Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Understanding the Monoclonal Antibody Involvement in Targeting the Activation of Tumor Suppressor Genes

Author(s): Rakesh Kumar Mishra, Anas Ahmad, Akshay Vyawahare, Ajay Kumar and Rehan Khan*

Volume 20, Issue 20, 2020

Page: [1810 - 1823] Pages: 14

DOI: 10.2174/1568026620666200616133814

Price: $65

Abstract

Monoclonal antibodies (mAbs) have always provided outstanding therapeutic arsenal in the treatment of cancer, be it hematological malignancies or solid tumors. Monoclonal antibodies mediated targeting of cancer genes in general and tumor-suppressor genes, in particular, have appreciably allowed the possibilities of trafficking these antibodies to specific tumor mechanisms and aim for the pin-point maneuvered tumor treatment strategies. The conventional cancer treatment options are associated with enormous limitations like drug resistance, acute and pan-toxic side effects and collateral damage to other unrelated cells and organs. Therefore, monoclonal antibody-mediated treatments have some special advantages of specific targeting of cancer-related genes and minimizing the off-target side effects. A large number of monoclonal antibody-mediated treatment regimen viz. use of immunoconjugates, clinically targeting TGFβ with pan-TGFβ monoclonal antibodies, p53 by its monoclonal antibodies and EGFRtargeted monoclonal antibodies, etc. have been observed in the recent past. In this review, the authors have discussed some of the significant advances in the context of targeting tumor suppressor genes with monoclonal antibodies. Approximately 250 articles were scanned from research databases like PubMed central, Europe PubMed Central and google scholar up to the date of inception, and relevant reports on monoclonal antibody-mediated targeting of cancer genes were selected. mAb mediated targeting of tumor suppressor genes is a recent grey paradigm, which has not been explored up to its maximum potential. Therefore, this review will be of appreciable significance that it will boost further in-depth understanding of various aspects of mAb arbitrated cancer targeting and will warrant and promote further rigorous research initiatives in this regard. The authors expect that this review will acquaint the readers with the current status regarding the recent progress in the domain of mAbs and their employability and targetability towards tumor suppressor genes in anti-cancer therapeutics.

Keywords: Cancer, Tumor suppressor genes, Monoclonal antibodies, Anti-cancer therapeutics, Delivery system, Tumor types.

Graphical Abstract
[1]
Bukhtoyarov, O.V.; Samarin, D.M. Pathogenesis of cancer: Cancer reparative trap. J. Cancer Ther., 2015, 6, 399.
[http://dx.doi.org/10.4236/jct.2015.65043]
[2]
Choudhury, H.; Maheshwari, R.; Pandey, M.; Tekade, M.; Gorain, B.; Tekade, R.K. Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘etoposide.’. Mater. Sci. Eng. C, 2019, 106, 110275
[3]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 2011, 3(3), 3279-3330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[4]
Ahmad, A.; Khan, F.; Mishra, R.K.; Khan, R. Precision cancer nanotherapy: Evolving role of multifunctional nanoparticles for cancer active targeting. J. Med. Chem., 2019, 62(23), 10475-10496.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00511] [PMID: 31339714]
[5]
Graziano, R.F.; Engelhardt, J.J. Role of FcγRs in antibody-based cancer therapy. Curr. Top. Microbiol. Immunol., 2019, 423, 13-34.
[http://dx.doi.org/10.1007/82_2019_150.]
[6]
Fathian kolahkaj, F.; Derakhshandeh, K.; Khaleseh, F.; Azandaryani, A.H.; Mansouri, K.; Khazaei, M. Active targeting carrier for breast cancer treatment: Monoclonal antibody conjugated epirubicin loaded nanoparticle. J. Drug Deliv. Sci. Technol., 2019, 53, 101136
[http://dx.doi.org/10.1016/j.jddst.2019.101136]
[7]
Mir, O.; Broutin, S.; Desnoyer, A.; Delahousse, J.; Chaput, N.; Paci, A. Pharmacokinetics/Pharmacodynamic (PK/PD) relationship of therapeutic monoclonal antibodies used in oncology: What’s new? Eur. J. Cancer, 2020, 128, 103-106.
[http://dx.doi.org/10.1016/j.ejca.2020.01.004] [PMID: 32089494]
[8]
Rofi, E.; Del Re, M.; Arrigoni, E.; Rizzo, M.; Fontanelli, L.; Crucitta, S.; Gianfilippo, G.; Restante, G.; Fogli, S.; Porta, C.; Danesi, R.; Schmidinger, M. Clinical pharmacology of monoclonal antibodies targeting anti-PD-1 axis in urothelial cancers. Crit. Rev. Oncol. Hematol., 2019, 144, 102812
[http://dx.doi.org/10.1016/j.critrevonc.2019.09.004] [PMID: 31698313]
[9]
Playford, E.G.; Munro, T.; Mahler, S.M.; Elliott, S.; Gerometta, M.; Hoger, K.L.; Jones, M.L.; Griffin, P.; Lynch, K.D.; Carroll, H.; El Saadi, D.; Gilmour, M.E.; Hughes, B.; Hughes, K.; Huang, E.; de Bakker, C.; Klein, R.; Scher, M.G.; Smith, I.L.; Wang, L-F.; Lambert, S.B.; Dimitrov, D.S.; Gray, P.P.; Broder, C.C. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: A first-in-human, randomised, controlled, phase 1 study. Lancet Infect. Dis., 2020, 20(4), 445-454.
[http://dx.doi.org/10.1016/S1473-3099(19)30634-6] [PMID: 32027842]
[10]
Dienstmann, R.; Markman, B.; Tabernero, J. Application of monoclonal antibodies as cancer therapy in solid tumors. Curr. Clin. Pharmacol., 2012, 7(2), 137-145.
[http://dx.doi.org/10.2174/157488412800228929] [PMID: 22432839]
[11]
Coulson, A.; Levy, A.; Gossell-Williams, M. Monoclonal antibodies in cancer therapy: Mechanisms, successes and limitations. West Indian Med. J., 2014, 63(6), 650-654.
[PMID: 25803383]
[12]
Scott, A.M.; Allison, J.P.; Wolchok, J.D. Monoclonal antibodies in cancer therapy. Cancer Immun., 2012, 12, 14.
[PMID: 22896759]
[13]
Bayer, V. An overview of monoclonal antibodies. Semin. Oncol. Nurs., 2019, 35(5) 150927
[http://dx.doi.org/10.1016/j.soncn.2019.08.006] [PMID: 31488319]
[14]
Pranavathiyani, G.; Thanmalagan, R.R.; Leimarembi Devi, N.; Venkatesan, A. Integrated transcriptome interactome study of oncogenes and tumor suppressor genes in breast cancer. Genes Dis., 2018, 6(1), 78-87.
[http://dx.doi.org/10.1016/j.gendis.2018.10.004] [PMID: 30906836]
[15]
Siddamalla, S.; Reddy, T.V.; Govatati, S.; Guruvaiah, P.; Deenadayal, M.; Shivaji, S.; Bhanoori, M. Influence of tumour suppressor gene (TP53, BRCA1 and BRCA2) polymorphisms on polycystic ovary syndrome in South Indian women. Eur. J. Obstet. Gynecol. Reprod. Biol., 2018, 227, 13-18.
[http://dx.doi.org/10.1016/j.ejogrb.2018.05.027] [PMID: 29860059]
[16]
Chen, M-L.; Xu, P-Z.; Peng, X.D.; Chen, W.S.; Guzman, G.; Yang, X.; Di Cristofano, A.; Pandolfi, P.P.; Hay, N. The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice. Genes Dev., 2006, 20(12), 1569-1574.
[http://dx.doi.org/10.1101/gad.1395006] [PMID: 16778075]
[17]
Witek, \Lukasz; Janikowski, T.; Bodzek, P.; Olejek, A.; Mazurek, U. Expression of tumor suppressor genes related to the cell cycle in endometrial cancer patients. Adv. Med. Sci., 2016, 61, 317-324.
[http://dx.doi.org/10.1016/j.advms.2016.04.001]
[18]
Mu, W.; Yao, J.; Zhang, J.; Liu, S.; Wen, H.; Feng, J.; Liu, Z. Expression of tumor suppressor genes in channel catfish after bacterial infections. Dev. Comp. Immunol., 2015, 48(1), 171-177.
[http://dx.doi.org/10.1016/j.dci.2014.10.004] [PMID: 25453578]
[19]
Younesian, S.; Shahkarami, S.; Ghaffari, P.; Alizadeh, S.; Mehrasa, R.; Ghavamzadeh, A.; Ghaffari, S.H. DNA hypermethylation of tumor suppressor genes RASSF6 and RASSF10 as independent prognostic factors in adult acute lymphoblastic leukemia. Leuk. Res., 2017, 61, 33-38.
[http://dx.doi.org/10.1016/j.leukres.2017.08.016] [PMID: 28869817]
[20]
Khadem, H.; Kebriaei, H.; Veisi, Z. Inactivation of tumor suppressor genes and cancer therapy: An evolutionary game theory approach. Math. Biosci., 2017, 288, 84-93.
[http://dx.doi.org/10.1016/j.mbs.2017.03.001] [PMID: 28274855]
[21]
Wang, L-H.; Wu, C-F.; Rajasekaran, N.; Shin, Y.K. Loss of tumor suppressor gene function in human cancer: An overview. Cell. Physiol. Biochem., 2018, 51(6), 2647-2693.
[http://dx.doi.org/10.1159/000495956] [PMID: 30562755]
[22]
Strome, S.E.; Sausville, E.A.; Mann, D. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist, 2007, 12(9), 1084-1095.
[http://dx.doi.org/10.1634/theoncologist.12-9-1084] [PMID: 17914078]
[23]
Pento, J.T. Monoclonal antibodies for the treatment of cancer. Anticancer Res., 2017, 37(11), 5935-5939.
[PMID: 29061772]
[24]
Pérez-Vallés, A.; Martorell-Cebollada, M.; Nogueira-Vázquez, E.; García-García, J.A.; Fuster-Diana, E. The usefulness of antibodies to the BRCA1 protein in detecting the mutated BRCA1 gene. An immunohistochemical study. J. Clin. Pathol., 2001, 54(6), 476-480.
[http://dx.doi.org/10.1136/jcp.54.6.476] [PMID: 11376024]
[25]
Tulchin, N.; Chambon, M.; Juan, G.; Dikman, S.; Strauchen, J.; Ornstein, L.; Billack, B.; Woods, N.T.; Monteiro, A.N.A. BRCA1 protein and nucleolin colocalize in breast carcinoma tissue and cancer cell lines. Am. J. Pathol., 2010, 176(3), 1203-1214.
[http://dx.doi.org/10.2353/ajpath.2010.081063] [PMID: 20075200]
[26]
Milner, R.; Wombwell, H.; Eckersley, S.; Barnes, D.; Warwicker, J.; Van Dorp, E.; Rowlinson, R.; Dearden, S.; Hughes, G.; Harbron, C.; Wellings, B.; Hodgson, D.; Womack, C.; Gray, N.; Lau, A.; O’Connor, M.J.; Marsden, C.; Kvist, A.J. Validation of the BRCA1 antibody MS110 and the utility of BRCA1 as a patient selection biomarker in immunohistochemical analysis of breast and ovarian tumours. Virchows Arch., 2013, 462(3), 269-279.
[http://dx.doi.org/10.1007/s00428-012-1368-y] [PMID: 23354597]
[27]
Fraser, J.A.; Reeves, J.R.; Stanton, P.D.; Black, D.M.; Going, J.J.; Cooke, T.G.; Bartlett, J.M.S. A role for BRCA1 in sporadic breast cancer. Br. J. Cancer, 2003, 88(8), 1263-1270.
[http://dx.doi.org/10.1038/sj.bjc.6600863] [PMID: 12698194]
[28]
Lotan, T.L.; Gurel, B.; Sutcliffe, S.; Esopi, D.; Liu, W.; Xu, J.; Hicks, J.L.; Park, B.H.; Humphreys, E.; Partin, A.W.; Han, M.; Netto, G.J.; Isaacs, W.B.; De Marzo, A.M. PTEN protein loss by immunostaining: Analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin. Cancer Res., 2011, 17(20), 6563-6573.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1244] [PMID: 21878536]
[29]
Perez, E.A.; Dueck, A.C.; McCullough, A.E.; Chen, B.; Geiger, X.J.; Jenkins, R.B.; Lingle, W.L.; Davidson, N.E.; Martino, S.; Kaufman, P.A.; Kutteh, L.A.; Sledge, G.W.; Harris, L.N.; Gralow, J.R.; Reinholz, M.M. Impact of PTEN protein expression on benefit from adjuvant trastuzumab in early-stage human epidermal growth factor receptor 2-positive breast cancer in the North Central Cancer Treatment Group N9831 trial. J. Clin. Oncol., 2013, 31(17), 2115-2122.
[http://dx.doi.org/10.1200/JCO.2012.42.2642] [PMID: 23650412]
[30]
Mingo, J.; Luna, S.; Gaafar, A.; Nunes-Xavier, C.E.; Torices, L.; Mosteiro, L.; Ruiz, R.; Guerra, I.; Llarena, R.; Angulo, J.C.; López, J.I.; Pulido, R. Precise definition of PTEN C-terminal epitopes and its implications in clinical oncology npj Precision Oncology, 2019, 3, 1-9.
[31]
Nagata, Y.; Lan, K-H.; Zhou, X.; Tan, M.; Esteva, F.J.; Sahin, A.A.; Klos, K.S.; Li, P.; Monia, B.P.; Nguyen, N.T.; Hortobagyi, G.N.; Hung, M-C.; Yu, D. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 2004, 6(2), 117-127.
[http://dx.doi.org/10.1016/j.ccr.2004.06.022] [PMID: 15324695]
[32]
Hwang, L-A.; Phang, B.H.; Liew, O.W.; Iqbal, J.; Koh, X.H.; Koh, X.Y.; Othman, R.; Xue, Y.; Richards, A.M.; Lane, D.P.; Sabapathy, K. Monoclonal antibodies against specific p53 hotspot mutants as potential tools for precision medicine. Cell Rep., 2018, 22(1), 299-312.
[http://dx.doi.org/10.1016/j.celrep.2017.11.112] [PMID: 29298430]
[33]
Schwaederlé, M.; Lazar, V.; Validire, P.; Hansson, J.; Lacroix, L.; Soria, J-C.; Pawitan, Y.; Kurzrock, R. VEGF-A expression correlates with tp53 mutations in non-small cell lung cancer: Implications for antiangiogenesis therapy. Cancer Res., 2015, 75(7), 1187-1190.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2305] [PMID: 25672981]
[34]
Said, R.; Hong, D.S.; Warneke, C.L.; Lee, J.J.; Wheler, J.J.; Janku, F.; Naing, A.; Falchook, G.S.; Fu, S.; Piha-Paul, S.; Tsimberidou, A.M.; Kurzrock, R. P53 mutations in advanced cancers: Clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy. Oncotarget, 2013, 4(5), 705-714.
[http://dx.doi.org/10.18632/oncotarget.974] [PMID: 23670029]
[35]
Makondi, P.T.; Lee, C-H.; Huang, C-Y.; Chu, C-M.; Chang, Y-J.; Wei, P-L. Prediction of novel target genes and pathways involved in bevacizumab-resistant colorectal cancer. PLoS One, 2018, 13(1) e0189582
[http://dx.doi.org/10.1371/journal.pone.0189582] [PMID: 29342159]
[36]
Li, A.M.; Boichard, A.; Kurzrock, R. Mutated TP53 is a marker of increased VEGF expression: Analysis of 7,525 pan-cancer tissues. Cancer Biol. Ther., 2020, 21(1), 95-100.
[http://dx.doi.org/10.1080/15384047.2019.1665956] [PMID: 31564192]
[37]
Hendricks, A.; Rosenstiel, P.; Hinz, S.; Burmeister, G.; Röcken, C.; Boersch, K.; Schafmayer, C.; Becker, T.; Franke, A.; Forster, M. Rapid response of stage IV colorectal cancer with APC/TP53/KRAS mutations to FOLFIRI and Bevacizumab combination chemotherapy: A case report of use of liquid biopsy. BMC Med. Genet., 2020, 21(1), 3.
[http://dx.doi.org/10.1186/s12881-019-0941-5] [PMID: 31900123]
[38]
Thomas, M.G.; Luchelli, L.; Pascual, M.; Gottifredi, V.; Boccaccio, G.L. A monoclonal antibody against p53 cross-reacts with processing bodies. PLoS One, 2012, 7(5) e36447
[http://dx.doi.org/10.1371/journal.pone.0036447] [PMID: 22590546]
[39]
Sabapathy, K.; Lane, D.P. Understanding p53 functions through p53 antibodies. J. Mol. Cell Biol., 2019, 11(4), 317-329.
[http://dx.doi.org/10.1093/jmcb/mjz010] [PMID: 30907951]
[40]
Lin, Z.; Zhang, L.; Zhou, J.; Zheng, J. Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial mesenchymal transition. Mol. Med. Rep., 2019, 20(4), 3735-3745.
[http://dx.doi.org/10.3892/mmr.2019.10597] [PMID: 31485652]
[41]
Miyake, N.; Chikumi, H.; Yamaguchi, K.; Takata, M.; Takata, M.; Okada, K.; Kitaura, T.; Nakamoto, M.; Yamasaki, A. Effect of cetuximab and egfr small interfering rna combination treatment in nsclc cell lines with wild type egfr and use of kras as a possible biomarker for treatment responsiveness. Yonago acta medica, 2019, 62, 085-093.,
[http://dx.doi.org/10.33160/yam.2019.03.012]
[42]
Mei, Z.; Shao, Y.W.; Lin, P.; Cai, X.; Wang, B.; Ding, Y.; Ma, X.; Wu, X.; Xia, Y.; Zhu, D.; Shu, Y.; Fu, Z.; Gu, Y. SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients. BMC Cancer, 2018, 18(1), 479.
[http://dx.doi.org/10.1186/s12885-018-4298-5] [PMID: 29703253]
[43]
Bouali, S.; Chrétien, A-S.; Ramacci, C.; Rouyer, M.; Marchal, S.; Galenne, T.; Juin, P.; Becuwe, P.; Merlin, J.L. P53 and PTEN expression contribute to the inhibition of EGFR downstream signaling pathway by cetuximab. Cancer Gene Ther., 2009, 16(6), 498-507.
[http://dx.doi.org/10.1038/cgt.2008.100] [PMID: 19165235]
[44]
Iacobuzio-Donahue, C.A.; Klimstra, D.S.; Adsay, N.V.; Wilentz, R.E.; Argani, P.; Sohn, T.A.; Yeo, C.J.; Cameron, J.L.; Kern, S.E.; Hruban, R.H. Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: Comparison with conventional ductal adenocarcinomas. Am. J. Pathol., 2000, 157(3), 755-761.
[http://dx.doi.org/10.1016/S0002-9440(10)64589-0] [PMID: 10980115]
[45]
Wang, X.; Yang, X.; Zhang, C.; Wang, Y.; Cheng, T.; Duan, L.; Tong, Z.; Tan, S.; Zhang, H.; Saw, P.E.; Gu, Y.; Wang, J.; Zhang, Y.; Shang, L.; Liu, Y.; Jiang, S.; Yan, B.; Li, R.; Yang, Y.; Yu, J.; Chen, Y.; Gao, G.F.; Ye, Q.; Gao, S. Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6640-6650.
[http://dx.doi.org/10.1073/pnas.1921445117] [PMID: 32161124]
[46]
Akinleye, A.; Rasool, Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol., 2019, 12(1), 92.
[http://dx.doi.org/10.1186/s13045-019-0779-5] [PMID: 31488176]
[47]
Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; Wong, F.; Azad, N.S.; Rucki, A.A.; Laheru, D.; Donehower, R.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Greten, T.F.; Duffy, A.G.; Ciombor, K.K.; Eyring, A.D.; Lam, B.H.; Joe, A.; Kang, S.P.; Holdhoff, M.; Danilova, L.; Cope, L.; Meyer, C.; Zhou, S.; Goldberg, R.M.; Armstrong, D.K.; Bever, K.M.; Fader, A.N.; Taube, J.; Housseau, F.; Spetzler, D.; Xiao, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Eshleman, J.R.; Vogelstein, B.; Anders, R.A.; Diaz, L.A. Jr Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349), 409-413.
[http://dx.doi.org/10.1126/science.aan6733] [PMID: 28596308]
[48]
Piro, G.; Carbone, C.; Carbognin, L.; Pilotto, S.; Ciccarese, C.; Iacovelli, R.; Milella, M.; Bria, E.; Tortora, G. Revising PTEN in the Era of Immunotherapy: New Perspectives for an Old Story. Cancers (Basel), 2019, 11(10), 1525.
[http://dx.doi.org/10.3390/cancers11101525] [PMID: 31658667]
[49]
Xu-Monette, Z.Y.; Wu, L.; Visco, C.; Tai, Y.C.; Tzankov, A.; Liu, W.M.; Montes-Moreno, S.; Dybkaer, K.; Chiu, A.; Orazi, A.; Zu, Y.; Bhagat, G.; Richards, K.L.; Hsi, E.D.; Zhao, X.F.; Choi, W.W.L.; Zhao, X.; van Krieken, J.H.; Huang, Q.; Huh, J.; Ai, W.; Ponzoni, M.; Ferreri, A.J.M.; Zhou, F.; Kahl, B.S.; Winter, J.N.; Xu, W.; Li, J.; Go, R.S.; Li, Y.; Piris, M.A.; Møller, M.B.; Miranda, R.N.; Abruzzo, L.V.; Medeiros, L.J.; Young, K.H. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: Report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood, 2012, 120(19), 3986-3996.
[http://dx.doi.org/10.1182/blood-2012-05-433334] [PMID: 22955915]
[50]
Jazirehi, A.R.; Vega, M.I.; Bonavida, B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy. Cancer Res., 2007, 67(3), 1270-1281.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2184] [PMID: 17283164]
[51]
Fu, K.; Weisenburger, D.D.; Choi, W.W.; Perry, K.D.; Smith, L.M.; Shi, X.; Hans, C.P.; Greiner, T.C.; Bierman, P.J.; Bociek, R.G.; Armitage, J.O.; Chan, W.C.; Vose, J.M. Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. J. Clin. Oncol., 2008, 26(28), 4587-4594.
[http://dx.doi.org/10.1200/JCO.2007.15.9277] [PMID: 18662967]
[52]
Koivula, S.; Valo, E.; Raunio, A.; Hautaniemi, S.; Leppä, S. Rituximab regulates signaling pathways and alters gene expression associated with cell death and survival in diffuse large B-cell lymphoma. Oncol. Rep., 2011, 25(4), 1183-1190.
[PMID: 21318224]
[53]
Ávalos, Y.; Canales, J.; Bravo-Sagua, R.; Criollo, A.; Lavandero, S.; Quest, A.F. Tumor suppression and promotion by autophagy. BioMed Res. Int., 2014, 2014, 603980
[54]
Sun, W.; Yang, J. Functional mechanisms for human tumor suppressors. J. Cancer, 2010, 1, 136-140.
[http://dx.doi.org/10.7150/jca.1.136] [PMID: 20922055]
[55]
Abreu Velez, A.M.; Howard, M.S. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. N. Am. J. Med. Sci., 2015, 7(5), 176-188.
[http://dx.doi.org/10.4103/1947-2714.157476] [PMID: 26110128]
[56]
Fridman, J.S.; Lowe, S.W. Control of apoptosis by p53. Oncogene, 2003, 22(56), 9030-9040.
[http://dx.doi.org/10.1038/sj.onc.1207116] [PMID: 14663481]
[57]
Delbridge, A.R.; Valente, L.J.; Strasser, A. The role of the apoptotic machinery in tumor suppression. Cold Spring Harb. Perspect. Biol., 2012, 4(11) a008789
[http://dx.doi.org/10.1101/cshperspect.a008789] [PMID: 23125015]
[58]
Torgovnick, A.; Schumacher, B. DNA repair mechanisms in cancer development and therapy. Front. Genet., 2015, 6, 157.
[http://dx.doi.org/10.3389/fgene.2015.00157] [PMID: 25954303]
[59]
Narayan, R.; Blonquist, T.M.; Emadi, A.; Hasserjian, R.P.; Burke, M.; Lescinskas, C.; Neuberg, D.S.; Brunner, A.M.; Hobbs, G.; Hock, H.; McAfee, S.L.; Chen, Y-B.; Attar, E.; Graubert, T.A.; Bertoli, C.; Moran, J.A.; Bergeron, M.K.; Foster, J.E.; Ramos, A.Y.; Som, T.T.; Vartanian, M.K.; Story, J.L.; McGregor, K.; Macrae, M.; Behnan, T.; Wey, M.C.; Rae, J.; Preffer, F.I.; Lesho, P.; Duong, V.H.; Mann, M.L.; Ballen, K.K.; Connolly, C.; Amrein, P.C.; Fathi, A.T. A Phase 1 Study of the antibody-drug conjugate brentuximab vedotin with re-induction chemotherapy in patients with cd30-expressing relapsed/refractory acute myeloid leukemia. Cancer, 2020, 126(6), 1264-1273.
[60]
Khan, I.; Steeg, P.S. Metastasis suppressors: Functional pathways. Lab. Invest., 2018, 98(2), 198-210.
[http://dx.doi.org/10.1038/labinvest.2017.104] [PMID: 28967874]
[61]
Hurst, D.R.; Welch, D.R. Metastasis Suppressor Genes: At the Interface between the environment and tumor cell growth. In: International review of cell and molecular biology; Elsevier: Amsterdam, 2011, Vol. 286, pp. 107-180.
[62]
Gozuacik, D.; Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23(16), 2891-2906.
[http://dx.doi.org/10.1038/sj.onc.1207521] [PMID: 15077152]
[63]
Liang, C.; Jung, J.U. Autophagy genes as tumor suppressors. Curr. Opin. Cell Biol., 2010, 22(2), 226-233.
[http://dx.doi.org/10.1016/j.ceb.2009.11.003] [PMID: 19945837]
[64]
Harris, M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol., 2004, 5(5), 292-302.
[http://dx.doi.org/10.1016/S1470-2045(04)01467-6] [PMID: 15120666]
[65]
Sun, Y-S.; Zhao, Z.; Yang, Z-N.; Xu, F.; Lu, H-J.; Zhu, Z-Y.; Shi, W.; Jiang, J.; Yao, P-P.; Zhu, H-P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[66]
Riley, L.B.; Desai, D.C. The molecular basis of cancer and the development of targeted therapy. Surg. Clin. North Am., 2009, 89(1), 1-15.
[http://dx.doi.org/10.1016/j.suc.2008.09.016] [PMID: 19186227]
[67]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Breast cancer: Correlation of relapse and survival with amplification of the her-2/neu oncogene. Science, 1987, 235, 177-182.
[68]
Hyman, D.M.; Brana, I.; Spreafico, A.; Schram, A.M.; Pandya, N.B.; Hoffman, K.; Hallet, R.; Giblin, P.; Anido, J.; Ruano, I.H.; Wasserman, R.; Magram, J.; Siu, L.L.; Tabernero, J.; Seoane, J.; Baselga, J. A Phase 1 Study of MSC-1, a humanized anti-LIF monoclonal antibody, in patients with advanced solid tumors. JCO, 2018, 36, TPS2602-TPS2602.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.TPS2602]
[69]
Bang, Y.J.; Giaccone, G. Im, S.A.; Oh, D.Y.; Bauer, T.M.; Nordstrom, J.L.; Li, H.; Chichili, G.R.; Moore, P.A.; Hong, S.; Stewart, S.J.; Baughman, J.E.; Lechleider, R.J.; Burris, H.A. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. Ann. Oncol., 2017, 28(4), 855-861.
[http://dx.doi.org/10.1093/annonc/mdx002] [PMID: 28119295]
[70]
Ahamadi, M.; Freshwater, T.; Prohn, M.; Li, C.H.; de Alwis, D.P.; de Greef, R.; Elassaiss-Schaap, J.; Kondic, A.; Stone, J.A. Model-based characterization of the pharmacokinetics of pembrolizumab: A humanized anti-pd-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(1), 49-57.
[http://dx.doi.org/10.1002/psp4.12139] [PMID: 27863186]
[71]
Quartino, A.L.; Li, H.; Kirschbrown, W.P.; Mangat, R.; Wada, D.R.; Garg, A.; Jin, J.Y.; Lum, B. Population pharmacokinetic and covariate analyses of intravenous trastuzumab (Herceptin®), a HER2-targeted monoclonal antibody, in patients with a variety of solid tumors. Cancer Chemother. Pharmacol., 2019, 83(2), 329-340.
[http://dx.doi.org/10.1007/s00280-018-3728-z] [PMID: 30467591]
[72]
Nahta, R.; Esteva, F.J. HER2 therapy: Molecular mechanisms of trastuzumab resistance. Breast Cancer Res., 2006, 8(6), 215.
[http://dx.doi.org/10.1186/bcr1612] [PMID: 17096862]
[73]
Damodaran, S.; Olson, E.M. Targeting the human epidermal growth factor receptor 2 pathway in breast cancer. Hosp. Pract (1995), 2012, 40(4), 7-1.
[http://dx.doi.org/10.3810/hp.2012.10.997 ] [PMID: 23299030]
[74]
Mohamed, A.; Krajewski, K.; Cakar, B.; Ma, C.X. Targeted therapy for breast cancer. Am. J. Pathol., 2013, 183(4), 1096-1112.
[http://dx.doi.org/10.1016/j.ajpath.2013.07.005] [PMID: 23988612]
[75]
Zhang, C-M.; Zhao, J.; Deng, H-Y. MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J. Biomed. Sci., 2013, 20, 79.
[http://dx.doi.org/10.1186/1423-0127-20-79] [PMID: 24152184]
[76]
Arvelo, F.; Sojo, F.; Cotte, C. Biology of colorectal cancer. Ecancermedicalscience, 2015, 9, 520.
[http://dx.doi.org/10.3332/ecancer.2015.520] [PMID: 25932044]
[77]
Lustig, B.; Behrens, J. The Wnt signaling pathway and its role in tumor development. J. Cancer Res. Clin. Oncol., 2003, 129(4), 199-221.
[http://dx.doi.org/10.1007/s00432-003-0431-0] [PMID: 12707770]
[78]
Carvalho, A.L.; Chuang, A.; Jiang, W-W.; Lee, J.; Begum, S.; Poeta, L.; Zhao, M.; Jerónimo, C.; Henrique, R.; Nayak, C.S.; Park, H.L.; Brait, M.R.O.; Liu, C.; Zhou, S.; Koch, W.; Fazio, V.M.; Ratovitski, E.; Trink, B.; Westra, W.; Sidransky, D.; Moon, C.S.; Califano, J.A. Deleted in colorectal cancer is a putative conditional tumor-suppressor gene inactivated by promoter hypermethylation in head and neck squamous cell carcinoma. Cancer Res., 2006, 66(19), 9401-9407.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1073] [PMID: 17018594]
[79]
Wong, S-F. Cetuximab: An epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin. Ther., 2005, 27(6), 684-694.
[http://dx.doi.org/10.1016/j.clinthera.2005.06.003] [PMID: 16117976]
[80]
ScienceDirect. Lung Cancer - an overview, Available from: Https://www.sciencedirect.com/topics/nursing-and-health-professions/lung-cancer
[81]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[82]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[83]
Granville, C.A.; Dennis, P.A. An overview of lung cancer genomics and proteomics. Am. J. Respir. Cell Mol. Biol., 2005, 32(3), 169-176.
[http://dx.doi.org/10.1165/rcmb.F290] [PMID: 15713815]
[84]
Greco, F.A.; Bonomi, P.; Crawford, J.; Kelly, K.; Oh, Y.; Halpern, W.; Lo, L.; Gallant, G.; Klein, J. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer, 2008, 61(1), 82-90.
[http://dx.doi.org/10.1016/j.lungcan.2007.12.011] [PMID: 18255187]
[85]
Gao, Y.; Wang, B.; Gao, S. BRD7 Acts as a Tumor Suppressor Gene in Lung Adenocarcinoma. PLoS One, 2016, 11(8) e0156701
[http://dx.doi.org/10.1371/journal.pone.0156701] [PMID: 27580131]
[86]
Isaacs, W.; Kainu, T. Oncogenes and tumor suppressor genes in prostate cancer. Epidemiologic Reviews, 2001, 23(1), 36-41.
[87]
Bander, N.H.; Nanus, D.M.; Milowsky, M.I.; Kostakoglu, L.; Vallabahajosula, S.; Goldsmith, S.J. In: Targeted Systemic Therapy of Prostate Cancer with a Monoclonal Antibody to Prostate- Specific Membrane Antigen Proceedings of the Seminars in oncology, 2003, Vol. 30, pp. 667-676.
[http://dx.doi.org/10.1016/S0093-7754(03)00358-0]
[88]
Tanaka, H.; Kono, E.; Tran, C.P.; Miyazaki, H.; Yamashiro, J.; Shimomura, T.; Fazli, L.; Wada, R.; Huang, J.; Vessella, R.L.; An, J.; Horvath, S.; Gleave, M.; Rettig, M.B.; Wainberg, Z.A.; Reiter, R.E. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat. Med., 2010, 16(12), 1414-1420.
[http://dx.doi.org/10.1038/nm.2236] [PMID: 21057494]
[89]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[90]
Kong, D-H.; Kim, M.R.; Jang, J.H.; Na, H-J.; Lee, S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int. J. Mol. Sci., 2017, 18(8), 1786.
[http://dx.doi.org/10.3390/ijms18081786] [PMID: 28817103]
[91]
Yu, J.; Zhang, Y.; Leung, L-H.; Liu, L.; Yang, F.; Yao, X. Efficacy and safety of angiogenesis inhibitors in advanced gastric cancer: A systematic review and meta-analysis. J. Hematol. Oncol., 2016, 9(1), 111.
[http://dx.doi.org/10.1186/s13045-016-0340-8] [PMID: 27756337]
[92]
Liu, X.Y.; Pop, L.M.; Vitetta, E.S. Engineering therapeutic monoclonal antibodies. Immunol. Rev., 2008, 222, 9-27.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00601.x] [PMID: 18363992]
[93]
Modjtahedi, H.; Ali, S.; Essapen, S. Therapeutic application of monoclonal antibodies in cancer: Advances and challenges. Br. Med. Bull., 2012, 104, 41-59.
[http://dx.doi.org/10.1093/bmb/lds032] [PMID: 23118261]
[94]
Bicknell, R. Targeting angiogenesis with monoclonal antibodies. Ann. Oncol., 2006, 17(Suppl. 10), x76-x78.
[http://dx.doi.org/10.1093/annonc/mdl241] [PMID: 17018756]
[95]
Cochonneau, D.; Terme, M.; Michaud, A.; Dorvillius, M.; Gautier, N.; Frikeche, J.; Alvarez-Rueda, N.; Bougras, G.; Aubry, J.; Paris, F.; Birklé, S. Cell cycle arrest and apoptosis induced by O-acetyl-GD2-specific monoclonal antibody 8B6 inhibits tumor growth in vitro and in vivo. Cancer Lett., 2013, 333(2), 194-204.
[http://dx.doi.org/10.1016/j.canlet.2013.01.032] [PMID: 23370223]
[96]
Hayashi, M.; Madokoro, H.; Yamada, K.; Nishida, H.; Morimoto, C.; Sakamoto, M.; Yamada, T. A humanized anti-CD26 monoclonal antibody inhibits cell growth of malignant mesothelioma via retarded G2/M cell cycle transition. Cancer Cell Int., 2016, 16, 35.
[http://dx.doi.org/10.1186/s12935-016-0310-9] [PMID: 27134571]
[97]
Daugherty, A.L.; Mrsny, R.J. Formulation and delivery issues for monoclonal antibody therapeutics. Adv. Drug Deliv. Rev., 2006, 58(5-6), 686-706.
[http://dx.doi.org/10.1016/j.addr.2006.03.011] [PMID: 16839640]
[98]
Cui, Y.; Cui, P.; Chen, B.; Li, S.; Guan, H. Monoclonal antibodies: Formulations of marketed products and recent advances in novel delivery system. Drug Dev. Ind. Pharm., 2017, 43(4), 519-530.
[http://dx.doi.org/10.1080/03639045.2017.1278768] [PMID: 28049357]
[99]
Aktaş, Y.; Yemisci, M.; Andrieux, K.; Gürsoy, R.N.; Alonso, M.J.; Fernandez-Megia, E.; Novoa-Carballal, R.; Quiñoá, E.; Riguera, R.; Sargon, M.F.; Celik, H.H.; Demir, A.S.; Hincal, A.A.; Dalkara, T.; Capan, Y.; Couvreur, P. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug. Chem., 2005, 16(6), 1503-1511.
[http://dx.doi.org/10.1021/bc050217o] [PMID: 16287248]
[100]
Wong, H.M.; Wang, J.J.; Wang, C-H. In vitro sustained release of human immunoglobulin g from biodegradable microspheres. Ind. Eng. Chem. Res., 2001, 40, 933-948.
[http://dx.doi.org/10.1021/ie0006256]
[101]
Torchilin, V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug Deliv., 2008, 5(9), 1003-1025.
[http://dx.doi.org/10.1517/17425247.5.9.1003] [PMID: 18754750]
[102]
Hughes, B.J.; Kennel, S.; Lee, R.; Huang, L. Monoclonal antibody targeting of liposomes to mouse lung in vivo. Cancer Res., 1989, 49(22), 6214-6220.
[PMID: 2478282]
[103]
Mamot, C.; Ritschard, R.; Küng, W.; Park, J.W.; Herrmann, R.; Rochlitz, C.F. EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J. Drug Target., 2006, 14(4), 215-223.
[http://dx.doi.org/10.1080/10611860600691049] [PMID: 16777680]
[104]
(a) Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules, 2019, 24, 603.
(b) Awwad, S.; Angkawinitwong, U. Overview of antibody drug delivery. Pharmaceutics, 2018, 10(3), 83.
[http://dx.doi.org/10.3390/pharmaceutics10030083] [PMID: 29973504]
[105]
Liang, Y.; Coffin, M.V.; Manceva, S.D.; Chichester, J.A.; Jones, R.M.; Kiick, K.L. Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels. J. Biomed. Mater. Res. A, 2016, 104(1), 113-123.
[http://dx.doi.org/10.1002/jbm.a.35545] [PMID: 26223817]
[106]
Guziewicz, N.; Best, A.; Perez-Ramirez, B.; Kaplan, D.L. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 2011, 32(10), 2642-2650.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.023] [PMID: 21216004]
[107]
Trail, P.A.; King, H.D.; Dubowchik, G.M. Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol. Immunother., 2003, 52(5), 328-337.
[http://dx.doi.org/10.1007/s00262-002-0352-9] [PMID: 12700948]
[108]
Baudino, T.A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[109]
De Palma, M.; Hanahan, D. The biology of personalized cancer medicine: Facing individual complexities underlying hallmark capabilities. Mol. Oncol., 2012, 6(2), 111-127.
[http://dx.doi.org/10.1016/j.molonc.2012.01.011] [PMID: 22360993]
[110]
Das, S.K. Menezes, M.E.; Bhatia, S.; Wang, X.-Y.; Emdad, L.; Sarkar, D.; Fisher, P.B. Gene therapies for cancer: Strategies, challenges and successes. J. Cell. Physiol., 2015, 230, 259-271.
[111]
Liu, Y.; Hu, X.; Han, C.; Wang, L.; Zhang, X.; He, X.; Lu, X. Targeting tumor suppressor genes for cancer therapy. BioEssays, 2015, 37(12), 1277-1286.
[http://dx.doi.org/10.1002/bies.201500093] [PMID: 26445307]
[112]
Chahar, D.S.; Ravindran, S.; Pisal, S.S. Monoclonal antibody purification and its progression to commercial scale. Biologicals, 2019, 63, 1-13.
[PMID: 31558429]
[113]
Crusz, S.M.; Miller, R.E. Targeted therapies in gynaecological cancers. Histopathology, 2020, 76(1), 157-170.
[http://dx.doi.org/10.1111/his.14009] [PMID: 31846530]
[114]
Weiner, G.J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer, 2015, 15(6), 361-370.
[http://dx.doi.org/10.1038/nrc3930] [PMID: 25998715]
[115]
Dumont, N.; Arteaga, C.L. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell, 2003, 3(6), 531-536.
[http://dx.doi.org/10.1016/S1535-6108(03)00135-1] [PMID: 12842082]
[116]
Vojtĕsek, B.; Bártek, J.; Midgley, C.A.; Lane, D.P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods, 1992, 151(1-2), 237-244.
[http://dx.doi.org/10.1016/0022-1759(92)90122-A] [PMID: 1378473]
[117]
Gannon, J.V.; Greaves, R.; Iggo, R.; Lane, D.P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J., 1990, 9(5), 1595-1602.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb08279.x] [PMID: 1691710]
[118]
Bykov, V.J.N.; Wiman, K.G. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett., 2014, 588(16), 2622-2627.
[http://dx.doi.org/10.1016/j.febslet.2014.04.017] [PMID: 24768524]
[119]
Chu, E.C.; Tarnawski, A.S. PTEN regulatory functions in tumor suppression and cell biology. Med. Sci. Monit., 2004, 10(10), RA235-RA241.
[PMID: 15448614]
[120]
Mao, C.; Liao, R-Y.; Chen, Q. Loss of PTEN expression predicts resistance to EGFR-targeted monoclonal antibodies in patients with metastatic colorectal cancer. Br. J. Cancer, 2010, 102(5), 940.
[http://dx.doi.org/10.1038/sj.bjc.6605575] [PMID: 20160728]
[121]
Frattini, M.; Saletti, P.; Romagnani, E.; Martin, V.; Molinari, F.; Ghisletta, M.; Camponovo, A.; Etienne, L.L.; Cavalli, F.; Mazzucchelli, L. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br. J. Cancer, 2007, 97(8), 1139-1145.
[http://dx.doi.org/10.1038/sj.bjc.6604009] [PMID: 17940504]
[122]
Loupakis, F.; Pollina, L.; Stasi, I.; Ruzzo, A.; Scartozzi, M.; Santini, D.; Masi, G.; Graziano, F.; Cremolini, C.; Rulli, E.; Canestrari, E.; Funel, N.; Schiavon, G.; Petrini, I.; Magnani, M.; Tonini, G.; Campani, D.; Floriani, I.; Cascinu, S.; Falcone, A. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J. Clin. Oncol., 2009, 27(16), 2622-2629.
[http://dx.doi.org/10.1200/JCO.2008.20.2796] [PMID: 19398573]
[123]
Molinari, F.; Martin, V.; Saletti, P.; De Dosso, S.; Spitale, A.; Camponovo, A.; Bordoni, A.; Crippa, S.; Mazzucchelli, L.; Frattini, M. Differing deregulation of EGFR and downstream proteins in primary colorectal cancer and related metastatic sites may be clinically relevant. Br. J. Cancer, 2009, 100(7), 1087-1094.
[http://dx.doi.org/10.1038/sj.bjc.6604848] [PMID: 19293803]
[124]
Sartore-Bianchi, A.; Martini, M.; Molinari, F.; Veronese, S.; Nichelatti, M.; Artale, S.; Di Nicolantonio, F.; Saletti, P.; De Dosso, S.; Mazzucchelli, L.; Frattini, M.; Siena, S.; Bardelli, A. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res., 2009, 69(5), 1851-1857.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2466] [PMID: 19223544]
[125]
Tzeng, S-T.; Tsai, M-H.; Chen, C-L.; Lee, J-X.; Jao, T-M.; Yu, S-L.; Yen, S-J.; Yang, Y-C. NDST4 is a novel candidate tumor suppressor gene at chromosome 4q26 and its genetic loss predicts adverse prognosis in colorectal cancer. PLoS One, 2013, 8(6) e67040
[http://dx.doi.org/10.1371/journal.pone.0067040] [PMID: 23825612]
[126]
Fernández-Vega, I.; García, O.; Crespo, A.; Castañón, S.; Menéndez, P.; Astudillo, A.; Quirós, L.M. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer. BMC Cancer, 2013, 13, 24.
[http://dx.doi.org/10.1186/1471-2407-13-24] [PMID: 23327652]
[127]
Schnipper, L. Clinical implications of tumor-cell heterogeneity. N. Engl. J. Med., 1986, 314(22), 1423-1431.
[http://dx.doi.org/10.1056/NEJM198605293142206] [PMID: 3517651]
[128]
Cruz, E.; Kayser, V. Monoclonal antibody therapy of solid tumors: Clinical limitations and novel strategies to enhance treatment efficacy. Biologics, 2019, 13, 33-51.
[http://dx.doi.org/10.2147/BTT.S166310] [PMID: 31118560]
[129]
Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol., 2018, 15(2), 81-94.
[http://dx.doi.org/10.1038/nrclinonc.2017.166] [PMID: 29115304]
[130]
Miao, L.; Newby, J.M.; Lin, C.M.; Zhang, L.; Xu, F.; Kim, W.Y.; Forest, M.G.; Lai, S.K.; Milowsky, M.I.; Wobker, S.E.; Huang, L. The binding site barrier elicited by tumor-associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano, 2016, 10(10), 9243-9258.
[http://dx.doi.org/10.1021/acsnano.6b02776] [PMID: 27666558]
[131]
Dillman, R.O. Monoclonal antibodies for treating cancer. Ann. Intern. Med., 1989, 111(7), 592-603.
[http://dx.doi.org/10.7326/0003-4819-111-7-592] [PMID: 2672932]
[132]
Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol., 2018, 8, 86.
[http://dx.doi.org/10.3389/fonc.2018.00086] [PMID: 29644214]
[133]
Sousa, F.; Moura, R.P.; Moreira, E.; Martins, C.; Sarmento, B. Chapter Two - Therapeutic monoclonal antibodies delivery for the glioblastoma Treatment. In: Advances in Protein Chemistry and Structural Biology In: Academic Press:Cambridge; , 2018; 112, pp. 61-80.
[134]
Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol., 2018, 11(1), 39.
[http://dx.doi.org/10.1186/s13045-018-0582-8] [PMID: 29544515]
[135]
Baik, C.S.; Rubin, E.H.; Forde, P.M.; Mehnert, J.M.; Collyar, D.; Butler, M.O.; Dixon, E.L.; Chow, L.Q.M. Immuno-oncology clinical trial design: Limitations, challenges, and opportunities. Clin. Cancer Res., 2017, 23(17), 4992-5002.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3066] [PMID: 28864727]
[136]
Ramezani, S.; Vousooghi, N.; Ramezani Kapourchali, F.; Yousefzadeh-Chabok, S.; Reihanian, Z.; Alizadeh, A.M.; Khodayari, S.; Khodayari, H. Rolipram optimizes therapeutic effect of bevacizumab by enhancing proapoptotic, antiproliferative signals in a glioblastoma heterotopic model. Life Sci., 2019, 239, 116880
[http://dx.doi.org/10.1016/j.lfs.2019.116880] [PMID: 31678282]
[137]
Gillen, J.; Mills, K.A.; Dvorak, J.; Zheng, B.; Thai, T.; Salani, R.; Cosgrove, C.M.; Davidson, B.; Thaker, P.H.; Moore, K.N. Imaging biomarkers of adiposity and sarcopenia as potential predictors for overall survival among patients with endometrial cancer treated with bevacizumab. Gynecol. Oncol., 2017, 147, 198-199.
[http://dx.doi.org/10.1016/j.ygyno.2017.07.031]
[138]
Ricciuti, B.; Lamberti, G.; Andrini, E.; Genova, C.; De Giglio, A.; Bianconi, V.; Sahebkar, A.; Chiari, R.; Pirro, M. In: Antibody-Drug Conjugates for Lung Cancer in the Era of Personalized Oncology. Proceedings of the Seminars in Cancer Biology, 2019. In press
[http://dx.doi.org/10.1016/j.semcancer.2019.12.024]
[139]
Lai, C.; Kandahari, A.M.; Ujjani, C. The evolving role of brentuximab vedotin in classical hodgkin lymphoma. Blood Lymphat. Cancer, 2019, 9, 63-71.
[http://dx.doi.org/10.2147/BLCTT.S231821] [PMID: 31849558]
[140]
Nakai, R.; Fukuhara, S.; Maeshima, A.M.; Kim, S-W.; Ito, Y.; Hatta, S.; Suzuki, T.; Yuda, S.; Makita, S.; Munakata, W.; Suzuki, T.; Maruyama, D.; Izutsu, K. Alectinib, an anaplastic lymphoma kinase (ALK) inhibitor, as a bridge to allogeneic stem cell transplantation in a patient with ALK-positive anaplastic large-cell lymphoma refractory to chemotherapy and brentuximab vedotin. Clin. Case Rep., 2019, 7(12), 2500-2504.
[http://dx.doi.org/10.1002/ccr3.2543] [PMID: 31893088]
[141]
Andrade, L.M.; Martins, E.M.N.; Versiani, A.F.; Reis, D.S.; da Fonseca, F.G.; Souza, I.P.; Paniago, R.M.; Pereira-Maia, E.; Ladeira, L.O. The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. Mater. Sci. Eng. C, 2020, 107, 110203
[http://dx.doi.org/10.1016/j.msec.2019.110203] [PMID: 31761220]
[142]
Bradley, J.D.; Hu, C.; Komaki, R.R.; Masters, G.A.; Blumenschein, G.R.; Schild, S.E.; Bogart, J.A.; Forster, K.M.; Magliocco, A.M.; Kavadi, V.S. Long-term results of nrg oncology rtog 0617: Standard-versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage iii non-small-cell lung cancer. J. Clin. Oncol., 2020, 38(7), 706-714.
[PMID: 31841363]
[143]
Ozawa, H.; Ranaweera, R.S.; Izumchenko, E.; Makarev, E.; Zhavoronkov, A.; Fertig, E.J.; Howard, J.D.; Markovic, A.; Bedi, A.; Ravi, R.; Perez, J.; Le, Q.T.; Kong, C.S.; Jordan, R.C.; Wang, H.; Kang, H.; Quon, H.; Sidransky, D.; Chung, C.H. SMAD4 loss is associated with cetuximab resistance and induction of mapk/jnk activation in head and neck cancer cells. Clin. Cancer Res., 2017, 23(17), 5162-5175.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1686] [PMID: 28522603]
[144]
Weigert, O.; Illidge, T.; Hiddemann, W.; Dreyling, M. Recommendations for the use of yttrium-90 ibritumomab tiuxetan in malignant lymphoma. Cancer, 2006, 107(4), 686-695.
[http://dx.doi.org/10.1002/cncr.22066] [PMID: 16826593]
[145]
Tsai, D.E.; Maillard, I.; Schuster, S.J.; Nasta, S.D.; Porter, D.L.; Klumpp, T.R.; Goldenberg, D.M.; Luger, S.M.; Alavi, A.; Sharkey, R.M.; Hartzell, K.B.; Stadtmauer, E.A. Use of ibritumomab tiuxetan anti-CD20 radioimmunotherapy in a non-Hodgkin’s lymphoma patient previously treated with a yttrium-90-labeled anti-CD22 monoclonal antibody. Clin. Lymphoma, 2003, 4(1), 56-59.
[http://dx.doi.org/10.3816/CLM.2003.n.015] [PMID: 12837157]
[146]
Voutsadakis, I.A. PD-1 inhibitors monotherapy in hepatocellular carcinoma: Meta-analysis and systematic review. HBPD INT, 2019, 18(6), 505-510.
[http://dx.doi.org/10.1016/j.hbpd.2019.09.007] [PMID: 31551142]
[147]
Kim, H.J.; Chang, J.S.; Roh, M.R.; Oh, B-H.; Chung, K-Y.; Shin, S.J.; Koom, W.S. Effect of radiotherapy combined with pembrolizumab on local tumor control in mucosal melanoma patients. Front. Oncol., 2019, 9, 835.
[http://dx.doi.org/10.3389/fonc.2019.00835] [PMID: 31552171]
[148]
Emran, A.A.; Chatterjee, A.; Rodger, E.J.; Tiffen, J.C.; Gallagher, S.J.; Eccles, M.R.; Hersey, P. Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol., 2019, 40(4), 328-344.
[http://dx.doi.org/10.1016/j.it.2019.02.004] [PMID: 30853334]
[149]
Naser Moghadasi, A.; Darki, A.; Masoumi, P.; Hashemi, S.N.; Ghadiri, F. Evaluating the efficacy and safety of ZytuxTM (Rituximab, AryoGen pharmed) in Iranian multiple sclerosis patients: An observational study. Mult. Scler. Relat. Disord., 2019, 36101419
[http://dx.doi.org/10.1016/j.msard.2019.101419] [PMID: 31586800]
[150]
Barok, M.; Le Joncour, V.; Martins, A.; Isola, J.; Salmikangas, M.; Laakkonen, P.; Joensuu, H. ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumab emtansine-resistant HER2-positive breast cancer and gastric cancer. Cancer Lett., 2020, 473, 156-163.
[http://dx.doi.org/10.1016/j.canlet.2019.12.037] [PMID: 31904483]
[151]
Wang, Z.; Ruan, B.; Jin, Y.; Zhang, Y.; Li, J.; Zhu, L.; Xu, W.; Feng, L.; Jin, H.; Wang, X. Identification of KLK10 as a therapeutic target to reverse trastuzumab resistance in breast cancer. Oncotarget, 2016, 7(48), 79494-79502.
[http://dx.doi.org/10.18632/oncotarget.13104] [PMID: 27825132]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy