome expression of Siberian hamster brown adipocytes. J Pineal Res 2001; 30(2): 108-15.
[http://dx.doi.org/10.1034/j.1600-079X.2001.300206.x] [PMID: 11270477]
[73]
van Faassen M, Bischoff R, Kema IP. Relationship between plasma and salivary melatonin and cortisol investigated by LC-MS/MS. Clin Chem Lab Med 2017; 55(9): 1340-8.
[http://dx.doi.org/10.1515/cclm-2016-0817] [PMID: 27997348]
[74]
Monteleone P, Fuschino A, Nolfe G, Maj M. Temporal relationship between melatonin and cortisol responses to nighttime physical stress in humans. Psychoneuroendocrinology 1992; 17(1): 81-6.
[http://dx.doi.org/10.1016/0306-4530(92)90078-L] [PMID: 1609019]
[75]
Kostoglou-Athanassiou I, Treacher DF, Wheeler MJ, Forsling ML. Melatonin administration and pituitary hormone secretion. Clin Endocrinol (Oxf) 1998; 48(1): 31-7.
[http://dx.doi.org/10.1046/j.1365-2265.1998.00341.x] [PMID: 9509065]
[76]
Haffen E. [Measuring circadian rhythm]. Encephale 2009; 35(Suppl. 2): S63-7. [Measuring circadian rhythm].
[http://dx.doi.org/10.1016/S0013-7006(09)75536-8] [PMID: 19268173]
[77]
Ramachandran N, Smyth N, Thorn L, Eardley A, Evans P, Clow A. Relationship between post-awakening salivary cortisol and melatonin secretion in healthy participants. Stress 2016; 19(2): 260-3.
[http://dx.doi.org/10.3109/10253890.2016.1146671] [PMID: 26809638]
[78]
Jung CM, Khalsa SB, Scheer FA, et al. Acute effects of bright light exposure on cortisol levels. J Biol Rhythms 2010; 25(3): 208-16.
[http://dx.doi.org/10.1177/0748730410368413] [PMID: 20484692]
[79]
Ramage LE, Akyol M, Fletcher AM, et al. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab 2016; 24(1): 130-41.
[http://dx.doi.org/10.1016/j.cmet.2016.06.011] [PMID: 27411014]
[80]
Lv YF, Yu J, Sheng YL, et al. Glucocorticoids Suppress the Browning of Adipose Tissue via miR-19b in Male Mice. Endocrinology 2018; 159(1): 310-22.
[http://dx.doi.org/10.1210/en.2017-00566] [PMID: 29077919]
[81]
Thuzar M, Law WP, Ratnasingam J, Jang C, Dimeski G, Ho KKY. Glucocorticoids suppress brown adipose tissue function in humans: A double-blind placebo-controlled study. Diabetes Obes Metab 2018; 20(4): 840-8.
[http://dx.doi.org/10.1111/dom.13157] [PMID: 29119718]
[82]
Scotney H, Symonds ME, Law J, Budge H, Sharkey D, Manolopoulos KN. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo. Metabolism 2017; 70: 125-32.
[http://dx.doi.org/10.1016/j.metabol.2017.01.024] [PMID: 28403937]
[83]
Al-Sarraf IAK, Kasabri V, Akour A, Naffa R. Melatonin and cryptochrome 2 in metabolic syndrome patients with or without diabetes: a cross-sectional study. Horm Mol Biol Clin Investig 2018; 35(2)
[http://dx.doi.org/10.1515/hmbci-2018-0016]
[84]
Baron KG, Reid KJ, Wolfe LF, Attarian H, Zee PC. Phase Relationship between DLMO and sleep onset and the risk of metabolic disease among normal weight and overweight/obese adults. J Biol Rhythms 2018; 33(1): 76-83.
[http://dx.doi.org/10.1177/0748730417745914] [PMID: 29262758]
[85]
Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci 2017; 74(21): 3941-54.
[http://dx.doi.org/10.1007/s00018-017-2611-0] [PMID: 28819865]
[86]
Rao PV. Type 2 diabetes in children: Clinical aspects and risk factors. Indian J Endocrinol Metab 2015; 19(Suppl. 1): S47-50.
[http://dx.doi.org/10.4103/2230-8210.155401] [PMID: 25941651]
[87]
Milcu I, Nanu L, Marcean R, Sitaru S. The action of pineal extract and epiphysectomy on hepatic and muscular glycogen after prolonged infusion of glucose. Stud Cercet Endocrinol 1963; 14: 651-5.
[PMID: 14102548]
[88]
Zanquetta MM, Seraphim PM, Sumida DH, Cipolla-Neto J, Machado UF. Calorie restriction reduces pinealectomy-induced insulin resistance by improving GLUT4 gene expression and its translocation to the plasma membrane. J Pineal Res 2003; 35(3): 141-8.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00067.x] [PMID: 12932196]
[89]
Ghosh G, De K, Maity S, et al. Melatonin protects against oxidative damage and restores expression of GLUT4 gene in the hyperthyroid rat heart. J Pineal Res 2007; 42(1): 71-82.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00386.x] [PMID: 17198541]
[90]
McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP. Melatonin secretion and the incidence of type 2 diabetes. JAMA 2013; 309(13): 1388-96.
[http://dx.doi.org/10.1001/jama.2013.2710] [PMID: 23549584]
[91]
Chen W, Cao H, Lu QY, et al. Urinary 6-sulfatoxymelatonin level in diabetic retinopathy patients with type 2 diabetes. Int J Clin Exp Pathol 2014; 7(7): 4317-22.
[PMID: 25120815]
[92]
National Sleep Foundation. “Sleep in America” Poll. Washington, DC: National Sleep Foundation 2002.
[93]
Vorona RD, Winn MP, Babineau TW, Eng BP, Feldman HR, Ware JC. Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index. Arch Intern Med 2005; 165(1): 25-30.
[http://dx.doi.org/10.1001/archinte.165.1.25] [PMID: 15642870]
[94]
Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev 2010; 90(1): 47-112.
[http://dx.doi.org/10.1152/physrev.00043.2008] [PMID: 20086074]
[95]
Lucassen EA, Rother KI, Cizza G. Interacting epidemics? Sleep curtailment, insulin resistance, and obesity. Ann N Y Acad Sci 2012; 1264: 110-34.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06655.x] [PMID: 22827862]
[96]
Amstrup AK, Sikjaer T, Pedersen SB, Heickendorff L, Mosekilde L, Rejnmark L. Reduced fat mass and increased lean mass in response to 1 year of melatonin treatment in postmenopausal women: A randomized placebo-controlled trial. Clin Endocrinol (Oxf) 2016; 84(3): 342-7.
[http://dx.doi.org/10.1111/cen.12942] [PMID: 26352863]
[97]
Romo-Nava F, Alvarez-Icaza González D, Fresán-Orellana A, et al. Melatonin attenuates antipsychotic metabolic effects: an eight-week randomized, double-blind, parallel-group, placebo-controlled clinical trial. Bipolar Disord 2014; 16(4): 410-21.
[http://dx.doi.org/10.1111/bdi.12196] [PMID: 24636483]
[98]
Agahi M, Akasheh N, Ahmadvand A, Akbari H, Izadpanah F. Effect of melatonin in reducing second-generation antipsychotic metabolic effects: A double blind controlled clinical trial. Diabetes Metab Syndr 2018; 12(1): 9-15.
[http://dx.doi.org/10.1016/j.dsx.2017.08.004] [PMID: 28847468]
[99]
Kamath A, Rather ZA. Melatonin for atypical antipsychotic-induced metabolic adverse effects: a meta-analysis of randomized controlled trials. BioMed Res Int 2018; 20184907264.
[http://dx.doi.org/10.1155/2018/4907264] [PMID: 29682546]
[100]
Mohammadi-Sartang M, Ghorbani M, Mazloom Z. Effects of melatonin supplementation on blood lipid concentrations: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2018; 37(6 Pt A): 1943-54.
[http://dx.doi.org/10.1016/j.clnu.2017.11.003] [PMID: 29191493]
[101]
Mostafavi SA, Solhi M, Mohammadi MR, Akhondzadeh S. Melatonin for reducing weight gain following administration of atypical antipsychotic olanzapine for adolescents with bipolar disorder: a randomized, double-blind, placebo-controlled trial. J Child Adolesc Psychopharmacol 2017; 27(5): 440-4.
[http://dx.doi.org/10.1089/cap.2016.0046] [PMID: 28339282]
[102]
Zheng C, Dalla Man C, Cobelli C, et al. A common variant in the MTNR1b gene is associated with increased risk of impaired fasting glucose (IFG) in youth with obesity. Obesity (Silver Spring) 2015; 23(5): 1022-9.
[http://dx.doi.org/10.1002/oby.21030] [PMID: 25919927]
[103]
Zhan Y, Li C, Gao Q, Chen J, Yu S, Liu SG. Association between the rs4753426 polymorphism in MTNR1B with fasting plasma glucose level and pancreatic β-cell function in gestational diabetes mellitus. Genet Mol Res 2015; 14(3): 8778-85.
[http://dx.doi.org/10.4238/2015.August.3.1] [PMID: 26345809]
[104]
Lane JM, Chang AM, Bjonnes AC, et al. Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology. Diabetes 2016; 65(6): 1741-51.
[http://dx.doi.org/10.2337/db15-0999] [PMID: 26868293]
[105]
Bonnefond A, Froguel P. The case for too little melatonin signalling in increased diabetes risk. Diabetologia 2017; 60(5): 823-5.
[http://dx.doi.org/10.1007/s00125-017-4255-x] [PMID: 28314944]
[106]
Bonnefond A, Karamitri A, Jockers R, Froguel P. The difficult journey from genome-wide association studies to pathophysiology: the melatonin receptor 1B (MT2) paradigm. Cell Metab 2016; 24(3): 345-7.
[http://dx.doi.org/10.1016/j.cmet.2016.08.015] [PMID: 27626190]
[107]
Mulder H. Melatonin signalling and type 2 diabetes risk: too little, too much or just right? Diabetologia 2017; 60(5): 826-9.
[http://dx.doi.org/10.1007/s00125-017-4249-8] [PMID: 28303303]
[108]
Tarnowski M, Malinowski D, Safranow K, Dziedziejko V, Pawlik A. MTNR1A and MTNR1B gene polymorphisms in women with gestational diabetes. Gynecol Endocrinol 2017; 33(5): 395-8.
[http://dx.doi.org/10.1080/09513590.2016.1276556] [PMID: 28084098]
[109]
Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci 2017; 173: 94-106.
[http://dx.doi.org/10.1016/j.lfs.2017.02.008] [PMID: 28214594]
[110]
Devavry S, Legros C, Brasseur C, et al. Molecular pharmacology of the mouse melatonin receptors MT1 and MT2. Eur J Pharmacol 2012; 677(1-3): 15-21.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.009] [PMID: 22202844]
[111]
Tuomi T, Nagorny CLF, Singh P, et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab 2016; 23(6): 1067-77.
[http://dx.doi.org/10.1016/j.cmet.2016.04.009] [PMID: 27185156]
[112]
Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ. Melatonin, energy metabolism, and obesity: a review. J Pineal Res 2014; 56(4): 371-81.
[http://dx.doi.org/10.1111/jpi.12137] [PMID: 24654916]
[113]
Amaral FG, Turati AO, Barone M, et al. Melatonin synthesis impairment as a new deleterious outcome of diabetes-derived hyperglycemia. J Pineal Res 2014; 57(1): 67-79.
[http://dx.doi.org/10.1111/jpi.12144] [PMID: 24819547]
[114]
Laudon M, Frydman-Marom A. Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders. Int J Mol Sci 2014; 15(9): 15924-50.
[http://dx.doi.org/10.3390/ijms150915924] [PMID: 25207602]
[115]
Walecka-Kapica E, Chojnacki J, Stępień A, Wachowska-Kelly P, Klupińska G, Chojnacki C. Melatonin and female hormone secretion in postmenopausal overweight women. Int J Mol Sci 2015; 16(1): 1030-42.
[http://dx.doi.org/10.3390/ijms16011030] [PMID: 25569084]
[116]
Roth T, Nir T, Zisapel N. Prolonged release melatonin for improving sleep in totally blind subjects: a pilot placebo-controlled multicenter trial. Nat Sci Sleep 2015; 7: 13-23.
[PMID: 25678831]
[117]
Nishi T, Saeki K, Obayashi K, et al. The effect of blue-blocking intraocular lenses on circadian biological rhythm: protocol for a randomised controlled trial (CLOCK-IOL colour study). BMJ Open 2015; 5(5): e007930.
[http://dx.doi.org/10.1136/bmjopen-2015-007930] [PMID: 25968007]
[118]
Cardinali DP, Hardeland R. Inflammaging, metabolic syndrome and melatonin: a call for treatment studies. Neuroendocrinology 2017; 104(4): 382-97.
[http://dx.doi.org/10.1159/000446543] [PMID: 27165273]
[119]
Owino S, Sánchez-Bretaño A, Tchio C, et al. Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J Pineal Res 2018; 64(3)
[http://dx.doi.org/10.1111/jpi.12462] [PMID: 29247541]
[120]
Picinato MC, Haber EP, Carpinelli AR, Cipolla-Neto J. Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. J Pineal Res 2002; 33(3): 172-7.
[http://dx.doi.org/10.1034/j.1600-079X.2002.02925.x] [PMID: 12220333]
[121]
Nogueira TC, Lellis-Santos C, Jesus DS, et al. Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology 2011; 152(4): 1253-63.
[http://dx.doi.org/10.1210/en.2010-1088] [PMID: 21303940]
[122]
Alonso-Vale MI, Borges-Silva CN, Anhê GF, et al. Light/dark cycle-dependent metabolic changes in adipose tissue of pinealectomized rats. Horm Metab Res 2004; 36(7): 474-9.
[http://dx.doi.org/10.1055/s-2004-825723] [PMID: 15305231]
[123]
Doosti-Irani A, Ostadmohammadi V, Mirhosseini N, et al. The effects of melatonin supplementation on glycemic control: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res 2018; 50(11): 783-90.
[http://dx.doi.org/10.1055/a-0752-8462] [PMID: 30396207]
[124]
Dehdashtian E, Mehrzadi S, Yousefi B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 2018; 193: 20-33.
[http://dx.doi.org/10.1016/j.lfs.2017.12.001] [PMID: 29203148]
[125]
Trivedi PP, Jena GB, Tikoo KB, Kumar V. Melatonin modulated autophagy and Nrf2 signaling pathways in mice with colitis-associated colon carcinogenesis. Mol Carcinog 2016; 55(3): 255-67.
[http://dx.doi.org/10.1002/mc.22274] [PMID: 25598500]
[126]
Wolden-Hanson T, Mitton DR, McCants RL, et al. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 2000; 141(2): 487-97.
[http://dx.doi.org/10.1210/endo.141.2.7311] [PMID: 10650927]
[127]
Peschke E, Bach AG, Mühlbauer E. Parallel signaling pathways of melatonin in the pancreatic β-cell. J Pineal Res 2006; 40(2): 184-91.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00297.x] [PMID: 16441556]
[128]
Zanuto R, Siqueira-Filho MA, Caperuto LC, et al. Melatonin improves insulin sensitivity independently of weight loss in old obese rats. J Pineal Res 2013; 55(2): 156-65.
[http://dx.doi.org/10.1111/jpi.12056] [PMID: 23565768]
[129]
Rhind SM, Archer ZA, Adam CL. Seasonality of food intake in ruminants: recent developments in understanding. Nutr Res Rev 2002; 15(1): 43-65.
[http://dx.doi.org/10.1079/NRR200236] [PMID: 19087398]
[130]
Piccinetti CC, Migliarini B, Olivotto I, Coletti G, Amici A, Carnevali O. Appetite regulation: the central role of melatonin in Danio rerio. Horm Behav 2010; 58(5): 780-5.
[http://dx.doi.org/10.1016/j.yhbeh.2010.07.013] [PMID: 20692259]
[131]
Cassone VM, Roberts MH, Moore RY. Melatonin inhibits metabolic activity in the rat suprachiasmatic nuclei. Neurosci Lett 1987; 81(1-2): 29-34.
[http://dx.doi.org/10.1016/0304-3940(87)90335-1] [PMID: 3696472]
[132]
Blaicher W, Speck E, Imhof MH, et al. Melatonin in postmenopausal females. Arch Gynecol Obstet 2000; 263(3): 116-8.
[http://dx.doi.org/10.1007/s004040050008] [PMID: 10763839]
[133]
Barrenetxe J, Delagrange P, Martínez JA. Physiological and metabolic functions of melatonin. J Physiol Biochem 2004; 60(1): 61-72.
[http://dx.doi.org/10.1007/BF03168221] [PMID: 15352385]
[134]
Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 2014; 15(9): 16848-84.
[http://dx.doi.org/10.3390/ijms150916848] [PMID: 25247581]
[135]
Nduhirabandi F, du Toit EF, Lochner A. Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? Acta Physiol (Oxf) 2012; 205(2): 209-23.
[http://dx.doi.org/10.1111/j.1748-1716.2012.02410.x] [PMID: 22226301]
[136]
Ferreira DS, Amaral FG, Mesquita CC, et al. Maternal melatonin programs the daily pattern of energy metabolism in adult offspring. PLoS One 2012; 7(6): e38795.
[http://dx.doi.org/10.1371/journal.pone.0038795] [PMID: 22719949]
[137]
Adamsson M, Laike T, Morita T. Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length. J Physiol Anthropol 2016; 36(1): 6.
[http://dx.doi.org/10.1186/s40101-016-0103-9] [PMID: 27435153]
[138]
Anhê GF, Caperuto LC, Pereira-Da-Silva M, et al. In vivo activation of insulin receptor tyrosine kinase by melatonin in the rat hypothalamus. J Neurochem 2004; 90(3): 559-66.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02514.x] [PMID: 15255933]
[139]
Rubio-Sastre P, Scheer FA, Gómez-Abellán P, Madrid JA, Garaulet M. Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep (Basel) 2014; 37(10): 1715-9.
[http://dx.doi.org/10.5665/sleep.4088] [PMID: 25197811]
[140]
Lindgren O, Mari A, Deacon CF, et al. Differential islet and incretin hormone responses in morning versus afternoon after standardized meal in healthy men. J Clin Endocrinol Metab 2009; 94(8): 2887-92.
[http://dx.doi.org/10.1210/jc.2009-0366] [PMID: 19435824]
[141]
Gil-Lozano M, Hunter PM, Behan LA, Gladanac B, Casper RF, Brubaker PL. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers. Am J Physiol Endocrinol Metab 2016; 310(1): E41-50.
[http://dx.doi.org/10.1152/ajpendo.00298.2015] [PMID: 26530153]
[142]
McMullan CJ, Curhan GC, Schernhammer ES, Forman JP. Association of nocturnal melatonin secretion with insulin resistance in nondiabetic young women. Am J Epidemiol 2013; 178(2): 231-8.
[http://dx.doi.org/10.1093/aje/kws470] [PMID: 23813704]
[143]
Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009; 41(1): 77-81.
[http://dx.doi.org/10.1038/ng.290] [PMID: 19060907]
[144]
Zephy D, Ahmad J. Type 2 diabetes mellitus: Role of melatonin and oxidative stress. Diabetes Metab Syndr 2015; 9(2): 127-31.
[http://dx.doi.org/10.1016/j.dsx.2014.09.018] [PMID: 25450812]
[145]
Hegron A, Jockers R. [In-depth analysis of the relationship between the MT2 receptor of melatonin and type 2 diabetes]. Med Sci (Paris) 2019; 35(5): 412-6.
[http://dx.doi.org/10.1051/medsci/2019088] [PMID: 31115323]
[146]
Espino J, Rodríguez AB, Pariente JA. Melatonin and Oxidative Stress in the Diabetic State: Clinical Implications and Potential Therapeutic Applications. Curr Med Chem 2019; 26(22): 4178-90.
[http://dx.doi.org/10.2174/0929867325666180410094149] [PMID: 29637854]
[147]
Bonnefond A, Froguel P. Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go? Curr Diab Rep 2017; 17(12): 122.
[http://dx.doi.org/10.1007/s11892-017-0957-1] [PMID: 29063374]
[148]
Johansson LC, Stauch B, McCorvy JD, et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature 2019; 569(7755): 289-92.
[http://dx.doi.org/10.1038/s41586-019-1144-0] [PMID: 31019305]
[149]
Karamitri A, Plouffe B, Bonnefond A, et al. Type 2 diabetes-associated variants of the MT2 melatonin receptor affect distinct modes of signaling. Sci Signal 2018; 11(545): eaan6622.
[http://dx.doi.org/10.1126/scisignal.aan6622] [PMID: 30154102]
[150]
Song J, Whitcomb DJ, Kim BC. The role of melatonin in the onset and progression of type 3 diabetes. Mol Brain 2017; 10(1): 35.
[http://dx.doi.org/10.1186/s13041-017-0315-x] [PMID: 28764741]
[151]
Farias TDSM, Paixao RID, Cruz MM, et al. Melatonin Supplementation Attenuates the Pro-Inflammatory Adipokines Expression in Visceral Fat from Obese Mice Induced by A High-Fat Diet. Cells 2019; 8(9): 1041.
[http://dx.doi.org/10.3390/cells8091041] [PMID: 31489938]
[152]
de Luis DA, Izaola O, Primo D, Aller R. A circadian rhythm-related MTNR1B genetic variant (rs10830963) modulate body weight change and insulin resistance after 9 months of a high protein/low carbohydrate vs a standard hypocaloric diet. J Diabetes Complications 2020; 34(4): 107534.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107534] [PMID: 32057567]
[153]
Halpern B, Mancini MC, Bueno C, et al. Melatonin increases brown adipose tissue volume and activity in patients with melatonin deficiency: A proof-of-concept study. Diabetes 2019; 68(5): 947-52.
[http://dx.doi.org/10.2337/db18-0956] [PMID: 30765337]
[154]
Loloei S, Sepidarkish M, Heydarian A, et al. The effect of melatonin supplementation on lipid profile and anthropometric indices: A systematic review and meta-analysis of clinical trials. Diabetes Metab Syndr 2019; 13(3): 1901-10.
[http://dx.doi.org/10.1016/j.dsx.2019.04.043] [PMID: 31235113]
[155]
Amaral FG, Castrucci AM, Cipolla-Neto J, et al. Environmental control of biological rhythms: effects on development, fertility and metabolism. J Neuroendocrinol 2014; 26(9): 603-12.
[http://dx.doi.org/10.1111/jne.12144] [PMID: 24617798]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy