[6]
Dimitrova, N.; Zamudio, J.R.; Jong, R.M.; Soukup, D.; Resnick, R.; Sarma, K.; Ward, A.J.; Raj, A.; Lee, J.; Sharp, P.A.; Jacks, T. Public access nih public access. PLoS One, 2017, 32, 736-740.
[8]
Rodrıguez-Cuevas, S.; Barroso-Bravo, S.; Almanza-Estrada, J.; Cristóbal-Martınez, L.; González-Rodrıguez, E. Electrochemotherapy in primary and metastatic skin tumors: phase ii trial using intralesional bleomycin. Arch. Med. Res., 2001, 32, 273-276.
[10]
Mohandas, R.; Gayathri, R.; Priya, V. Cancer nanotechnology: A Review. Drug Invent. Today, 2018, 10, 2719-2726.
[11]
Yadollahpour, A.; Asl, H.M.; Rashidi, S. Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian J. Pharm., 2017, 11, S7-S13.
[12]
Yadollahpour, A.; Jalilifar, M.; Rashidi, S. A review of the feasibility and clinical applications of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Int. J. Pharm. Technol., 2016, 8, 14737-14748.
[15]
Sweetha, G.; Abraham, A.; Dhanraj, M.; Jain, A.R. Fabrication and evaluation of polylactic acid membrane for drug delivery system. Drug Invent. Today, 2018, 10, 433-436.
[23]
Velraj, M.; Shruthi, V.; Murugavel, S.; Shanmugam, R. Evaluation of quercetin-loaded poly-lactide-co-glycolide acid silver nanoparticles from the ethanolic extract of mallotus philippensis fruits. Drug Invent. Today, 2018, 10, 253-256.
[24]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[26]
Lakshmi, P.J.; Anitha, R.; Lakshmi, T. Targeted drug delivery systems used in dentistry - A short review. Drug Invent. Today, 2018, 10, 2747-2751.
[47]
Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an Example. In: Handbook of experimental pharmacology; Springer: Berlin, 2010; pp. 3-53.
[59]
Chichieveishvili, N.; Khubulava, S.; Korsantiya, B.; Kristesashvili, G.; Pichhaia, G. The possibility of silver nanoparticle use in medicine. Drug Invent. Today, 2018, 10, 1222-1226.
[63]
Mohammadi-Asl, J.; Dinarv, G.; Golchin, N.; Saki, N.; Ranjberi, N.; Rashidi, I. The diagnostic value of gene expression of fhl1 in the differential diagnosis of papillary thyroid carcinoma and benign tumors. JIUMS, 2014, 31(266), 2113-2121.
[78]
Banerjee, D.; Sengupta, S. Nanoparticles in Cancer Chemotherapy.Progress in Molecular Biology and Translational Science; Elsevier B.V.: Asmterdam, 2011, 104, pp. ()489-507.
[80]
Durairaj, B.; Santhi, R.; Hemalatha, A. Isolation of chitosan from fish scales of catla catla and synthesis, characterization and screening for larvicidal potential of chitosan-based silver nanoparticles. Drug Invent. Today, 2018, 10, 1357-1362.
[88]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[120]
Yadollahpour, A.; Venkateshwarlu, G. Applications of gadolinium nanoparticles in magnetic resonance imaging: a review on recent advances in clinical imaging. Int. J. Pharm. Technol., 2016, 8, 11379-11393.
[136]
Hermanson, G.T. Bioconjugate Techniques; Elsevier: Amsterdam, 2013.