Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Role of P-gp and HDAC2 and their Reciprocal Relationship in Uncontrolled Asthma

Author(s): Ravi Mishra, Rachna Chaturvedi, Zia Hashim*, Alok Nath, Ajmal Khan, Mansi Gupta, Harshit Singh and Vikas Agarwal

Volume 22, Issue 3, 2021

Published on: 29 May, 2020

Page: [408 - 413] Pages: 6

DOI: 10.2174/1389201021666200529104042

Price: $65

Abstract

Introduction: Resistance to corticosteroid is an essential mechanism in uncontrolled asthma as the corticosteroid is the mainstay of therapy. There are recent reports that epigenetic factors play a crucial role in the regulation of steroid action. Overexpression of P glycoprotein (P-gp) and reduced expression of Histone Deacetylase 2 (HDAC2) have been linked to regulating the steroid action in other diseases like Nephrotic Syndrome (NS). However, their role in uncontrolled asthma is still not clear and warrants further investigation. We evaluated the expression and activity of P-gp and HDAC2 in patients with Controlled Asthma (CA) and Uncontrolled Asthma (UA).

Methods: A total of 60 CA (mean age 51.72±17.02 years, male=38), and 38 of UA (mean age=53.55±11.90 years, male=17) were recruited. The level of control was defined according to (Global Initiative for Asthma) GINA 2016 criteria. The mRNA expression of HDAC2 and P-gp was studied by quantitative real-time Polymerase Chain Reaction (PCR), the functional activity of P-gp was evaluated by a commercially available kit via flow cytometry, and HDAC2 enzymatic activity was measured by commercially available kit by Enzyme-Linked Immunosorbent Assay (ELISA).

Results: P-gp expression and the functionality were significantly higher in the UA group of patients as compared to the CA group of patients (p<0.005), moreover HDAC2 expression was significantly reduced in UA patients as compared to CA patients, (p<0.005). The enzymatic activity of HDAC2 was also significantly reduced in UA patients as compared to CA patients (p<0.005).

Conclusion: P-gp overexpression and HDAC2 under expression play an essential role in uncontrolled asthma by impairing the response to corticosteroid.

Keywords: Asthma, nephrotic syndrome, enzymatic activity, glucocorticoid receptor-α, multi-drug-resistant, corticosteroid.

Graphical Abstract
[1]
Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention, 2017.
[2]
Holgate, S.T.; Arshad, H.S.; Roberts, G.C.; Howarth, P.H.; Thurner, P.; Davies, D.E. A new look at the pathogenesis of asthma. Clin. Sci. (Lond), 2009, 118(7), 439-450.
[http://dx.doi.org/10.1042/CS20090474] [PMID: 20025610]
[3]
King, C.S.; Moores, L.K. Clinical asthma syndromes and important asthma mimics. Respir. Care, 2008, 53(5), 568-580.
[PMID: 18426611]
[4]
The Global Asthma Report, 2018.
[5]
Barnes, P.J.; Pedersen, S. Efficacy and safety of inhaled corticosteroids in asthma. Report of a workshop held in Eze, France, October 1992. Am. Rev. Respir. Dis., 1993, 148(4 Pt 2), S1-S26.
[http://dx.doi.org/10.1164/ajrccm/148.4_Pt_2.S1] [PMID: 8214958]
[6]
Barnes, P.J.; Woolcock, A.J. Difficult asthma. Eur. Respir. J., 1998, 12(5), 1209-1218.
[http://dx.doi.org/10.1183/09031936.98.12051209] [PMID: 9864023]
[7]
Global Initiative for Asthma. 2016.
[8]
Luu, M.; Bardou, M.; Bonniaud, P.; Goirand, F. Pharmacokinetics, pharmacodynamics and clinical efficacy of omalizumab for the treatment of asthma. Expert Opin. Drug Metab. Toxicol., 2016, 12(12), 1503-1511.
[http://dx.doi.org/10.1080/17425255.2016.1248403 PMID: 27748630]
[9]
Jafar, T.; Prasad, N.; Agarwal, V.; Mahdi, A.; Gupta, A.; Sharma, R.K.; Negi, M.P.S.; Agrawal, S. MDR-1 gene polymorphisms in steroid-responsive versus steroid-resistant nephrotic syndrome in children. Nephrol. Dial. Transplant., 2011, 26(12), 3968-3974.
[http://dx.doi.org/10.1093/ndt/gfr150] [PMID: 21460357]
[10]
Barnes, P.J. Histone deacetylase-2 and airway disease. Ther. Adv. Respir. Dis., 2009, 3(5), 235-243.
[http://dx.doi.org/10.1177/1753465809348648] [PMID: 19812111]
[11]
Barnes, P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol., 2013, 131(3), 636-645.
[http://dx.doi.org/10.1016/j.jaci.2012.12.1564] [PMID: 23360759]
[12]
Kopriva, F.; Dzubak, P.; Potesil, J.; Hajduch, M. The anti-inflammatory effects of inhaled corticosteroids versus anti-leukotrienes on the lymphocyte P-glycoprotein (PGP) expression in asthmatic children. J. Asthma, 2009, 46(4), 366-370.
[13]
Singh, H.; Agarwal, V.; Chaturvedi, S.; Misra, D.P.; Jaiswal, A.K.; Prasad, N. Reciprocal relationship between HDAC2 and P-glycoprotein/MRP-1 and their role in steroid resistance in childhood nephrotic syndrome. Front. Pharmacol., 2019, 10, 558.
[http://dx.doi.org/10.3389/fphar.2019.00558] [PMID: 31191307]
[14]
Lajqi, N.; Ilazi, A.; Kastrati, B.; Islami, H. Comparison of glucocorticoid (Budesonide) and antileukotriene (Montelukast) effect in patients with bronchial asthma determined with body plethysmography. Acta Inform. Med., 2015, 23(6), 347-351.
[http://dx.doi.org/10.5455/aim.2015.23.347-351] [PMID: 26862243]
[15]
Diamond, G.; Legarda, D.; Ryan, L.K. The innate immune response of the respiratory epithelium. Immunol. Rev., 2000, 173, 27-38.
[http://dx.doi.org/10.1034/j.1600-065X.2000.917304.x PMID: 10719665]
[16]
Rennard, S.I.; Romberger, D.J.; Sisson, J.H.; Von Essen, S.G.; Rubinstein, I.; Robbins, R.A. Spurzem. J.R. Airway epithelial cells: Functional roles in airway disease. Am. J. Respir. Crit. Care Med., 1994, 150(5 Pt 2), S27-S30.
[http://dx.doi.org/10.1164/ajrccm/150.5_Pt_2.S27] [PMID: 7952587]
[17]
Bacon, K.B.; Premack, B.A.; Gardner, P.; Schall, T.J. Activation of dual T cell signaling pathways by the chemokine rantes. Science, 1995, 269(5231), 1727-1730.
[http://dx.doi.org/10.1126/science.7569902] [PMID: 7569902]
[18]
Bokoch, G.M. Chemoattractant signaling and leukocyte activation. Blood, 1995, 86(5), 1649-1660.
[http://dx.doi.org/10.1182/blood.V86.5.1649.bloodjournal8651649] [PMID: 7654998]
[19]
Luster, A.D. Chemokines-chemotactic cytokines that mediate inflammation. N. Engl. J. Med., 1998, 338(7), 436-445.
[http://dx.doi.org/10.1056/NEJM199802123380706 PMID: 9459648]
[20]
Krakauer, T. Stimulant-dependent modulation of cytokines and chemokines by airway epithelial cells: Cross talk between pulmonary epithelial and peripheral blood mononuclear cells. Clin. Diagn. Lab. Immunol., 2002, 9(1), 126-131.
[PMID: 11777841]
[21]
Sahaf, B.; Atkuri, K.; Heydari, K.; Malipatlolla, M.; Rappaport, J.; Regulier, E.; Herzenberg, L.A.; Herzenberg, L.A. Culturing of human peripheral blood cells reveals unsuspected lymphocyte responses relevant to HIV disease. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5111-5116.
[http://dx.doi.org/10.1073/pnas.0712363105] [PMID: 18364393]
[22]
Singh, H.; Prasad, N.; Misra, D.; Jaiswal, A.; Agarwal, V. P-glycoprotein and/or histone deacetylase 2 regulates steroid responsiveness in childhood nephrotic syndrome. Ind. J. Rheumatol., 2020, 115(1), 5-10.
[23]
Chaturvedi, S.; Misra, D.P.; Prasad, N.; Kailash, R.; Singh, H.; Rai, M.K.; Agarwal, V. 5-HT2 and 5-HT2B antagonists attenuate pro-fibrotic phenotype in human adult dermal fibroblasts by blocking TGF-β1 induced non-canonical signaling pathways including STAT3: Implications for fibrotic diseases like scleroderma. Int. J. Rheum. Dis., 2018, 21(12), 2128-2138.
[http://dx.doi.org/10.1111/1756-185X.13386] [PMID: 30207074]
[24]
Broide, D.H.; Lotz, M.; Cuomo, A.J.; Coburn, D.A.; Federman, E.C.; Wasserman, S.I. Cytokines in symptomatic asthma airways. J. Allergy Clin. Immunol., 1992, 89(5), 958-967.
[http://dx.doi.org/10.1016/0091-6749(92)90218-Q] [PMID: 1374772]
[25]
Ribeiro, I.S.; Pereira, I.S.; Santos, D.P.; Lopes, D.N.; Prado, A.O.; Calado, S.P.M.; Gonçalves, C.V.; Galantini, M.P.L.; Muniz, I.P.R.; Santos, G.S.; Silva, R.A.A. Association between body composition and inflammation: A central role of IL-17 and IL-10 in diabetic and hypertensive elderly women. Exp. Gerontol., 2019, 127110734
[http://dx.doi.org/10.1016/j.exger.2019.110734] [PMID: 31518664]
[26]
Montano, E.; Schmitz, M.; Blaser, K.; Simon, H.U. P-glycoprotein expression in circulating blood leukocytes of patients with steroid-resistant asthma. J. Investig. Allergol. Clin. Immunol., 1996, 6(1), 14-21.
[PMID: 8833164]
[27]
Prasad, N.; Jaiswal, A.K.; Agarwal, V.; Yadava, B.; Sharma, R.K.; Rai, M.; Singh, H.; Chaturvedi, S.; Singha, A. Differential alteration in peripheral T-regulatory and T-effector cells with change in P-glycoprotein expression in Childhood Nephrotic Syndrome: A longitudinal study. Cytokine, 2015, 72(2), 190-196.
[http://dx.doi.org/10.1016/j.cyto.2014.12.028] [PMID: 25661194]
[28]
Kansal, A.; Tripathi, D.; Rai, M.K.; Agarwal, V. Persistent expression and function of P-glycoprotein on peripheral blood lymphocytes identifies corticosteroid resistance in patients with systemic lupus erythematosus. Clin. Rheumatol., 2016, 35(2), 341-349.
[http://dx.doi.org/10.1007/s10067-015-3079-7] [PMID: 26415739]
[29]
Barnes, P.J. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc., 2009, 6(8), 693-696.
[http://dx.doi.org/10.1513/pats.200907-071DP] [PMID: 20008877]
[30]
Urnov, F.D.; Wolffe, A.P. Chromatin remodeling and transcriptional activation: The cast (in order of appearance). Oncogene, 2001, 20(24), 2991-3006.
[http://dx.doi.org/10.1038/sj.onc.1204323] [PMID: 11420714]
[31]
Thiagalingam, S.; Cheng, K.H.; Lee, H.J.; Mineva, N.; Thiagalingam, A.; Ponte, J.F. Histone deacetylases: Unique players in shaping the epigenetic histone code. Ann. N. Y. Acad. Sci., 2003, 983, 84-100.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb05964.x PMID: 12724214]
[32]
Tan, C.; Xuan, L.; Cao, S.; Yu, G.; Hou, Q.; Wang, H. Decreased Histone Deacetylase 2 (HDAC2) in Peripheral Blood Monocytes (PBMCs) of COPD Patients. PLoS One, 2016, 11(1)e0147380
[http://dx.doi.org/10.1371/journal.pone.0147380] [PMID: 26809128]
[33]
Duan, H.; Zhou, K.; Zhang, Y.; Yue, P.; Wang, T.; Li, Y.; Qiu, D.; Wu, J.; Hua, Y.; Wang, C. HDAC2 was involved in placental P-glycoprotein regulation both in vitro and in vivo. Placenta, 2017, 58, 105-114.
[http://dx.doi.org/10.1016/j.placenta.2017.08.077] [PMID: 28962688]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy