Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Phytochemical Analysis of Diplazium esculentum Reveals the Presence of Medically Important Components

Author(s): Bindu Naik, Vinay K. Maurya, Vijay Kumar*, Vivek Kumar, Sweta Upadhyay and Sanjay Gupta

Volume 17, Issue 2, 2021

Published on: 14 June, 2020

Page: [210 - 215] Pages: 6

DOI: 10.2174/1573401316999200614162834

Price: $65

conference banner
Abstract

Background: Diplazium esculentum is found throughout Asia growing along with water channels and is used for many purposes. In India, the rhizomes are used to control insects and pests while the young fronds are used as a vegetable and salad. But very few reports on phytochemicals of young fronds and its anti-oxidant activity is available.

Objective: The present study was undertaken to assess the antioxidant, antimicrobial and phytochemical analysis of D. esculentum.

Methods: Proximate analysis was done according to the standard protocol while antioxodant and antimicrobial activity was performed by DDPH. and well diffusion method respectivity. Phytochemical analysis was performed by GC-MS.

Results: The present study revealed that the young fronds of D. esculentum contain high amount of carbohydrate followed by protein, crude fibre, and fat. The free radical scavenging activity of methanolic extract was 87.93 ± 0.3% reduction, which shows it have potential antioxidant activity. The antioxidant property may be contributed by the presence of phytochemicals such as Phosphoric acid, phytol, 2,6,10-Trimethyl,14 ethylene-14-pentadecene, Hexadecanoic acid methyl ester, Pentadecanoic acid, Stigmasta-5,22-dien-3-ol, acetate, (3.beta.). It showed promising antimicrobial activity against S. aureus and B. subtilis. The antimicrobial activity may be due to the presence of Phytochemicals such as beta-Ocimene, 2,6,10-Trimethyl,14 ethylene-14-pentadecene, 1,2-Benzenedicarboxylic acid, BIS(2-Methylpropyl)ester, Hexadecanoic acid, methyl ester, 1-Heneicosanol, Phytol, 5,8,11,14- Eicosatetraenoic acid, methyl ester(all Z), 1,2-benzenedicarboxylic acid, Ergost-5-en-3-ol, (3.beta), Stigmasta-5,22-dien-3-ol, acetate, (3.beta.), stigmast-5-EN-3-OL, (3.beta).

Conclusion: From the present study, it can be deduced that D. Esculentum is a rich source of medically important phytochemicals. Further work is required, so that these phytochemicals can be explored in the management of various chronic diseases.

Keywords: Antimicrobial activity, antioxidant, Diplazium esculentum, methanol extract, phytochemicals, proximate.

Graphical Abstract
[1]
Mannan MM, Maridass M, Victor B. A review on the potential uses of ferns. Ethnobotany Leaflets 2008; 12: 281-5.
[2]
Upreti K, Jalal JS, Tewari LM, et al. Ethanomedicinal uses of Pteridophytes of Kumaun Himalaya, Uttarakhand, India. J Am Sci 2009; 5(4): 167-70.
[3]
Shankar R, Khare PK. Phytochemical studies of Ampelopteris prolifera (Ratz.) Copal. and Diplazium esculentum Swariz. J Econ Taxa Bot 1985; 6(2): 499-502.
[4]
Sudha P, Awasthi CP, Singh AB. Biochemical composition of lungru (Diplazium esculentum) of Palam Valley of Himachal Pradesh. Vegetable Science 1999; 26(2): 183-5.
[5]
Kaushik A, Jijta C, Kaushik JJ, et al. FRAP (Ferric reducing ability of plasma) assay and effect of Diplazium esculentum (Retz) Sw. (a green vegetable of North India) on central nervous system. Indian J Nat Prod Resour 2012; 3(2): 228-31.
[6]
Ooi DJ, Iqbal S, Ismail M. Proximate composition, nutritional attributes and mineral composition of Peperomia pellucida L. (Ketumpangan Air) grown in Malaysia Molecules 2012; 17(9): 11139-45.
[http://dx.doi.org/10.3390/molecules170911139]
[7]
Kanthal LK, Dey A, Satyavathi K, et al. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC. Pharmacognosy Res 2014; 6(1): 58.
[http://dx.doi.org/10.4103/0974-8490.122919]
[8]
Wong SP, Leong LP, Koh JHW. Antioxidant qactivities of aquoeos extracts of selected plant. Food Chem 2006; 99: 775-83.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.058]
[9]
Bermudez-Soto M, Tomas-Barberan FA. Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur Food Res Technol 2004; 219(2): 133-41.
[http://dx.doi.org/10.1007/s00217-004-0940-3]
[10]
Surveswaran S, Cai YZ, Corke H, et al. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 2007; 102(3): 938-53.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.033]
[11]
Payet B, Shum CSA, Smadja J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. J Agric Food Chem 2005; 53(26): 10074-9.
[http://dx.doi.org/10.1021/jf0517703] [PMID: 16366697]
[12]
Baltrusaityte V, Venskutonis PR, Ceksteryte V. Radical scavenging activity of different floral origin honey and bee bread phenolic extracts. Food Chem 2007; 101: 502-14.
[http://dx.doi.org/10.1016/j.foodchem.2006.02.007]
[13]
Chettri S, Manivannan S, Muddarsu VR. Nutrient and elemental composition of wild edible ferns of the Himalaya. Am Fern J 2018; 108(3): 95-107.
[http://dx.doi.org/10.1640/0002-8444-108.3.95]
[14]
National Center for Biotechnology Information. PubChem Database Phosphoric acid, CID=1004. 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Phosphoric-acid
[15]
Eggersdorfer M. Ullmann’s Encyclopedia of Industrial Chemistr 7th ed John Wiley & Sons NY. 2000.
[16]
Burdock GA, Ed. Fenaroli’s Handbook of Flavor Ingredients. 6th ed. Boca Raton, FL: CRC Press 2010.
[17]
Sun J. D-Limonene: safety and clinical applications. Altern Med Rev 2007; 12(3): 259-64.
[PMID: 18072821]
[18]
Chandraratna RA. Cyclohexene and bicyclic aromatic substituted ethyne compounds having retinoid-like biological activity. US5470999 1995.
[19]
Souto RNP, Harada AY, Andrade EHA, Maia JGS. Insecticidal activity of Piper essential oils from the Amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop Entomol 2012; 41(6): 510-7.
[http://dx.doi.org/10.1007/s13744-012-0080-6] [PMID: 23949677]
[20]
Dias CN, Rodrigues KA, Carvalho FA, et al. Molluscicidal and leishmanicidal activity of the leaf essential oil of Syzygium cumini (L.) SKEELS from Brazil. Chem Biodivers 2013; 10(6): 1133-41.
[http://dx.doi.org/10.1002/cbdv.201200292] [PMID: 23776029]
[21]
National Center for Biotechnology Information. PubChem Database beta-Ocimene, CID=5281553. 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Ocimene
[22]
Shinbo Y, Nakamura Y, Altaf-Ul-Amin M, et al. KNApSAcK: a comprehensive species-metabolite relationship database. In: Saito K, Willmitzer L, Dixon RA, Eds.Plant metabolomics. Berlin: Springer 2006; pp. 165-81.
[http://dx.doi.org/10.1007/3-540-29782-0_13]
[23]
Arora S, Meena S. Pharmagnostic potentialities of Ceropegia bulbosa roxb. var. lushii (grah.) hook.f.: an endangered plant from Thar desert, Rajasthan, India. Int Res J Pharm 2017; 8(6): 77-82.
[http://dx.doi.org/10.7897/2230-8407.086100]
[24]
National Center for Biotechnology Information. PubChem Database Octadecanal, CID=12533 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Octadecanal
[25]
Duke JA. Handbook of phytochemical constituents of GRAS herbs and other economic plants CRC Press Boca Raton, FL. 1992.
[26]
Silva RO, Sousa FB, Damasceno SR, et al. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundam Clin Pharmacol 2014; 28(4): 455-64.
[http://dx.doi.org/10.1111/fcp.12049] [PMID: 24102680]
[27]
Govindappa M, Prathap S, Vinay V, et al. Chemical composition of methanol extract of endophytic fungi, Alternaria sp. of Tebebuia argentea and their antimicrobial and antioxidant activity. Int J Biol Pharm Res 2014; 5(11): 861-9.
[28]
Rajeswari G, Murugan M, Mohan VR. GC-MS analysis of bioactive components of Hugonia mystax (Linaceae). Res J Pharm Biol Chem Sci 2012; 3(4): 301-8.
[29]
Chandrasekaran M, Senthilkumar A, Venkatesalu V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur Rev Med Pharmacol Sci 2011; 15(7): 775-80.
[PMID: 21780546]
[30]
McGaw LJ, Jäger AK, van Staden J. Isolation of antibacterial fatty acids from Schotia brachypetala. Fitoterapia 2002; 73(5): 431-3.
[http://dx.doi.org/10.1016/S0367-326X(02)00120-X] [PMID: 12165344]
[31]
Seidel V, Taylor PW. In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. Int J Antimicrob Agents 2004; 23(6): 613-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.11.008] [PMID: 15194133]
[32]
Aparna V, Dileep KV, Mandal PK, et al. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des 2012; 80(3): 434-9.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01418.x] [PMID: 22642495]
[33]
Kumar PP, Kumaravel S, Lalitha C. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biochem Res 2010; 4: 191-5.
[34]
Rahuman AA, Gopalakrishnan G, Ghouse BS, et al. Effect of Feronia limonia on mosquito larvae. Fitoterapia 2000; 71(5): 553-5.
[http://dx.doi.org/10.1016/S0367-326X(00)00164-7] [PMID: 11449505]
[35]
Arancibia LA, Naspi CV, Pucci GN, et al. Biological activity of 1-heneicosanolisolated from Senecio coluhuapiensis, an endemic species from Patagonia, Argentina. Pharm Chem J 2016; 3(4): 73-7.
[36]
Arancibia LA, Cecilia VN, Graciela NP, et al. Biological activity of 1-heneicosanol isolated from Senecio coluhuapiensis, an endemic species from Patagonia, Argentina. Pharm Chem J 2017; 3(4): 73-7.
[37]
Pooja, Lal VK, Verma A. GC-MS and phytopharmacological analysis of aqueous distillate of Boerhavia diffusa roots. Int J Pharm Pharmceut Res 2017; 10(2): 374-91.
[38]
Poongulali S, Sundararaman M. Antimycobacterial, anticandidal and antioxidant properties of Terminalia catappa and analysis of their bioactive chemicals. Int J Pharma Bio Sci 2016; 6(2): 69-83.
[39]
Neera D. Biological activity of 1-heneicosanol isolated from Senecio coluhuapiensis, an endemic species from Patagonia, Argentina. Pharm Chem J 2017; 8(4): 349-57.
[40]
Leung DT, Sacks SL. Docosanol: a topical antiviral for herpes labialis. Expert Opin Pharmacother 2004; 5(12): 2567-71.
[http://dx.doi.org/10.1517/14656566.5.12.2567] [PMID: 15571473]
[41]
Katz DH, Marcelletti JF, Khalil MH, et al. Antiviral activity of 1-docosanol, an inhibitor of lipid-enveloped viruses including herpes simplex. Proc Natl Acad Sci USA 1991; 88(23): 10825-9.
[http://dx.doi.org/10.1073/pnas.88.23.10825] [PMID: 1660151]
[42]
O’Neil MJ. The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals 13th ed Merck and Co, Inc Whitehouse Station, NJ. 2001; p. 598.
[43]
National Center for Biotechnology Information. PubChem Database Docosanol, CID=12620. 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Docosanol
[44]
Yu FR, Lian XZ, Guo HY, et al. Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J Pharm Pharm Sci 2005; 8(3): 528-35.
[PMID: 16401398]
[45]
Nogel-Kagakukai N. Agricultural and biological chemistry Volume 39, Issues 4-6. Japan Society for Bioscience, Biotechnology, and Agrochemistry In: 1975. 39
[46]
Kim MH, Park DH, Bae MS, et al. Analysis of the active constituents and evaluation of the biological effects of Quercus acuta Thunb. (Fagaceae) Extracts. Molecules 2018; 23(7): 1772.
[http://dx.doi.org/10.3390/molecules23071772] [PMID: 30029475]
[47]
Krishnamoorthy K, Subramaniam P. Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. Int Sch Res Notices 2014; 2014567409
[http://dx.doi.org/10.1155/2014/567409] [PMID: 27379314]
[48]
Chandra MS, Anand T, Nahla TK, et al. Isolation and characterization of phytol from Justicia gendarussa Burm. f.-an anti-inflammatory compound. J Appl Sci 2008; 19(6): 500-5.
[49]
Gibb AR, Suckling DM, Fielder S, et al. Major sex pheromone components of the Australian gum leaf skeletonizer Uraba lugens: (10E,12Z)-hexadecadien-1-yl acetate and (10E,12Z)-hexadecadien-1-ol. J Chem Ecol 2008; 34(9): 1125-33.
[http://dx.doi.org/10.1007/s10886-008-9523-2] [PMID: 18679751]
[50]
Melariri P, Campbell W, Etusim P, et al. Antiplasmodial properties and bioassay-guided fractionation of ethyl acetate extracts from Carica papaya leaves. J Parasitol Res 2011; 2011104954
[http://dx.doi.org/10.1155/2011/104954] [PMID: 22174990]
[51]
Huang CB, George B, Ebersole JL. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch Oral Biol 2010; 55(8): 555-60.
[http://dx.doi.org/10.1016/j.archoralbio.2010.05.009] [PMID: 20541177]
[52]
Schaeffer EL, Forlenza OV, Gattaz WF. Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology 2009; 202(1-3): 37-51.
[http://dx.doi.org/10.1007/s00213-008-1351-0] [PMID: 18853146]
[53]
Chowdhury R, Warnakula S, Kunutsor S, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med 2014; 160(6): 398-406.
[http://dx.doi.org/10.7326/M13-1788] [PMID: 24723079]
[54]
Shoge M, Garba S, Labaran S. Antimicrobial activity of 1, 2 butyldecyl ester isolated from Acacia nilotica Linn. Res J Microbiol 2014; 3(2): 8-11.
[55]
Krishnan K, Mani A, Jasmine S. Cytotoxic activity of bioactive compound 1, 2-Benzene Dicarboxylic Acid, Mono 2-Ethylhexyl Ester extracted from a marine derived streptomyces sp. VITSJK8. Int J Mol Cell Med 2014; 3(4): 246-54.
[PMID: 25635251]
[56]
Wang HX, Ng TB. Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities. Life Sci 1999; 65(25): 2663-77.
[http://dx.doi.org/10.1016/S0024-3205(99)00253-2] [PMID: 10622276]
[57]
Moon DO, Kim MO, Choi YH, et al. Beta-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett 2008; 264(2): 181-91.
[http://dx.doi.org/10.1016/j.canlet.2008.01.032] [PMID: 18314257]
[58]
Sujatha S, Anand S, Sangeetha KN, et al. Biological evaluation of (3β)-STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro model. Int J Diabetes Mellit 2010; 2(2): 101-9.
[http://dx.doi.org/10.1016/j.ijdm.2009.12.013]
[59]
Odiba J, Musa A, Hassan H, et al. Antimicrobial activity of isolated stigmast-5-en-3-β-ol (β-sitosterol) from honeybee propolis from North-Western, Nigeria. Int J Pharm Sci Res 2014; 5(12): 908-18.
[60]
Ovesná Z, Vachálková A, Horváthová K. Taraxasterol and beta-sitosterol: new naturally compounds with chemoprotective/chemopreventive effects. Neoplasma 2004; 51(6): 407-14.
[PMID: 15640948]
[61]
Keawsa-ard S, Liawruangrath B, Kongtaweelert S. Bioactive compounds from Mesua ferrea. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai 2015; 42(1): 185-95.
[62]
Shi C, Wu F, Zhu XC, et al. Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling. Biochim Biophys Acta 2013; 1830(3): 2538-44.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.012 ] [PMID: 23266618]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy