[1]
Estager, J.; Holbrey, J.D.; Swadźba-Kwaśny, M. Halometallate ionic liquids--revisited. Chem. Soc. Rev., 2014, 43(3), 847-886. [http://dx.doi.org/10.1039/C3CS60310E ]. [PMID: 24189615].
[2]
Namboodiri, V.V.; Varma, R.S. Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their use as catalysts in the solvent-free tetrahydropyranylation of alcohols and phenols. Chem. Commun. (Camb.), 2002, (4), 342-343. [http://dx.doi.org/10.1039/b110565e ]. [PMID: 12120065].
[3]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150. [http://dx.doi.org/10.1039/B006677J ]. [PMID: 18197338].
[4]
Welton, T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084. [http://dx.doi.org/10.1021/cr980032t ]. [PMID: 11849019].
[5]
Fuller, J.; Carlin, R.T.; De Long, H.C. Haworth, D. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J. Chem. Soc. Chem. Commun., 1994, (3), 299-300. [http://dx.doi.org/10.1039/c39940000299].
[6]
Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, (13), 965-967. [http://dx.doi.org/10.1039/c39920000965].
[7]
Bonhôte, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35(5), 1168-1178. [http://dx.doi.org/10.1021/ic951325x ]. [PMID: 11666305].
[8]
Gogoi, P.; Dutta, A.K.; Sarma, P.; Borah, R. Development of Brønsted–Lewis acidic solid catalytic system of 3-methyl-1-sulfonic acid imidazolium transition metal chlorides for the preparation of bis (indolyl) methanes. Appl. Catal. A, 2015, 492, 133-139. [http://dx.doi.org/10.1016/j.apcata.2014.12.013].
[9]
Saikia, S.; Gogoi, P.; Dutta, A.K.; Sarma, P.; Borah, R. Design of multifaceted acidic 1,3-disulfoimidazolium chlorometallate ionic systems as heterogeneous catalysts for the preparation of β-amino carbonyl compounds. J. Mol. Catal. Chem., 2016, 416, 63-72. [http://dx.doi.org/10.1016/j.molcata.2016.02.007].
[11]
Kore, R.; Berton, P.; Kelley, S.P.; Aduri, P.; Katti, S.S.; Rogers, R.D. Group IIIA halometallate ionic liquids: Speciation and applications in catalysis. ACS Catal., 2017, 7(10), 7014-7028. [http://dx.doi.org/10.1021/acscatal.7b01793].
[12]
Oliveira, E.D.; Torres, J.D.; Silva, C.C.; Luz, A.A.; Bakuzis, P.; Prado, A.G. Tetramethylguanidine covalently bonded onto silica gel as catalyst for the addition of nitromethane to cyclopentenone. J. Braz. Chem. Soc., 2006, 17(5), 994-999. [http://dx.doi.org/10.1590/S0103-50532006000500026].
[13]
Ishikawa, T. Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts; John Wiley & Sons Ltd: Chichester, UK, 2009. [http://dx.doi.org/10.1002/9780470740859]
[14]
Dworkin, A.; Naumann, R.; Seigfred, C.; Karty, J.M.; Mo, Y. Y-aromaticity: why is the trimethylenemethane dication more stable than the butadienyl dication? J. Org. Chem., 2005, 70(19), 7605-7616. [http://dx.doi.org/10.1021/jo0508090 ]. [PMID: 16149789].
[15]
Ndiaye, M.; Samb, A.; Diop, L.; Cattey, H.; Pourchet, S.; Plasseraud, L. Synthesis, characterization, and thermal properties of N,N,N′,N′-tetramethylguanidiniumtribromido -cadmate(II) exhibiting an unusual coordination geometry. Main Group Met. Chem., 2017, 40(5-6), 137-143. [http://dx.doi.org/10.1515/mgmc-2017-0028].
[16]
Patel, M.; McHugh, R.J., Jr; Cordova, B.C.; Klabe, R.M.; Erickson-Viitanen, S.; Trainor, G.L.; Ko, S.S. Synthesis and evaluation of benzoxazinones as HIV-1 reverse transcriptase inhibitors. Analogs of Efavirenz (SUSTIVA). Bioorg. Med. Chem. Lett., 1999, 9(22), 3221-3224. [http://dx.doi.org/10.1016/S0960-894X(99)00565-X ]. [PMID: 10576692].
[17]
Latif, N.; Mishriky, N.; Assad, F.M. Carbonyl and thiocarbonyl compounds. XIX. Intramolecular cyclization of (2-nitroetheny1) aryl N-arylcarbamates: synthesis of newer series of 3,4-dihydro-2H-1, 3-oxazin-2-ones and their antimicrobial activities. Aust. J. Chem., 1982, 35(5), 1037-1043. [http://dx.doi.org/10.1071/CH9821037].
[18]
Fayed, A.A.; Bahashwan, S.A.; Yousif, M.N.M.; El Shafey, H.M.; Amr, A.E.; Yousif, N.M.; Shadid, K.A. Synthesis and antiproliferative activity of some newly synthesized pyrazolopyridine derivatives. Russ. J. Gen. Chem., 2019, 89(6), 1209-1217. [http://dx.doi.org/10.1134/S1070363219060173].
[19]
Hunnur, R.; Kamble, R.; Dorababu, A.; Kumar, B.S.; Bathula, C. TiCl4: An efficient catalyst for one-pot synthesis of 1, 2-dihydro-1-aryl-naphtho-[1, 2-e][1, 3] oxazin-3-one derivatives and their drug score analysis. Arab. J. Chem., 2017, 10, 1760-1764. [http://dx.doi.org/10.1016/j.arabjc.2013.06.028].
[20]
El-Tombary, A.A. Synthesis, anti-inflammatory, and ulcerogenicity studies of novel substituted and fused pyrazolo [3, 4-d] pyrimidin-4-ones. Sci. Pharm., 2013, 81(2), 393-422. [http://dx.doi.org/10.3797/scipharm.1211-21 ]. [PMID: 23833710].
[21]
Rao, G.D.; Kaushik, M.P.; Halve, A.K. An efficient synthesis of naphtha [1, 2-e] oxazinone and 14-substituted-14H-dibenzo [a, j] xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solvent-free conditions. Tetrahedron Lett., 2012, 53(22), 2741-2744. [http://dx.doi.org/10.1016/j.tetlet.2012.03.085].
[22]
Szatmári, I.; Hetényi, A.; Lázár, L.; Fülöp, F. Transformation reactions of the betti base analog aminonaphthols. J. Heterocycl. Chem., 2004, 41(3), 367-373. [http://dx.doi.org/10.1002/jhet.5570410310].
[23]
Cimarelli, C.; Palmieri, G.; Volpini, E. A facile synthesis of 3, 4-dialkyl-3, 4-dihydro-2 H-1, 3-benzoxazin-2-ones and naphthoxazin-2-ones and their reactions with organolithium and Grignard reagents preparation of N-[1-(2′-hydroxyphenyl) alkyl] amides. Can. J. Chem., 2004, 82(8), 1314-1321. [http://dx.doi.org/10.1139/v04-100].
[24]
Shakibaei, G.I.; Khavasi, H.R.; Mirzaei, P.; Bazgir, A. A three‐component, one‐pot synthesis of oxazinoquinolin‐3‐one derivatives. J. Heterocycl. Chem., 2008, 45(5), 1481-1484. [http://dx.doi.org/10.1002/jhet.5570450538].
[25]
Arundhathi, K.; Sudhakar, K.; Sastry, B.S.; Yadav, J.S. A novel three-component one-pot reaction involving β-naphthol, aldehydes, and urea promoted by TMSCl/NaI. J. Heterocycl. Chem., 2010, 47, 272.
[26]
Lei, M.; Ma, L.; Hu, L. Highly chemoselective condensation of β-naphthol, aldehyde, and urea catalyzed by thiamine hydrochloride. Synth. Commun., 2011, 41(22), 3424-3432. [http://dx.doi.org/10.1080/00397911.2010.518278].
[27]
Nemati, F.; Beyzai, A. A facile one-pot solvent-free synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-ones catalyzed by wet cyanuric chloride. J. Chem., 2012, 2013, 1-4.
[28]
Chaskar, A.; Vyavhare, V.; Padalkar, V.; Phatangare, K.; Deokar, H. An environmentally benign one-pot synthesis of 1, 2-dihydro-1-aryl-3 H-naphth [1, 2-e][1, 3] oxazin-3-one derivatives catalysed by phosphomolybdic acid. J. Serb. Chem. Soc., 2011, 76(1), 21-26. [http://dx.doi.org/10.2298/JSC100410016C].
[29]
Ahangar, H.A.; Mahdavinia, G.H.; Marjani, K.; Hafezian, A. A one-pot synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-one derivatives catalyzed by perchloric acid supported on ilica (HClO4/SiO2) in the absence of solvent. J. Iran. Chem. Soc., 2010, 7(3), 770-774. [http://dx.doi.org/10.1007/BF03246067].
[30]
Zolfigol, M.A.; Safaiee, M.; Afsharnadery, F.; Bahrami-Nejad, N.; Baghery, S.; Salehzadeh, S.; Maleki, F. Silica vanadic acid [SiO2–VO(OH)2] as an efficient heterogeneous catalyst for the synthesis of 1, 2-dihydro-1-aryl-3 H-naphth [1, 2-e][1, 3] oxazin-3-one and 2, 4, 6-triarylpyridine derivatives via anomeric based oxidation. RSC Advances, 2015, 5(122), 100546-100559. [http://dx.doi.org/10.1039/C5RA21392D].
[31]
Zhu, X.; Lee, Y.R. RuCl2 (PPh3)3 -Catalyzed facile one-pot synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-ones and 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-thiones. Bull. Korean Chem. Soc., 2012, 33(11), 3831-3834. [http://dx.doi.org/10.5012/bkcs.2012.33.11.3831].
[32]
Kantevari, S.; Vuppalapati, S.V.; Bantu, R.; Nagarapu, L. An efficient one‐pot three component synthesis of 1, 2‐dihydro‐1‐arylnaphtho [1, 2‐e][1, 3] oxazine‐3‐ones using montmorillonite K10 under solvent free conditions. J. Heterocycl. Chem., 2010, 47(2), 313-317. [http://dx.doi.org/10.1002/jhet.312].
[33]
Nikna, K.; Abolpour, P. Synthesis of naphthoxazinone derivatives using silica-bonded S-sulfonic acid as catalyst under solvent-free conditions. J. Chem. Sci., 2015, 127(7), 1315-1320. [http://dx.doi.org/10.1007/s12039-015-0895-x].
[34]
Kumar, A.; Gupta, M.K.; Kumar, M. Micelle promoted supramolecular carbohydrate scaffold-catalyzed multicomponent synthesis of 1, 2-dihydro-1-aryl-3 H-naphth [1, 2-e][1, 3] oxazin-3-one and amidoalkylnaphthols derivatives in aqueous medium. RSC Advances, 2012, 2(19), 7371-7376. [http://dx.doi.org/10.1039/c2ra20848b].
[35]
Kumar, A.; Saxena, A.; Dewan, M.; De, A.; Mozumdar, S. Recyclable nanoparticulate copper mediated synthesis of naphthoxazinones in PEG-400: a green approach. Tetrahedron Lett., 2011, 52(38), 4835-4839. [http://dx.doi.org/10.1016/j.tetlet.2011.07.016].
[36]
Dong, F.; Li-fang, Y.; Jin-ming, Y. Synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-one catalyzed by pyridinium-based ionic liquid. Res. Chem. Intermed., 2013, 39(6), 2505-2512. [http://dx.doi.org/10.1007/s11164-012-0776-6].
[37]
Dabiri, M.; Delbari, A.S.; Bazgir, A. A simple and environmenttally benign method for the synthesis of naphthoxazin-3-one derivatives. Heterocycles, 2007, 71(3), 543-548. [http://dx.doi.org/10.3987/COM-06-10946].
[38]
Dutta, A.K.; Gogoi, P.; Saikia, S.; Borah, R.N. N-disulfo-1,1,3,3-tetramethylguanidinium carboxylate ionic liquids as reusable homogeneous catalysts for multicomponent synthesis of tetrahydrobenzo [a] xanthene and tetrahydrobenzo [a] acridine derivatives. J. Mol. Liq., 2017, 225, 585-591. [http://dx.doi.org/10.1016/j.molliq.2016.11.112].
[39]
Volkov, S.V.; Evtushenko, N.P.; Yatsimirskii, K.B. Spectra of combination scattering and the structure of chloride complexes of 3d metals in molten salts. Theor. Exp. Chem., 1977, 12(1), 85-88. [http://dx.doi.org/10.1007/BF00524936].
[40]
Yatsimirskii, K.B. Spectroscopic studies on coordination compounds formed in molten salts. Pure Appl. Chem., 1977, 49(1), 115-124. [http://dx.doi.org/10.1351/pac197749010115].
[41]
Allen, E.A.; Wilkinson, W. The vibrational spectra of some four co-ordinate complexes of palladium and nickel with various phosphine ligands. Spectro. Chimic. Acta. A, 1974, 30(6), 1219-1224. [http://dx.doi.org/10.1016/0584-8539(74)80105-4].
[42]
Wang, L.; Lu, B.; Zhu, A.; Sun, H.; Shen, Q. Development of Fe(III)-containing ether-functionalized imidazolium ionic liquids for aryl Grignard cross-coupling of alkyl halides. Chin. Sci. Bull., 2013, 58(30), 3624-3629. [http://dx.doi.org/10.1007/s11434-013-5838-7].
[43]
Yan, C.; Wang, L.; Gao, H.; Sun, H.; Shen, Q. An efficient and recyclable iron (III)-containing imidazolium salt catalyst for cross-coupling of aryl Grignard reagents with alkyl halides. Chin. Sci. Bull., 2012, 57(16), 1953-1958. [http://dx.doi.org/10.1007/s11434-011-4660-3].
[44]
Wang, H.; Yan, R.; Li, Z.; Zhang, X.; Zhang, S. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly (ethylene terephthalate). Catal. Commun., 2010, 11(8), 763-767. [http://dx.doi.org/10.1016/j.catcom.2010.02.011].
[45]
Kirillov, S.A.; Voyiatzis, G.A.; Musiyenko, I.S.; Photiadis, G.M.; Pavlatou, E.A. Ionic interactions in molten complex chlorides from vibrational dephasing. J. Chem. Phys., 2001, 114(8), 3683-3691. [http://dx.doi.org/10.1063/1.1340031].
[46]
Babushkina, O.B.; Volkov, S.V. Raman spectroscopy of the heteronuclear complexes in the ZnCl2 CdCl2 Li, K/Cl and AlCl3 MgCl2 Li, K/Cl melts. J. Mol. Liq., 1999, 83(1-3), 131-140. [http://dx.doi.org/10.1016/S0167-7322(99)00080-X].
[47]
Yannopoulos, S.N.; Kalampounias, A.G.; Chrissanthopoulos, A.; Papatheodorou, G.N. Temperature induced changes on the structure and the dynamics of the “tetrahedral” glasses and melts of ZnCl2 and ZnBr2. J. Chem. Phys., 2003, 118(7), 3197-3214. [http://dx.doi.org/10.1063/1.1537246].
[48]
Estager, J.; Nockemann, P.; Seddon, K.R.; Swadźba-Kwaśny, M.; Tyrrell, S. Validation of speciation techniques: a study of chlorozincate(II) ionic liquids. Inorg. Chem., 2011, 50(11), 5258-5271. [http://dx.doi.org/10.1021/ic200586u ]. [PMID: 21545101].
[49]
Herminghaus, S. Roughness-induced non-wetting. Europhys. Lett., 2000, 52(2), 165-170. [http://dx.doi.org/10.1209/epl/i2000-00418-8].
[50]
Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40, 546-551. [http://dx.doi.org/10.1039/tf9444000546].
[51]
Devashankar, S.; Mariappan, L.; Sureshkumar, P.; Rathnakumari, M. Growth and characterization of tetramethyl ammonium tetrachloro zincate II: A ferroic crystal. J. Cryst. Growth, 2009, 311(17), 4207-4212. [http://dx.doi.org/10.1016/j.jcrysgro.2009.06.056].
[52]
Kumar, A.; Kumar, M.; Verma, S.K.; Alvi, P.A.; Jasrotia, D.S. Single crystal growth, X-ray structure analysis, optical band gap, raman spectra, strain tensor and photoluminscence properties in [HgCl4]-[R]+ and [ZnCl4]-[R]+(R= 2-amino-5-chloropyridine) hybrid materials. J. Fundam. Appl. Sci., 2015, 7(3), 422-435. [http://dx.doi.org/10.4314/jfas.v7i3.9].
[53]
Khokhryakov, A.A.; Mikhaleva, M.V.; Paivin, A.S. Electronic absorption spectra of nickel dichloride and nickel oxide solutions in the 2CsCl-NaCl and KCl-NaCl metls. Russ. J. Inorg. Chem., 2006, 51(8), 1311-1314. [http://dx.doi.org/10.1134/S0036023606080195].
[54]
Bouma, R.J.; Teuben, J.H.; Beukema, W.R.; Bansemer, R.L.; Huffman, J.C.; Caulton, K.G. Identification of the zinc reduction product of VCl3. 3THF as [V2Cl3(THF)6]. 2. Inorg. Chem., 1984, 23(17), 2715-2718. [Zn2Cl6]. [http://dx.doi.org/10.1021/ic00185a033].
[55]
Goodgame, M.; Cotton, F.A. Preparation, and magnetic and spectral studies of some cobalt(II) complexes of benzimidazole. J. Am. Chem. Soc., 1962, 84(9), 1543-1548. [http://dx.doi.org/10.1021/ja00868a007].
[56]
Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull., 1968, 3(1), 37-46. [http://dx.doi.org/10.1016/0025-5408(68)90023-8].
[57]
Davis, E. A.; Mott, N. Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. 1970, 22(179), 0903-0922.
[58]
Thomazeau, C.; Olivier-Bourbigou, H.; Magna, L.; Luts, S.; Gilbert, B. Determination of an acidic scale in room temperature ionic liquids. J. Am. Chem. Soc., 2003, 125(18), 5264-5265. [http://dx.doi.org/10.1021/ja0297382 ]. [PMID: 12720424].
[59]
Reddy, K.N.; Ramanaiah, S.; Reddy, N.A.K. Chitosan catalyzed one-pot three-component conventional synthesis of 1, 2-dihydro-1-arylnaphtho [1, 2-e][1, 3] oxazine-3-ones. Int. J. Res. Rev., 2019, 6(6), 85-93.
[60]
Ghomi, J.S.; Zahedi, S.; Ghasemzadeh, M.A. AgI nanoparticles as a remarkable catalyst in the synthesis of (amidoalkyl) naphthol and oxazine derivatives: an eco-friendly approach. Monatsh. Chem., 2014, 145(7), 1191-1199. [http://dx.doi.org/10.1007/s00706-014-1184-y].