Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

In Vitro and In Vivo Neuroprotective Effects of Etifoxine in β-Amyloidinduced Toxicity Models

Author(s): Veronique Riban *, Johann Meunier , Dorothee Buttigieg, Vanessa Villard and Marc Verleye

Volume 19, Issue 3, 2020

Page: [227 - 240] Pages: 14

DOI: 10.2174/1871527319666200601151007

Price: $65

Open Access Journals Promotions 2
Abstract

Aim: The aim of this study is to examine the effect of etifoxine on β-amyloid-induced toxicity models.

Background: Etifoxine is an anxiolytic compound with a dual mechanism of action; it is a positive allosteric modulator of GABAergic receptors as well as a ligand for the 18 kDa mitochondrial Translocator Protein (TSPO). TSPO has recently raised interest in Alzheimer’s Disease (AD), and experimental studies have shown that some TSPO ligands could induce neuroprotective effects in animal models.

Objective: In this study, we examined the potential protective effect of etifoxine in an in vitro and an in vivo model of amyloid beta (Aβ)-induced toxicity in its oligomeric form, which is a crucial factor in AD pathologic mechanisms.

Methods: Neuronal cultures were intoxicated with Aβ1-42, and the effects of etifoxine on oxidative stress, Tau-hyperphosphorylation and synaptic loss were quantified. In a mice model, behavioral deficits induced by intracerebroventricular administration of Aβ25-35 were measured in a spatial memory test, the spontaneous alternation and in a contextual memory test, the passive avoidance test.

Results: In neuronal cultures intoxicated with Aβ1-42, etifoxine dose-dependently decreased oxidative stress (methionine sulfoxide positive neurons), tau-hyperphosphorylation and synaptic loss (ratio PSD95/synaptophysin). In a mice model, memory impairments were fully alleviated by etifoxine administered at anxiolytic doses (12.5-50mg/kg). In addition, markers of oxidative stress and apoptosis were decreased in the hippocampus of these animals.

Conclusion: Our results have shown that in these two models, etifoxine could fully prevent neurotoxicity and pathological changes induced by Aβ. These results confirm that TSPO ligands could offer an interesting therapeutic approach to Alzheimer’s disease.

Keywords: Alzheimer's disease, etifoxine, mice model, in vitro models, Translocator Protein (TSPO), amyloid beta peptide.

« Previous
Graphical Abstract
[1]
Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci USA 1985; 82(13): 4531-44.
[http://dx.doi.org/10.1073/pnas.82.13.4531]
[2]
Harkany T, Hortobágyi T, Sasvári M, et al. Neuroprotective approaches in experimental models of β-amyloid neurotoxicity: relevance to Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23(6): 963-1008.
[http://dx.doi.org/10.1016/S0278-5846(99)00058-5] [PMID: 10621945]
[3]
Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochem Biophys Acta 2010; 1802(1): 2-10.
[4]
Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives Biochim Biophys Acta 2014; 1842(8): 1219-31.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962811/pdf/nihms-526656.pdf [cited 2016 Aug 4] Available from: URL
[5]
Beg T, Jyoti S, Naz F, et al. Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2018; 17(6): 421-9.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[6]
Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001; 60(8): 759-67.
[http://dx.doi.org/10.1093/jnen/60.8.759] [PMID: 11487050]
[7]
Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 2004; 1012(1): 153-63.
[http://dx.doi.org/10.1196/annals.1306.012] [PMID: 15105262]
[8]
Papadopoulos V, Baraldi M, Guilarte TR, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006; 27(8): 402-9.
[http://dx.doi.org/10.1016/j.tips.2006.06.005] [PMID: 16822554]
[9]
Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa Translocator Protein (TSPO), implications for apoptosis. J Bioenerg Biomembr 2008; 40(3): 199-205.
[10]
Weill-Engerer S, David J-P, Sazdovitch V, et al. Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J Clin Endocrinol Metab 2002; 87(11): 5138-43.
[http://dx.doi.org/10.1210/jc.2002-020878] [PMID: 12414884]
[11]
Rosario ER, Chang L, Head EH, Stanczyk FZ, Pike CJ. Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol Aging 2011; 32(4): 604-13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.008]
[12]
Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJM, Garcia-Segura LM, et al. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 2003; 71(1): 3-29.
[http://dx.doi.org/10.1016/j.pneurobio.2003.09.004]
[13]
El Bitar F, Meunier J, Villard V, Almeras M, Krishnan K, Covey DF, et al. Neuroprotection by the synthetic neurosteroid enantiomers ent-PREGS and ent-DHEAS against Abeta(2)(5)(-)(3)(5) peptide-induced toxicity in vitro and in vivo in mice. Psychopharmacology (Berl) 2014; 231(17): 3293-312.
[http://dx.doi.org/10.1007/s00213-014-3435-3] [PMID: 24481566]
[14]
Gui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A. Characterization of the 18 kDa Translocator Protein (TSPO) expression in post-mortem normal and Alzheimer’s disease brains. Brain Pathol 2020; 30(1): 151-64.
[http://dx.doi.org/10.1111/bpa.12763] [PMID: 31276244]
[15]
Rupprecht R, Papadopoulos V, Rammes G, et al. Translocator Protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 2010; 9(12): 971-88.
[http://dx.doi.org/10.1038/nrd3295] [PMID: 21119734]
[16]
Filiou MD, Banati RB, Graeber MB. The 18-kDa Translocator protein as a CNS drug target: finding our way through the neuroinflammation fog. CNS Neurol Disord Drug Targets 2017; 16(9): 990-9.
[PMID: 28982340]
[17]
Barron AM, Garcia-Segura LM, Caruso D, et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013; 33(20): 8891-7.
[http://dx.doi.org/10.1523/JNEUROSCI.1350-13.2013] [PMID: 23678130]
[18]
Singh A, Hasan A, Tiwari S, Pandey LM. Therapeutic advancement in Alzheimer disease: new hopes on the horizon? CNS Neurol Disord Drug Targets 2018; 17(8): 571-89.
[http://dx.doi.org/10.2174/1871527317666180627122448] [PMID: 29952273]
[19]
do Rego JL, Vaudry D, Vaudry H. The non-benzodiazepine anxiolytic drug etifoxine causes a rapid, receptor-independent stimulation of neurosteroid biosynthesis. PLoS One 2015; 10(3): e0120473.
[20]
Schlichter R, Rybalchenko V, Poisbeau P, Verleye M, Gillardin J. Modulation of GABAergic synaptic transmission by the non benzodiazepine anxiolytic etifoxine. Neuropharmacology 2000; 39(9): 1523-35.
[http://dx.doi.org/10.1016/S0028-3908(99)00253-1] [PMID: 10854897]
[21]
Verleye M, Akwa Y, Liere P, et al. The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol Biochem Behav 2005; 82(4): 712-20.
[http://dx.doi.org/10.1016/j.pbb.2005.11.013] [PMID: 16388839]
[22]
Wolf L, Bauer A, Melchner D, et al. Enhancing neurosteroid synthesis--relationship to the pharmacology of translocator protein (18 kDa) (TSPO) ligands and benzodiazepines. Pharmacopsychiatry 2015; 48(2): 72-7.
[http://dx.doi.org/10.1055/s-0034-1398507] [PMID: 25654303]
[23]
Costa B, Cavallini C, Da Pozzo E, Taliani S, Da Settimo F, Martini C. The anxiolytic etifoxine binds to TSPO Ro5-4864 binding site with long residence time showing a high neurosteroidogenic activity. ACS Chem Neurosci 2017; 8(7): 1448-54.
[http://dx.doi.org/10.1021/acschemneuro.7b00027] [PMID: 28362078]
[24]
Hamon A, Morel A, Hue B, Verleye M, Gillardin JM. The modulatory effects of the anxiolytic etifoxine on GABA(A) receptors are mediated by the beta subunit. Neuropharmacology 2003; 45(3): 293-303.
[http://dx.doi.org/10.1016/S0028-3908(03)00187-4] [PMID: 12871647]
[25]
Stein DJ. Etifoxine versus alprazolam for the treatment of adjustment disorder with anxiety: a randomized controlled trial. Adv Ther 2015; 32(1): 57-68.
[http://dx.doi.org/10.1007/s12325-015-0176-6] [PMID: 25620535]
[26]
Nguyen N, Fakra E, Pradel V, et al. Efficacy of etifoxine compared to lorazepam monotherapy in the treatment of patients with adjustment disorders with anxiety: a double-blind controlled study in general practice. Hum Psychopharmacol 2006; 21(3): 139-49.
[http://dx.doi.org/10.1002/hup.757] [PMID: 16625522]
[27]
Aouad M, Charlet A, Rodeau JL, Poisbeau P. Reduction and prevention of vincristine-induced neuropathic pain symptoms by the non-benzodiazepine anxiolytic etifoxine are mediated by 3alphareduced neurosteroids. Pain 2009; 147(1-3): 54-9.
[http://dx.doi.org/10.1016/j.pain.2009.08.001] [PMID: 19786322]
[28]
Aouad M, Petit-Demouliere N, Goumon Y, Poisbeau P. Etifoxine stimulates allopregnanolone synthesis in the spinal cord to produce analgesia in experimental mononeuropathy. Eur J Pain 2014; 18(2): 258-68.
[http://dx.doi.org/10.1002/j.1532-2149.2013.00367.x]
[29]
Zeilhofer HU. Etifoxine (stresam) for chemotherapy-induced pain? Pain 2009; 147(1-3): 9-10.
[http://dx.doi.org/10.1016/j.pain.2009.09.021] [PMID: 19822395]
[30]
Girard C, Liu S, Adams D, et al. Axonal regeneration and neuroinflammation: roles for the translocator protein 18 kDa. J Neuroendocrinol 2012; 24(1): 71-81.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02215.x] [PMID: 21951109]
[31]
Daugherty DJ, Selvaraj V, Chechneva OV, Liu X-B, Pleasure DE, Deng W. A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med 2013; 5(6): 891-903.
[http://dx.doi.org/10.1002/emmm.201202124] [PMID: 23681668]
[32]
Aouad M, Zell V, Juif P-E, et al. Etifoxine analgesia in experimental monoarthritis: a combined action that protects spinal inhibition and limits central inflammatory processes. Pain 2014; 155(2): 403-12.
[http://dx.doi.org/10.1016/j.pain.2013.11.003] [PMID: 24239672]
[33]
Simon-O’Brien E, Gauthier D, Riban V, Verleye M. Etifoxine improves sensorimotor deficits and reduces glial activation, neuronal degeneration, and neuroinflammation in a rat model of traumatic brain injury. J Neuroinflammation 2016; 13(1): 203.
[http://dx.doi.org/10.1186/s12974-016-0687-3] [PMID: 27565146]
[34]
Li H-D, Li M, Shi E, Jin W-N, Wood K, Gonzales R, et al. A translocator protein 18 kDa agonist protects against cerebral ischemia/reperfusion injury. J Neuroinflammation 2017; 14(1): 151.
[35]
Maurice T, Lockhart BP, Privat A. Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 1996; 706(2): 181-93.
[http://dx.doi.org/10.1016/0006-8993(95)01032-7] [PMID: 8822355]
[36]
Maurice T, Su T-P, Privat A. Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience 1998; 83(2): 413-28.
[http://dx.doi.org/10.1016/S0306-4522(97)00405-3] [PMID: 9460750]
[37]
Sato K, Wakamiya A, Maeda T, Noguchi K, Takashima A, Imahori K. Correlation among secondary structure, amyloid precursor protein accumulation, and neurotoxicity of amyloid beta(25-35) peptide as analyzed by single alanine substitution. J Biochem 1995; 118(6): 1108-11.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124994] [PMID: 8720122]
[38]
Meunier J, Ieni J, Maurice T. Antiamnesic and neuroprotective effects of donepezil against learning impairments induced in mice by exposure to carbon monoxide gas. J Pharmacol Exp Ther 2006; 317(3): 1307-19.
[http://dx.doi.org/10.1124/jpet.106.101527] [PMID: 16551835]
[39]
Meunier J, Villard V, Givalois L, Maurice T. The γ-secretase inhibitor 2-[(1R)-1-[(4-chlorophenyl)sulfonyl](2,5-difluorophenyl) amino]ethyl-5-fluorobenzenebutanoic acid (BMS-299897) alleviates Aβ1-42 seeding and short-term memory deficits in the Aβ25-35 mouse model of Alzheimer’s disease. Eur J Pharmacol 2013; 698(1-3): 193-9.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.033] [PMID: 23123349]
[40]
Bergin DH, Jing Y, Zhang H, Liu P. A single intracerebroventricular Aβ25-35 infusion leads to prolonged alterations in arginine metabolism in the rat hippocampus and prefrontal cortex. Neuroscience 2015; 298: 367-79.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.034] [PMID: 25907447]
[41]
Meunier J, Ieni J, Maurice T. The anti-amnesic and neuroprotective effects of donepezil against amyloid β25-35 peptide-induced toxicity in mice involve an interaction with the σ1 receptor. Br J Pharmacol 2006; 149(8): 998-1012.
[http://dx.doi.org/10.1038/sj.bjp.0706927] [PMID: 17057756]
[42]
Callizot N, Combes M, Steinschneider R, Poindron P. Operational dissection of β-amyloid cytopathic effects on cultured neurons. J Neurosci Res 2013; 91(5): 706-16.
[http://dx.doi.org/10.1002/jnr.23193] [PMID: 23404368]
[43]
Verleye M, Dumas S, Heulard I, Krafft N, Gillardin J-M. Differential effects of etifoxine on anxiety-like behaviour and convulsions in BALB/cByJ and C57BL/6J mice: any relation to overexpression of central GABAA receptor beta2 subunits? Eur Neuropsychopharmacol 2011; 21(6): 457-70.
[http://dx.doi.org/10.1016/j.euroneuro.2010.09.008] [PMID: 20943351]
[44]
Goodman Y, Bruce AJ, Cheng B, Mattson MP. Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem 1996; 66(5): 1836-44.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66051836.x] [PMID: 8780008]
[45]
Delobette S, Privat A, Maurice T. In vitro aggregation facilities beta-amyloid peptide-(25-35)-induced amnesia in the rat. Eur J Pharmacol 1997; 319(1): 1-4.
[http://dx.doi.org/10.1016/S0014-2999(96)00922-3] [PMID: 9030890]
[46]
Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW. Structure-activity analyses of betaamyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 1995; 64(1): 253-65.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64010253.x] [PMID: 7798921]
[47]
Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1--42) and A beta(25--35). J Am Chem Soc 2001; 123(24): 5625-31.
[http://dx.doi.org/10.1021/ja010452r] [PMID: 11403592]
[48]
Zussy C, Brureau A, Keller E, et al. Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-β peptide injection in rats. PLoS One 2013; 8(1): e53117.
[http://dx.doi.org/10.1371/journal.pone.0053117] [PMID: 23301030]
[49]
Zussy C, Brureau A, Delair B, Marchal S, Keller E, Ixart G, et al. Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid β fragment in rats. Am J Pathol 2011; 179(1): 315-34.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.021]
[50]
Villard V, Espallergues J, Keller E, Alkam T, Nitta A, Yamada K, et al. Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology 2009; 34(6): 1552-66.
[51]
Hermes-Lima M, Willmore WG, Storey KB. Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic Biol Med 1995; 19(3): 271-80.
[http://dx.doi.org/10.1016/0891-5849(95)00020-X] [PMID: 7557541]
[52]
Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 2002; 23(5): 655-64.
[http://dx.doi.org/10.1016/S0197-4580(01)00340-2] [PMID: 12392766]
[53]
Eckert A, Schmitt K, Gotz J. Mitochondrial dysfunction - the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-beta toxicity. Alzheimers Res Ther 2011; 3(2): 15.
[54]
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 1986; 261(13): 6084-9.
[PMID: 3084478]
[55]
Ittner LM, Götz J. Amyloid-β and tau--a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 2011; 12(2): 65-72.
[http://dx.doi.org/10.1038/nrn2967] [PMID: 21193853]
[56]
Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 2002; 99(9): 6364-9.
[http://dx.doi.org/10.1073/pnas.092136199] [PMID: 11959919]
[57]
Leroy K, Ando K, Laporte V, et al. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. Am J Pathol 2012; 181(6): 1928-40.
[58]
Bennett RE, DeVos SL, Dujardin S, et al. Enhanced tau aggregation in the presence of amyloid β. Am J Pathol 2017; 187(7): 1601-12.
[http://dx.doi.org/10.1016/j.ajpath.2017.03.011] [PMID: 28500862]
[59]
Shin WS, Di J, Cao Q, et al. Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation. Alzheimers Res Ther 2019; 11(1): 86.
[http://dx.doi.org/10.1186/s13195-019-0541-9] [PMID: 31627745]
[60]
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow E-M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002; 156(6): 1051-63.
[http://dx.doi.org/10.1083/jcb.200108057] [PMID: 11901170]
[61]
Bhargavi M, Sivan SK, Potlapally SR. Identification of novel anti cancer agents by applying insilico methods for inhibition of TSPO protein. Comput Biol Chem 2017; 68: 43-55.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.12.016] [PMID: 28235666]
[62]
Arbo BD, Hoppe JB, Rodrigues K, Garcia-Segura LM, Salbego CG, Ribeiro MF. 4′-Chlorodiazepam is neuroprotective against amyloid-beta in organotypic hippocampal cultures. J Steroid Biochem Mol Biol 2017; 171: 281-7.
[63]
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008; 60(5): 748-66.
[http://dx.doi.org/10.1016/j.neuron.2008.10.010] [PMID: 19081372]
[64]
Grimm A, Lim Y-A, Mensah-Nyagan AG, Götz J, Eckert A. Alzheimer’s disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 2012; 46(1): 151-60.
[http://dx.doi.org/10.1007/s12035-012-8281-x] [PMID: 22678467]
[65]
Rosario ER, Carroll J, Pike CJ. Testosterone regulation of Alzheimer-like neuropathology in male 3xTg-AD mice involves both estrogen and androgen pathways. Brain Res 2010; 1359: 281-90.
[http://dx.doi.org/10.1016/j.brainres.2010.08.068] [PMID: 20807511]
[66]
Rosario ER, Carroll JC, Oddo S, LaFerla FM, Pike CJ. Androgens regulate the development of neuropathology in a triple transgenic mouse model of Alzheimer’s disease. J Neurosci 2006; 26(51): 13384-9.
[http://dx.doi.org/10.1523/JNEUROSCI.2514-06.2006] [PMID: 17182789]
[67]
Chen S, Wang JM, Irwin RW, Yao J, Liu L, Brinton RD. Allopregnanolone promotes regeneration and reduces β-amyloid burden in a preclinical model of Alzheimer’s disease. PLoS One 2011; 6(8): e24293.
[http://dx.doi.org/10.1371/journal.pone.0024293] [PMID: 21918687]
[68]
Liere P, Pianos A, Oudinet J-P, Schumacher M, Akwa Y. Differential effects of the 18-kDa Translocator Protein (TSPO) ligand etifoxine on steroidogenesis in rat brain, plasma and steroidogenic glands: pharmacodynamic studies. Psychoneuroendocrinology 2017; 83: 122-34.
[69]
Nilsen J, Chen S, Irwin RW, Iwamoto S, Brinton RD. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci 2006; 7: 74.
[http://dx.doi.org/10.1186/1471-2202-7-74]
[70]
Wang W-Y, Tan M-S, Yu J-T, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10): 136.
[PMID: 26207229]
[71]
Kreisl WC, Henter ID, Innis RB. Imaging translocator protein as a biomarker of neuroinflammation in dementia. Adv Pharmacol 2018; 82: 163-85.
[http://dx.doi.org/10.1016/bs.apha.2017.08.004] [PMID: 29413519]
[72]
Serrano-Pozo A, Muzikansky A, Gómez-Isla T, et al. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 2013; 72(6): 462-71.
[http://dx.doi.org/10.1097/NEN.0b013e3182933788] [PMID: 23656989]
[73]
Ravikumar B, Crawford D, Dellovade T, et al. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology 2016; 108: 229-37.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.053] [PMID: 27039042]
[74]
Ulrich D. Amyloid-β impairs synaptic inhibition via GABA(A) receptor endocytosis. J Neurosci 2015; 35(24): 9205-10.
[http://dx.doi.org/10.1523/JNEUROSCI.0950-15.2015] [PMID: 26085642]
[75]
Paula-Lima AC, De Felice FG, Brito-Moreira J, Ferreira ST. Activation of GABA(A) receptors by taurine and muscimol blocks the neurotoxicity of beta-amyloid in rat hippocampal and cortical neurons. Neuropharmacology 2005; 49(8): 1140-8.
[http://dx.doi.org/10.1016/j.neuropharm.2005.06.015] [PMID: 16150468]
[76]
Marcade M, Bourdin J, Loiseau N, et al. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem 2008; 106(1): 392-404.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05396.x] [PMID: 18397369]
[77]
Wang K, Sun W, Zhang L, et al. Oleanolic acid ameliorates Aβ25-35 injection-induced memory deficit in Alzheimer’s disease model rats by maintaining synaptic plasticity. CNS Neurol Disord Drug Targets 2018; 17(5): 389-99.
[http://dx.doi.org/10.2174/1871527317666180525113109] [PMID: 29793416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy