Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Comparison of Postprandial Serum Triglyceride and Apolipoprotein B Concentrations between the Two Phases of Menstrual Cycle in Healthy Women

Author(s): Evangelia Tzeravini, Anastasios Tentolouris, Ioanna Eleftheriadou, Nikolaos Chaviaras, Genovefa Kolovou, Fani Apostolidou-Kiouti, ">Eleftherios Stratigakos and Nikolaos Tentolouris*

Volume 19, Issue 4, 2021

Published on: 11 June, 2020

Page: [411 - 422] Pages: 12

DOI: 10.2174/1573406416666200611105113

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Sex hormones influence lipoprotein metabolism; whether the hormonal fluctuation during normal menstrual cycle has impact on non-fasting lipids remains unclear.

Objective: To examine the differences in postprandial triglyceride, apolipoprotein B (ApoB) and nonhigh density lipoprotein cholesterol (non-HDL-C) concentrations using a standardized fat tolerance test during the 2 menstrual cycle phases.

Methods: We enrolled 25 healthy, menstruating women. Each of them underwent a fat tolerance test during the 2 phases of the menstrual cycle. Blood samples were collected at baseline and up to 6 h postprandially. Differences in serum triglycerides, ApoB and non-HDL-C between the 2 phases were assessed. The incremental area under the curve (iAUC) was calculated. Reproducibility of the measurements was tested using the intraclass correlation coefficient (ICC) and coefficient of variation (CV).

Results: Serum triglyceride concentrations increased postprandially in both phases and the values were higher during the follicular compared with the luteal phase; however, the overall triglyceride response expressed as iAUC [median value (interquartile range)] did not differ between the follicular and the luteal phase [54.0 (-26.5, 107.0) and 48.0 (6.0, 114.5) mg x h/dl, respectively, p=0.64]. Serum ApoB concentrations did not increase postprandially and the overall ApoB response was not different between the 2 phases. Non-HDL-C concentrations changed postprandially, but the overall response was not different between the 2 phases of the menstrual cycle. Reproducibility of the measurements was moderate: ICC 0.689-0.848 for triglycerides, 0.721-0.771 for ApoB, 0.457-0.867 for non-HDL-C, and %CV >8 for all parameters.

Conclusion: Serum triglyceride levels were higher during the follicular compared with the luteal phase after standardized meal consumption, but the overall postprandial triglyceride response did not differ between the 2 phases. Postprandial ApoB and non-HDL-C serum concentrations were not affected by the menstrual cycle.

Keywords: Postprandial lipemia, triglycerides, apolipoprotein B, oral fat tolerance test, menstrual cycle, non-high density lipoprotein cholesterol.

Graphical Abstract
[1]
Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 2012; 220(1): 22-33.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.08.012] [PMID: 21955695]
[2]
Kolovou GD, Anagnostopoulou KK, Daskalopoulou SS, Mikhailidis DP, Cokkinos DV. Clinical relevance of postprandial lipaemia. Curr Med Chem 2005; 12(17): 1931-45.
[http://dx.doi.org/10.2174/0929867054546609] [PMID: 16101498]
[3]
Tanaka A. Postprandial hyperlipidemia and atherosclerosis. J Atheroscler Thromb 2004; 11(6): 322-9.
[http://dx.doi.org/10.5551/jat.11.322] [PMID: 15644585]
[4]
Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European atherosclerosis society and European federation of clinical chemistry and laboratory medicine. Eur Heart J 2016; 37(25): 1944-58.
[http://dx.doi.org/10.1093/eurheartj/ehw152] [PMID: 27122601]
[5]
Kolovou GD, Mikhailidis DP, Nordestgaard BG, Bilianou H, Panotopoulos G. Definition of postprandial lipaemia. Curr Vasc Pharmacol 2011; 9(3): 292-301.
[http://dx.doi.org/10.2174/157016111795495611] [PMID: 21314628]
[6]
Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr 2007; 98(3): 458-73.
[http://dx.doi.org/10.1017/S000711450774268X] [PMID: 17705891]
[7]
Nakamura K, Miyoshi T, Yunoki K, Ito H. Postprandial hyperlipidemia as a potential residual risk factor. J Cardiol 2016; 67(4): 335-9.
[http://dx.doi.org/10.1016/j.jjcc.2015.12.001] [PMID: 26744235]
[8]
Masuda D, Yamashita S. Postprandial hyperlipidemia and remnant lipoproteins. J Atheroscler Thromb 2017; 24(2): 95-109.
[http://dx.doi.org/10.5551/jat.RV16003] [PMID: 27829582]
[9]
Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007; 298(3): 309-16.
[http://dx.doi.org/10.1001/jama.298.3.309] [PMID: 17635891]
[10]
Lindman AS, Veier A. d MB, Tverdal A, Pedersen JI, Selmer R. Nonfasting triglycerides and risk of cardiovascular death in men and women from the Norwegian Counties Study. Eur J Epidemiol 2010; 25(11): 789-98.
[http://dx.doi.org/10.1007/s10654-010-9501-1] [PMID: 20890636]
[11]
Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007; 298(3): 299-308.
[http://dx.doi.org/10.1001/jama.298.3.299] [PMID: 17635890]
[12]
Iso H, Naito Y, Sato S, et al. Serum triglycerides and risk of coronary heart disease among Japanese men and women. Am J Epidemiol 2001; 153(5): 490-9.
[http://dx.doi.org/10.1093/aje/153.5.490] [PMID: 11226981]
[13]
Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation 2007; 115(4): 450-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.637793] [PMID: 17190864]
[14]
Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997; 20(7): 1183-97.
[http://dx.doi.org/10.2337/diacare.20.7.1183] [PMID: 9203460]
[15]
Mooy JM, Grootenhuis PA, de Vries H, et al. Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia 1996; 39(3): 298-305.
[http://dx.doi.org/10.1007/BF00418345] [PMID: 8721775]
[16]
Mihas C, Kolovou GD, Mikhailidis DP, et al. Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis. Curr Vasc Pharmacol 2011; 9(3): 271-80.
[http://dx.doi.org/10.2174/157016111795495530] [PMID: 21314631]
[17]
Kolovou GD, Mikhailidis DP, Kovar J, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr Vasc Pharmacol 2011; 9(3): 258-70.
[http://dx.doi.org/10.2174/157016111795495549] [PMID: 21314632]
[18]
Tentolouris N, Kanellos PT, Siami E, et al. Assessment of the validity and reproducibility of a novel standardized test meal for the study of postprandial triacylglycerol concentrations. Lipids 2017; 52(8): 675-86.
[http://dx.doi.org/10.1007/s11745-017-4275-9] [PMID: 28653085]
[19]
Barnett JB, Woods MN, Lamon-Fava S, et al. Plasma lipid and lipoprotein levels during the follicular and luteal phases of the menstrual cycle. J Clin Endocrinol Metab 2004; 89(2): 776-82.
[http://dx.doi.org/10.1210/jc.2003-030506] [PMID: 14764796]
[20]
Wang X, Magkos F, Mittendorfer B. Sex differences in lipid and lipoprotein metabolism: it’s not just about sex hormones. J Clin Endocrinol Metab 2011; 96(4): 885-93.
[http://dx.doi.org/10.1210/jc.2010-2061] [PMID: 21474685]
[21]
American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2018. Diabetes Care 2018; 41(Suppl. 1): S13-27.
[http://dx.doi.org/10.2337/dc18-S002] [PMID: 29222373]
[22]
Bor A. (c)n J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta 2014; 431: 131-42.
[http://dx.doi.org/10.1016/j.cca.2014.01.015] [PMID: 24508990]
[23]
Taskinen MR, Boren J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 2015; 239(2): 483-95.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.01.039] [PMID: 25706066]
[24]
Adeli K, Lewis GF. Intestinal lipoprotein overproduction in insulin-resistant states. Curr Opin Lipidol 2008; 19(3): 221-8.
[http://dx.doi.org/10.1097/MOL.0b013e3282ffaf82] [PMID: 18460911]
[25]
World Medical Association declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. JAMA 1997; 277(11): 925-6.
[http://dx.doi.org/10.1001/jama.1997.03540350075038] [PMID: 9062334]
[26]
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[27]
ISO 5725–1. Accuracy (trueness and precision) of measurement methods and results part 1: general principles and definitions International Organization for Standardization, Geneva Switzerland 1994. Available at. https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en
[28]
Muller R, Buttner P. A critical discussion of intraclass correlation coefficients. Stat Med 1994; 13(23-24): 2465-76.
[http://dx.doi.org/10.1002/sim.4780132310] [PMID: 7701147]
[29]
Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. BMJ 1990; 300(6719): 230-5.
[http://dx.doi.org/10.1136/bmj.300.6719.230] [PMID: 2106931]
[30]
Perez-Martinez P, Alcala-Diaz JF, Kabagambe EK, et al. Assessment of postprandial triglycerides in clinical practice: Validation in a general population and coronary heart disease patients. J Clin Lipidol 2016; 10(5): 1163-71.
[http://dx.doi.org/10.1016/j.jacl.2016.05.009] [PMID: 27678433]
[31]
The Writing Group for the PEPI Trial. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. JAMA 1995; 273(3): 199-208.
[http://dx.doi.org/10.1001/jama.1995.03520270033028] [PMID: 7807658]
[32]
Campos H, Walsh BW, Judge H, Sacks FM. Effect of estrogen on very low density lipoprotein and low density lipoprotein subclass metabolism in postmenopausal women. J Clin Endocrinol Metab 1997; 82(12): 3955-63.
[http://dx.doi.org/10.1210/jc.82.12.3955] [PMID: 9398695]
[33]
Walsh BW, Schiff I, Rosner B, Greenberg L, Ravnikar V, Sacks FM. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med 1991; 325(17): 1196-204.
[http://dx.doi.org/10.1056/NEJM199110243251702] [PMID: 1922206]
[34]
Godsland IF. Effects of postmenopausal hormone replacement therapy on lipid, lipoprotein, and apolipoprotein (a) concentrations: analysis of studies published from 1974-2000. Fertil Steril 2001; 75(5): 898-915.
[http://dx.doi.org/10.1016/S0015-0282(01)01699-5] [PMID: 11334901]
[35]
Weintraub M, Grosskopf I, Charach G, Eckstein N, Rubinstein A. Hormone replacement therapy enhances postprandial lipid metabolism in postmenopausal women. Metabolism 1999; 48(9): 1193-6.
[http://dx.doi.org/10.1016/S0026-0495(99)90137-3] [PMID: 10484063]
[36]
Julius U, Fritsch H, Fritsch W, et al. Impact of hormone replacement therapy on postprandial lipoproteins and lipoprotein(a) in normolipidemic postmenopausal women. Clin Investig 1994; 72(7): 502-7.
[http://dx.doi.org/10.1007/BF00207478] [PMID: 7981577]
[37]
Masding MG, Stears AJ, Burdge GC, Wootton SA, Sandeman DD. The benefits of oestrogens on postprandial lipid metabolism are lost in post-menopausal women with Type 2 diabetes. Diabet Med 2006; 23(7): 768-74.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01867.x] [PMID: 16842482]
[38]
Westerveld HT, Kock LA, van Rijn HJ, Erkelens DW, de Bruin TW. 17 beta-Estradiol improves postprandial lipid metabolism in postmenopausal women. J Clin Endocrinol Metab 1995; 80(1): 249-53.
[PMID: 7829621]
[39]
Berr F, Eckel RH, Kern F Jr. Contraceptive steroids increase hepatic uptake of chylomicron remnants in healthy young women. J Lipid Res 1986; 27(6): 645-51.
[PMID: 3746133]
[40]
Mihm M, Gangooly S, Muttukrishna S. The normal menstrual cycle in women. Anim Reprod Sci 2011; 124(3-4): 229-36.
[http://dx.doi.org/10.1016/j.anireprosci.2010.08.030] [PMID: 20869180]
[41]
Messinis IE, Messini CI, Dafopoulos K. Novel aspects of the endocrinology of the menstrual cycle. Reprod Biomed Online 2014; 28(6): 714-22.
[http://dx.doi.org/10.1016/j.rbmo.2014.02.003] [PMID: 24745832]
[42]
Oliver MF, Boyd GS. Changes in the plasma lipids during the menstrual cycle. Clin Sci 1953; 12(2): 217-22.
[PMID: 13051869]
[43]
Gupta K, Mathur K, Sankhla M. Influence of menstrual cycle phases on serum levels of lipids and lipoprotein ratios in eumenorrheic women. Sch J App Med Sci 2015; 3(4C): 1769-72.
[44]
Pahwa MB, Seth S, Seth RK. Lipid profile in various phases of menstrual cycle and its relationship with percentage plasma volume changes. Clin Chim Acta 1998; 273(2): 201-7.
[http://dx.doi.org/10.1016/S0009-8981(98)00040-0] [PMID: 9657350]
[45]
De Leon RG, Austin KL, Richards L, Guerrero F. Lipid and hormonal profile of Panamanian women during the menstrual cycle. Int J Gynaecol Obstet 1992; 39(3): 219-26.
[http://dx.doi.org/10.1016/0020-7292(92)90660-B] [PMID: 1360917]
[46]
Vashishta S, Gahlot S, Goyal R. Effect of menstrual cycle phases on plasma lipid and lipoprotein levels in regularly menstruating women. J Clin Diagn Res 2017; 11(5): CC05-7.
[http://dx.doi.org/10.7860/JCDR/2017/26031.9799] [PMID: 28658753]
[47]
Mumford SL, Schisterman EF, Siega-Riz AM, et al. A longitudinal study of serum lipoproteins in relation to endogenous reproductive hormones during the menstrual cycle: findings from the BioCycle study. J Clin Endocrinol Metab 2010; 95(9): e80-5.
[http://dx.doi.org/10.1210/jc.2010-0109] [PMID: 20534764]
[48]
Magkos F, Patterson BW, Mittendorfer B. No effect of menstrual cycle phase on basal very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics. Am J Physiol Endocrinol Metab 2006; 291(6): e1243-9.
[http://dx.doi.org/10.1152/ajpendo.00246.2006] [PMID: 16835398]
[49]
Elhadd TA, Neary R, Abdu TA, et al. Influence of the hormonal changes during the normal menstrual cycle in healthy young women on soluble adhesion molecules, plasma homocysteine, free radical markers and lipoprotein fractions. Int Angiol 2003; 22(3): 222-8.
[PMID: 14612848]
[50]
Wendler D, Michel E. KAstner P, Schmahl FW. Menstrual cycle exhibits no effect on postprandial lipemia. Horm Metab Res 1992; 24(12): 580-1.
[http://dx.doi.org/10.1055/s-2007-1003394] [PMID: 1478617]
[51]
Gill JM, Malkova D, Hardman AE. Reproducibility of an oral fat tolerance test is influenced by phase of menstrual cycle. Horm Metab Res 2005; 37(5): 336-41.
[http://dx.doi.org/10.1055/s-2005-861481] [PMID: 15971159]
[52]
Quan H, Shih WJ. Assessing reproducibility by the within-subject coefficient of variation with random effects models. Biometrics 1996; 52(4): 1195-203.
[http://dx.doi.org/10.2307/2532835] [PMID: 8962450]
[53]
Lu W, Resnick HE, Jablonski KA, et al. Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes: the strong heart study. Diabetes Care 2003; 26(1): 16-23.
[http://dx.doi.org/10.2337/diacare.26.1.16] [PMID: 12502653]
[54]
Toth PP. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease. Vasc Health Risk Manag 2016; 12: 171-83.
[http://dx.doi.org/10.2147/VHRM.S104369] [PMID: 27226718]
[55]
Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996; 3(2): 213-9.
[http://dx.doi.org/10.1097/00043798-199604000-00014] [PMID: 8836866]
[56]
Xiao C, Hsieh J, Adeli K, Lewis GF. Gut-liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab 2011; 301(3): e429-46.
[http://dx.doi.org/10.1152/ajpendo.00178.2011] [PMID: 21693689]
[57]
Olofsson SO, Boren J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 2005; 258(5): 395-410.
[http://dx.doi.org/10.1111/j.1365-2796.2005.01556.x] [PMID: 16238675]
[58]
Parks EJ. Recent findings in the study of postprandial lipemia. Curr Atheroscler Rep 2001; 3(6): 462-70.
[http://dx.doi.org/10.1007/s11883-001-0036-5] [PMID: 11602066]
[59]
Chen SH, Habib G, Yang CY, et al. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 1987; 238(4825): 363-6.
[http://dx.doi.org/10.1126/science.3659919] [PMID: 3659919]
[60]
Muesing RA, Forman MR, Graubard BI, et al. Cyclic changes in lipoprotein and apolipoprotein levels during the menstrual cycle in healthy premenopausal women on a controlled diet. J Clin Endocrinol Metab 1996; 81(10): 3599-603.
[PMID: 8855808]
[61]
Azogui G, Ben-Shlomo I, Zohar S, Kook A, Presser S, Aviram M. High density lipoprotein concentration is increased during the ovulatory phase of the menstrual cycle in healthy young women. Gynecol Endocrinol 1992; 6(4): 253-7.
[http://dx.doi.org/10.3109/09513599209024987] [PMID: 1492580]
[62]
Karjalainen A, Heikkinen J, Savolainen MJ. BAckstrAm AC, KesAniemi YA. Mechanisms regulating LDL metabolism in subjects on peroral and transdermal estrogen replacement therapy. Arterioscler Thromb Vasc Biol 2000; 20(4): 1101-6.
[http://dx.doi.org/10.1161/01.ATV.20.4.1101] [PMID: 10764680]
[63]
Walsh BW, Li H, Sacks FM. Effects of postmenopausal hormone replacement with oral and transdermal estrogen on high density lipoprotein metabolism. J Lipid Res 1994; 35(11): 2083-93.
[PMID: 7868986]
[64]
Bell HK, Bloomer RJ. Impact of serum estradiol on postprandial lipemia, oxidative stress, and inflammation across a single menstrual cycle. Gend Med 2010; 7(2): 166-78.
[http://dx.doi.org/10.1016/j.genm.2010.03.001] [PMID: 20435279]
[65]
Silva KD, Wright JW, Williams CM, Lovegrove JA. Meal ingestion provokes entry of lipoproteins containing fat from the previous meal: possible metabolic implications. Eur J Nutr 2005; 44(6): 377-83.
[http://dx.doi.org/10.1007/s00394-004-0538-3] [PMID: 15526208]
[66]
Mohanlal N, Holman RR. A standardized triglyceride and carbohydrate challenge: the oral triglyceride tolerance test. Diabetes Care 2004; 27(1): 89-94.
[http://dx.doi.org/10.2337/diacare.27.1.89] [PMID: 14693972]
[67]
Langsted A, Nordestgaard BG. Nonfasting lipids, lipoproteins, and apolipoproteins in individuals with and without diabetes: 58 434 individuals from the Copenhagen general population study. Clin Chem 2011; 57(3): 482-9.
[http://dx.doi.org/10.1373/clinchem.2010.157164] [PMID: 21189274]
[68]
Schisterman EF, Mumford SL, Sjaarda LA. Failure to consider the menstrual cycle phase may cause misinterpretation of clinical and research findings of cardiometabolic biomarkers in premenopausal women. Epidemiol Rev 2014; 36(1): 71-82.
[http://dx.doi.org/10.1093/epirev/mxt007] [PMID: 24042431]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy