Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Central Composite Design for the Development and Evaluation of Floating-mucoadhesive Tablets of Gliclazide

Author(s): Manoj Bansal, Ravinder Verma, Vineet Mittal and Deepak Kaushik*

Volume 16, Issue 1, 2021

Published on: 23 June, 2020

Page: [113 - 123] Pages: 11

DOI: 10.2174/1574885515999200623170251

Price: $65

Abstract

Background: Gliclazide assimilation rate from the gastrointestinal (GI) tract is slow and inconstant, which may be either due to poor dissolution or poor permeability of the drug across the GI membrane.

Objective: The present investigation deals with the formulation of floating-mucoadhesive tablets of gliclazide for oral administration using the central composite design by direct compression technique, using HPMC K4M and Carbopol 934 as release controlling polymers and sodium bicarbonate as an effervescent agent.

Methods: Central composite design was employed to quantify the effect of three factorsconcentration of HPMC K4M (X1), the concentration of Carbopol 934 (X2), and concentration of sodium bicarbonate (X3) on floating lag time, drug release and mucoadhesive time of the formulation.

Results: The results revealed that floating lag time decreases with a rise in the concentration of sodium bicarbonate, drug release was highest at low levels of HPMC and Carbopol and mucoadhesive time was highest at a high level of Carbopol.

Conclusion: The optimized batch (F-7) shows a mucoadhesive time of 23 minutes 27 seconds, floating lag time of 22 seconds and in vitro cumulative percentage of drug release 86.73 % in 10h. From the investigation, it can be summarized that the gastro-retentive drug delivery can be utilized to enhance bioavailability and gastric residence time of the drugs.

Keywords: Central composite design, floating-mucoadhesive tablets, gliclazide, floating lag time, mucoadhesive time, in vitro drug release.

Graphical Abstract
[1]
Glowka FK, Hermann TW, Zabel M. Bioavailability of gliclazide from some formulation tablets. Int J Pharm 1998; 172: 71-7.
[http://dx.doi.org/10.1016/S0378-5173(98)00167-7]
[2]
Holmes B, Heel RC, Brogden RN, Speight TM, Avery GS. Gliclazide: a preliminary review of its pharmacodynamics properties and therapeutic efficacy in diabetes mellitus. Drugs 1984; 27: 302-27.
[http://dx.doi.org/10.2165/00003495-198427040-00002]
[3]
Matthaei S, Stumvoll M, Kellerer M, Häring HU. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev 2000; 21(6): 585-618.
[http://dx.doi.org/10.1210/er.21.6.585] [PMID: 11133066]
[4]
Delrat P, Paraire M, Jochemsen R. Complete bioavailability and lack of food-effect on pharmacokinetics of gliclazide 30 mg modified release in healthy volunteers. Biopharm Drug Dispos 2002; 23(4): 151-7.
[http://dx.doi.org/10.1002/bdd.303] [PMID: 12015789]
[5]
Hooda A, Nanda A, Jain M, Kumar V, Rathee P. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software. Int J Biol Macromol 2012; 51(5): 691-700.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.07.030] [PMID: 22903013]
[6]
Soppimath KS, Kulkarni AR, Aminabhavi TM. Development of hollow microspheres as floating controlled-release systems for cardiovascular drugs: preparation and release characteristics. Drug Dev Ind Pharm 2001; 27(6): 507-15.
[http://dx.doi.org/10.1081/DDC-100105175] [PMID: 11548857]
[7]
Chueh HR, Zia H, Rhodes CT. Optimization of sotalol floating and bioadhesive extended release tablet formulations. Drug Dev Ind Pharm 1995; 21: 1725-47.
[http://dx.doi.org/10.3109/03639049509069261]
[8]
Garg R, Gupta GD. Process in controlled gastroretentive delivery system. Trop J Pharm Res 2008; 7: 1055-66.
[http://dx.doi.org/10.4314/tjpr.v7i3.14691]
[9]
Hwang SJ, Park H, Park K. Gastric retentive drug-delivery systems. Crit Rev Ther Drug Carrier Syst 1998; 15(3): 243-84.
[PMID: 9699081]
[10]
Shadab MD, Ahuja A, Khar RK, et al. Gastroretentive drug delivery system of acyclovir-loaded alginate mucoadhesive microspheres: formulation and evaluation. Drug Deliv 2011; 18(4): 255-64.
[http://dx.doi.org/10.3109/10717544.2010.536270] [PMID: 21110695]
[11]
Chavanpatil MD, Jain P, Chaudhari S, Shear R, Vavia PR. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Int J Pharm 2006; 316(1-2): 86-92.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.038] [PMID: 16567072]
[12]
Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst 2005; 22(1): 27-105.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i1.20] [PMID: 15715503]
[13]
Chien YW. Novel drug delivery systems. 2nd ed. New York: Marcel Dekker Inc. 1992; pp. 171-6.
[14]
Jiménez-Martínez I, Quirino-Barreda T, Villafuerte-Robles L. Sustained delivery of captopril from floating matrix tablets. Int J Pharm 2008; 362(1-2): 37-43.
[http://dx.doi.org/10.1016/j.ijpharm.2008.05.040] [PMID: 18588962]
[15]
Havaldar VD, Kulkarni AS, Dias RJ, Aloorkar NH, Mali KK. Floating matrix tablets of atenolol: Formulation and in vitro evaluation. Asian J Pharm 2009; 3: 286-99.
[http://dx.doi.org/10.4103/0973-8398.59952]
[16]
Dorozyński P, Jachowicz R, Kulinowski P, et al. The macromolecular polymers for the preparation of hydrodynamically balanced systems--methods of evaluation. Drug Dev Ind Pharm 2004; 30(9): 947-57.
[http://dx.doi.org/10.1081/DDC-200037179] [PMID: 15554219]
[17]
Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res 2013; 30(2): 512-22.
[http://dx.doi.org/10.1007/s11095-012-0897-z] [PMID: 23135815]
[18]
Misra R, Bhardwaj P. Development and characterization of novel floating-mucoadhesive tablets bearing venlafaxine hydrochloride. Scientifica (Cairo) 2016; 2016(2)4282986
[http://dx.doi.org/10.1155/2016/4282986]] [PMID: 27274884]
[19]
Kumar M, Dureja H. Development and characterization of factorially designed 5-fluorouracil microspheres. Bull Pharm Res 2011; 1(1): 54-61.
[20]
Mundlia J, Marwaha RK, Dureja H. Using a dual-drug resinate complex for taste masking. Pharmtech 2011; 39(6): 38-8.
[21]
Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2001; 13(2): 123-33.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy