[13]
Icard, P.; Shulman, S.; Farhat, D.; Steyaert, J.-M.; Alifano, M.; Lincet, H. J. D. R. U. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? 2018, 38, 1-11.
[16]
Trucco, L.D.; Mundra, P.A.; Garcia-Martinez, P.; Hogan, K.; Dhomen, N.; Pavet, V.; Marais, R. Melanocyte specific deletion of Map3k1 reveals its role in BRAFV600E-driven melanoma ; AACR; , 2019.
[19]
Gerriets, V.A.; Kishton, R.J.; Nichols, A.G.; Macintyre, A.N.; Inoue, M.; Ilkayeva, O.; Winter, P.S.; Liu, X.; Priyadharshini, B.; Slawinska, M.E.; Haeberli, L. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest., 2015, 125(1), 194-207.
[21]
Fukumura, D.; Xu, L.; Chen, Y.; Gohongi, T.; Seed, B.; Jain, R.K. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res., 2001, 61(16), 6020-6024.
[22]
Michalek, R.D.; Gerriets, V.A.; Jacobs, S.R.; Macintyre, A.N.; MacIver, N.J.; Mason, E.F.; Sullivan, S.A.; Nichols, A.G.; Rathmell, J.C. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol., 2011, 1003613.
[23]
Kim, C.H. Regulatory T-Cells and Th17 cells in tumor microenvironment. cancer immunology ; Springer; , 2020, pp. pp. 91-106.
[25]
Cham, C.M.; Gajewski, T.F. Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8+ effector T cells. J. Immunol., 2005, 174(8), 4670-4677.
[26]
Cham, C.M.; Driessens, G.; O’Keefe, J.P.; Gajewski, T.F. Glucose deprivation inhibits multiple key gene expression events and effector functions In CD8+ T cells. Eur. J. Immunol., 2008, 38(9), 2438-2450.
[28]
Macintyre, A.N.; Gerriets, V.A.; Nichols, A.G.; Michalek, R.D.; Rudolph, M.C.; Deoliveira, D.; Anderson, S.M.; Abel, E.D.; Chen, B.J.; Hale, L.P.; Rathmell, J.C. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Cell Metabol., 2014, 1(11), 61-72.
[29]
Frauwirth, K.A.; Thompson, C.B. Regulation of T lymphocyte metabolism. J. Immunol., 2004, 172(8), 4661-4665.
[30]
Chellappa, S.; Kushekhar, K.; Munthe, L. A.; Tjonnfjord, G. E.; Aandahl, E. M.; Okkenhaug, K.; Tasken, K. The PI3K p110delta isoform inhibitor idelalisib preferentially inhibits human regulatory T cell function. J. immunology (Baltimore, Md.: 1950), 2019, 202(5), 1397-1405.
[32]
Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V., Jr Cellular fatty acid metabolism and cancer. Cell Metabol., 2013, 18(2), 153-161.
[35]
Byersdorfer, C.A.; Tkachev, V.; Opipari, A.W.; Goodell, S.; Swanson, J.; Sandquist, S.; Glick, G.D.; Ferrara, J.L. Effector T cells require fatty acid metabolism during murine graft-versus-host disease Blood, 2013. 2013-04-495515
[36]
Byersdorfer, C.A. The role of fatty acid oxidation in the metabolic reprograming of activated T-cells. Front. Immunol., 2014, 5, 641.
[37]
Takahashi, S.; Iizumi, T.; Mashima, K.; Abe, T.; Suzuki, N. Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia. 2014, 6(5), 175. 9091414550997
[38]
Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: glutamine metabolism to cancer therapy Nat. Rev. Cancer, 2016, 16(10), 619.
[39]
Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. 2013, 123(9), 3673-3684.
[40]
Villalba, M.; Rathore, M.G.; Lopez-Royuela, N.; Krzywinska, E.; Garaude, J.; Allende-Vega, N. From tumor cell metabolism to tumor immune escape. Int. J. Biochem. Cell Biol., 2013, 45(1), 106-113.
[41]
Mocellin, S.; Bronte, V.; Nitti, D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med. Res. Rev., 2007, 27(3), 317-352.
[42]
Tham, M.; Tan, K.W.; Keeble, J.; Wang, X.; Hubert, S.; Barron, L.; Tan, N.S.; Kato, M.; Prevost-Blondel, A.; Angeli, V.; Abastado, J.P. Melanoma-initiating cells exploit M2 macrophage TGFβ and arginase pathway for survival and proliferation. Oncotarget, 2014, 5(23), 12027.
[43]
Kasic, T.; Colombo, P.; Soldani, C.; Wang, C.M.; Miranda, E.; Roncalli, M.; Bronte, V.; Viola, A. Modulation of human T-cell functions by reactive nitrogen species. Eur. J. Immunol., 2011, 41(7), 1843-1849.
[44]
Nagaraj, S.; Gupta, K.; Pisarev, V.; Kinarsky, L.; Sherman, S.; Kang, L.; Herber, D.L.; Schneck, J.; Gabrilovich, D.I. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med., 2007, 13(7), 828.
[47]
Fuchs, Y.F.; Sharma, V.; Eugster, A.; Kraus, G.; Morgenstern, R.; Dahl, A.; Reinhardt, S.; Petzold, A.; Lindner, A.; Löbel, D.; Bonifacio, E. Gene Expression-Based Identification of Antigen-Responsive CD8(+) T Cells on a Single-Cell Level. Front. Immunol., 2019, 6, 10-2586.
[71]
Cheng, S-C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.; Rao, N.A.; Aghajanirefah, A. mTOR-and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345(6204), 1250684.
[73]
Imtiyaz, H.Z.; Simon, M.C. Hypoxia-inducible factors as essential regulators of inflammation. Diverse Effects of Hypoxia on Tumor Pro-gression ; Springer; , 2010, pp. pp. 105-120.
[76]
Barsoum, I. B.; Smallwood, C. A.; Siemens, D. R.; Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res., 2013.
[77]
Firth, J.D.; Ebert, B.L.; Pugh, C.W.; Ratcliffe, P.J. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A gene: similarities with the erythropoietin 3′ enhancer. Proc. Natl. Acad. Sci. USA, 1994, 91(14), 6496-6500.
[81]
Kesarwani, P.; Murali, A. K.; Al-Khami, A. A.; Mehrotra, S. Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid. Redox. Signal., 2013, 18(12), 1497-1534.
[84]
Tang, Y.A.; Chen, Y.F.; Bao, Y.; Mahara, S.; Yatim, S.M.J.; Oguz, G.; Lee, P.L.; Feng, M.; Cai, Y.; Tan, E.Y.; Fong, S.S. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc. Natl. Acad. Sci., 2018, 115(26), E5990-E5999.
[85]
Klaus, A.; Fathi, O.; Tatjana, T.-W.; Bruno, N.; Oskar, K. J. P.; Research, O. Expression of hypoxia-associated protein HIF-1α in follicular thyroid cancer is associated with distant metastasis. Pathol. Oncol. Res., 2018, 24(2), 289-296.
[92]
Makino, Y.; Nakamura, H.; Ikeda, E.; Ohnuma, K.; Yamauchi, K.; Yabe, Y.; Poellinger, L.; Okada, Y.; Morimoto, C.; Tanaka, H. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J. immunol., 2003, 171(12), 6534-6540.
[100]
Zheng, Y.; Collins, S. L.; Lutz, M. A.; Allen, A. N.; Kole, T. P.; Zarek, P. E.; Powell, J. D. A role for mammalian target of rapamycin in regulating T cell activation versus energy. J. Immunol., (Baltimore, Md.: 1950), 2007, 178(4), 2163-2170.
[103]
Li, M.O.; Rudensky, A.Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. 2016, 16(4), 220-223.
[104]
Neama, A.F.; Looi, C.Y.; Wong, W.F. Autoimmunity; infection, multiple players in the mechanical control of t cell quiescence, Cancer, Autoimmun. Infection, 2017, 97.
[105]
Zhang, L.; Romero, P. Metabolic control of CD8+ T cell fate decisions and anti-tumor immunity. Trends Mol. Med., 2018, 24(1), 30-48.
[106]
Finlay, D.; Cantrell, D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. 2010, 1183(1), 149-157.
[107]
Liu, Y.; Zhang, D.T.; Liu, X.G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol., 2015, 34(1), 50-66.
[110]
Venturi, V.; Masek, T.; Pospisek, M. A blood pact: the significance and implications of eif4e on lymphocytic leukemia. 2018, 67(3), 363-382.
[111]
Sinclair, L.V.; Rolf, J.; Emslie, E.; Shi, Y.B.; Taylor, P.M.; Cantrell, D.A. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. 2013, 14(5), 500.
[112]
Nakaya, M.; Xiao, Y.; Zhou, X.; Chang, J.H.; Chang, M.; Cheng, X.; Blonska, M.; Lin, X.; Sun, S.C. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. 2014, 40(5), 692-705.
[119]
Zhao, Z.; Zhang, X.; Su, L.; Xu, L.; Zheng, Y.; Sun, J. Fine tuning subsets of CD4+ T cells by low-dosage of IL-2 and a new therapeutic strategy for autoimmune diseases. Int. Immunopharmacol., 2018, 56, 269-276.
[120]
Myers, D.R.; Wheeler, B.; Roose, J.P. mTOR and other effector kinase signals that impact T cell function and activity. 2019, 291(1), 134-153.
[123]
Shi, L.Z.; Wang, R.; Huang, G.; Vogel, P.; Neale, G.; Green, D.R.; Chi, H. HIF1α–dependent glycolytic pathway orches-trates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med., 2011, 208(7), 1367-1376.
[126]
Greiner, E.F.; Guppy, M.; Brand, K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J. Biol. Chem., 1994, 269(50), 31484-31490.
[127]
Carr, E.L.; Kelman, A.; Wu, G.S.; Gopaul, R.; Senkevitch, E.; Aghvanyan, A.; Turay, A.M.; Frauwirth, K.A. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol., 2010, 0903586.
[128]
Wofford, J.A.; Wieman, H.L.; Jacobs, S.R.; Zhao, Y.; Rathmell, J.C. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood, 2008, 111(4), 2101-2111.
[130]
Sommershof, A.; Scheuermann, L.; Koerner, J.; Groettrup, M. Behavior, immunity, Chronic stress suppresses anti-tumor TCD8+ responses and tumor regression following cancer immunotherapy in a mouse model of melanoma. Brain Behav. Immun., 2017, 65, 140-149.
[135]
Osborn, J.F.; Hobbs, S.J.; Mooster, J.L.; Khan, T.N.; Kilgore, A.M.; Harbour, J.C.; Nolz, J. Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathog., 2019, 15(3), e1007633.
[137]
Magg, T.; Wiebking, V.; Conca, R.; Krebs, S.; Arens, S.; Schmid, I.; Klein, C.; Albert, M.H.; Hauck, F. IPEX due to an ex-on 7 skipping FOXP3 mutation with autoimmune diabetes mellitus cured by selective TReg cell engraftment. Clin. Immunol., 2018, 191, 52-58.
[139]
Qin, H.; Wang, L.; Feng, T.; Elson, C.O.; Niyongere, S.A.; Lee, S.J.; Reynolds, S.L.; Weaver, C.T.; Roarty, K.; Serra, R. TGF-β pro-motes Th17 cell development through inhibition of SOCS3. J. Immunol., 2009, 0801986.
[151]
Wojdylo, J. Metabolism of CD4+ Th1 and Th2 cells.,
[152]
Zheng, Y.; Delgoffe, G. M.; Meyer, C. F.; Chan, W.; Powell, J. D. Anergic T cells are metabolically anergic. J. Immunol. (Baltimore, Md.:1950), 2009, 183(10), 6095-6101.
[154]
Gerriets, V.A. Glucose Metabolism in CD4+ T cell Subsets Modulates Inflammation and Autoimmunity ; (Doctoral dissertation) Duke University, 2014.
[161]
Dumitru, C.; Kabat, A.; Maloy, K. Metabolic adaptations of CD4+ T cells in inflammatory disease. Front. Immunol., 2018, 15(9), 540.