Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Review Article

Role of Chromatograph-based Analytical Techniques in Quantification of Chiral Compounds: An Update

Author(s): Pradnya Gunjal, Sachin Kumar Singh*, Rajesh Kumar, Rajan Kumar and Monica Gulati

Volume 17, Issue 3, 2021

Published on: 25 May, 2020

Page: [355 - 373] Pages: 19

DOI: 10.2174/1573411016999200525144506

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Chiral purity is a critical quality attribute of pharmaceutical materials as chiral compounds are known to exhibit different pharmacological and toxicological properties as compared to those of their enantiomers (or diastereomers for molecules with multiple chiral centers). It is important to note that about 40% of the synthetic drugs are chiral, 60% of all pharmaceuticals are chiral and 45% chiral drugs are sold as racemates. The objective of the current review is to discuss various chromatographic techniques used for the separation of chiral compounds.

Methods: Various bibliographic databases of previously published peer-reviewed research papers were explored and systematic data has been compiled in terms of various chromatographic techniques used for chiral compounds’ separation. A comparison of different techniques as well as their advantages is also discussed.

Results: A comprehensive review of 130 papers including both, research and review articles, was carried out. The analytical techniques have been discussed in detail. Apart from chromatographic techniques, other techniques such as circular dichroism, nuclear magnetic resonance, UV-visible spectroscopy using cyclodextrin derivatives have also been highlighted.

Conclusion: The pharmaceutical industries need analytical methods to conclude enantiomeric concentration and obtain a drug with a single stereo configuration. Sensitive techniques such as HPLC, GCMS and LCMS, etc. are used for identification and quantification of single enantiomers, specifically in drug discovery and development.

Keywords: Chiral chromatography, chiral separation, enantiomers, gas chromatography, mass spectrometry, review.

Graphical Abstract
[1]
Ishige, T.; Honda, K.; Shimizu, S. Whole organism biocatalysis. Curr. Opin. Chem. Biol., 2005, 9(2), 174-180.
[http://dx.doi.org/10.1016/j.cbpa.2005.02.001] [PMID: 15811802]
[2]
Caner, H.; Groner, E.; Levy, L.; Agranat, I. Trends in the development of chiral drugs. Drug Discov. Today, 2004, 9(3), 105-110.
[http://dx.doi.org/10.1016/S1359-6446(03)02904-0] [PMID: 15038394]
[3]
Gaykar, S.K.; Shinde, R.B.; Bhalgat, C.M.; Harlikar, J.; Gangrade, M.; Pullela, S.V. Development and validation of chiral HPLC method for quantification of 3-(S)-quinuclidinol in pharmaceutically important precursor, 3-(R)-quinuclidinol, by precolumn derivatization. J. Chromatogr. Sci., 2016, 54(10), 1800-1805.
[http://dx.doi.org/10.1093/chromsci/bmw139] [PMID: 27681774]
[4]
Cagliero, C.; Sgorbini, B.; Cordero, C.; Liberto, E.; Rubiolo, P.; Bicchi, C. Enantioselective gas chromatography with derivatized cyclodextrins in the flavour and fragrance field. Isr. J. Chem., 2016, 56(11-12), 925-939.
[http://dx.doi.org/10.1002/ijch.201600091]
[5]
Tao, W.A.; Gozzo, F.C.; Cooks, R.G. Mass spectrometric quantitation of chiral drugs by the kinetic method. Anal. Chem., 2001, 73(8), 1692-1698.
[http://dx.doi.org/10.1021/ac001150v] [PMID: 11338581]
[6]
Polak, B. Chromatographic separations and analysis: Chiral separations by thin layer chromatography, 2014..
[http://dx.doi.org/10.1016/B978-0-12-409547-2.11427-1]
[7]
Sobańska, A.W. Impregnated silica-based layers in thin layer chromatography. J. Liq. Chromatogr. Relat. Technol., 2020, 2020, 1-9.
[http://dx.doi.org/10.1080/10826076.2020.1725554]
[8]
Lepri, L.; Coas, V.; Desideri, P.; Pettini, L. Reversed phase planar chromatography of enantiomeric compounds with bovine serum albumin in the mobile phase. JPC. J. Planar Chromatogr. Mod. TLC, 1992, 5(5), 364-367.
[9]
Lepri, L.; Coas, V.; Desideri, P. Planar chromatography of optical isomers with bovine serum albumin in the mobile phase. JPC. J. Planar Chromatogr. Mod. TLC, 1992, 5(3), 175-178.
[10]
Lepri, L.; Coas, V.; Desideri, P.; Santianni, D. Reversed phase planar chromatography of dansyl DL amino acids with bovine serum albumin in the mobile phase. Chromatographia, 1993, 36(1), 297-301.
[http://dx.doi.org/10.1007/BF02263881]
[11]
Malik, P.; Bhushan, R. Thin Layer Chromatographic resolution of some β-adrenolytics and a β2-Agonist using bovine serum albumin as chiral additive in stationary phase. J. Chromatogr. Sci., 2018, 56(1), 92-98.
[http://dx.doi.org/10.1093/chromsci/bmx082] [PMID: 28977354]
[12]
Singh, D.; Malik, P.; Bhushan, R. Superiority of thin-layer chromatography over high-performance liquid chromatography in enantioseparation. JPC J. Plan. Chromatogr. Modern TLC, 2019, 32(1), 7-12.
[http://dx.doi.org/10.1556/1006.2019.32.1.1]
[13]
Bhushan, R.; Nagar, H. Resolution and isolation of enantiomers of (±)-isoxsuprine using thin silica gel layers impregnated with L-glutamic acid, comparison of separation of its diastereomers prepared with chiral derivatizing reagents having L-amino acids as chiral auxiliaries. Biomed. Chromatogr., 2015, 29(3), 357-365.
[http://dx.doi.org/10.1002/bmc.3284] [PMID: 25044026]
[14]
Moussa, B.A.; Youssef, N.F.; Elkady, E.F.; Mohamed, M.F. Indirect synchronous fluorescence spectroscopy and direct high-performance thin-layer chromatographic methods for enantioseperation of zopiclone and determination of chiral-switching eszopiclone: Evaluation of thermodynamic quantities of chromatographic separation. Chirality, 2019, 31(5), 362-374.
[http://dx.doi.org/10.1002/chir.23063] [PMID: 30859633]
[15]
Khatri, S.; Memon, N.; Khatri, Z.; Ahmed, F. TLC-based enantiomeric separation of amino acids onto β-CD-incorporated glutaraldehyde-crosslinked PVA electrospun fiber stationary phase. Acta Chromatogr., 2019, 2019, 1-4.
[16]
Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: An overview. Int. J. Biomed. Sci., 2006, 2(2), 85-100.
[PMID: 23674971]
[17]
Zhang, Y.; Yao, S.; Zeng, H.; Song, H. Chiral separation of pharmaceuticals by high performance liquid chromatography. J Curr. Pharm. Anal., 2010, 6(2), 114-130.
[http://dx.doi.org/10.2174/157341210791202636]
[18]
Olsen, B.A.; Castle, B.C.; Myers, D.P. Advances in HPLC technology for the determination of drug impurities. J TrAC. Trends Analyt. Chem., 2006, 25(8), 796-805.
[http://dx.doi.org/10.1016/j.trac.2006.06.005]
[19]
Dave, K.; Desai, S. Factorial design for development of a high-performance thin-layer chromatography method for the simultaneous estimation of abacavir sulfate, lamivudine hydrochloride, and dolutegravir sodium. J. JPC J. Plan. Chromatogr. Modern TLC, 2018, 31(6), 489-495.
[http://dx.doi.org/10.1556/1006.2018.31.6.9]
[20]
Ravinder, V.; Ashok, S.; Varma, M.S.; Babu, C.R.; Shanker, K.; Balaswamy, G. A validated chiral LC method for the enantiomeric separation of cinacalcet hydrochloride. J. Chromatographia, 2009, 70(1-2), 229-232.
[http://dx.doi.org/10.1365/s10337-009-1129-5]
[21]
Dubey, S.K.; Hemanth, J.; Venkatesh, K.C.; Saha, R.N.; Pasha, S. New chiral reverse phase HPLC method for enantioselective analysis of ketorolac using chiral AGP column. J. Pharm. Anal., 2012, 2(6), 462-465.
[http://dx.doi.org/10.1016/j.jpha.2012.07.006] [PMID: 29403784]
[22]
Rahman, A.; Haque, M.R.; Rahman, M.M.; Rashid, M.A. Development and validation of a chiral HPLC method for quantitative analysis of enantiomeric escitalopram. J Dhaka University. J. Pharm. Sci., 2017, 16(2), 165-172.
[23]
Kannappan, V.; Kanthiah, S. Enantiopurity assessment of chiral switch of ondansetron by direct chiral HPLC. J Chromatographia, 2017, 80(2), 229-236.
[http://dx.doi.org/10.1007/s10337-016-3228-4]
[24]
Rajput, A.; Sonanis, M.C. Stability indicating HPLC method for the enantiomeric separation of fesoterodine fumarate in drug product and drug substance using chiral stationary phase. J. Chem. Pharm. Res., 2012, 4, 4127-4133.
[25]
Srinivasu, G.; Kumar, K.N.; Thirupathi, C.; Narayana, C.L.; Murthy, C.P. Development and validation of the chiral HPLC method for daclatasvir in gradient elution mode on amylose-based immobilized chiral stationary phase. J. Chromatographia, 2016, 79(21-22), 1457-1467.
[http://dx.doi.org/10.1007/s10337-016-3157-2]
[26]
Balaji, N.; Gabani, B.B.; Todmal, U.; Sulochana, S.P.; Saini, N.K.; Chandran, R.; Mullangi, R. Enantioselective LC-ESI-MS/MS determination of dropropizine enantiomers in rat plasma and application to a pharmacokinetic study. Biomed. Chromatogr., 2019, 33(3)e4434
[http://dx.doi.org/10.1002/bmc.4434] [PMID: 30426526]
[27]
Zhang, J.; Gage, E.M.; Ji, Q.C.; El-Shourbagy, T.A. A strategy for high-throughput analysis of levosimendan and its metabolites in human plasma samples using sequential negative and positive ionization liquid chromatography/tandem mass spectrometric detection. Rapid Commun. Mass Spectrom., 2007, 21(14), 2169-2176.
[http://dx.doi.org/10.1002/rcm.3046] [PMID: 17631672]
[28]
Bounoua, N.; Sekkoum, K.; Gumustas, M.; Belboukhari, N.; Ozkan, S.A. Development of stability indicating HPLC method for the separation and validation of enantiomers of miconazole. Chirality, 2018, 30(6), 807-815.
[http://dx.doi.org/10.1002/chir.22858] [PMID: 29637614]
[29]
Nagaraju, C.; Ray, U.K.; Vidavalur, S. Development and validation of chiral HPLC method for the identification and quantification of enantiomer in posaconazole drug substance. J. Chem. Sci., 2018, 7(3), 506-514.
[30]
Zhou, Y.; Ma, C.; Wang, Y.; Zhang, Q-M.; Zhang, Y-Y.; Fu, J.; Gao, H.; Zhao, L-X. High performance liquid chromatographic separation of thirteen drugs collected in Chinese Pharmacopoeia 2010(Ch.P2010) on cellulose ramification chiral stationary phase. J. Pharm. Anal., 2012, 2(1), 48-55.
[http://dx.doi.org/10.1016/j.jpha.2011.11.007] [PMID: 29403720]
[31]
Ali, I.; Alam, S.D.; Al-Othman, Z.A.; Farooqi, J.A. Recent advances in SPE-chiral-HPLC methods for enantiomeric separation of chiral drugs in biological samples. J. Chromatogr. Sci., 2013, 51(7), 645-654.
[http://dx.doi.org/10.1093/chromsci/bms262] [PMID: 23377648]
[32]
Cirilli, R.; Ferretti, R.; Gallinella, B.; De Santis, E.; Zanitti, L.; La Torre, F. High-performance liquid chromatography enantioseparation of proton pump inhibitors using the immobilized amylose-based Chiralpak IA chiral stationary phase in normal-phase, polar organic and reversed-phase conditions. J. Chromatogr. A, 2008, 1177(1), 105-113.
[http://dx.doi.org/10.1016/j.chroma.2007.11.027] [PMID: 18048047]
[33]
Ghanem, A.; Wang, C. Enantioselective separation of racemates using CHIRALPAK IG amylose-based chiral stationary phase under normal standard, non-standard and reversed phase high performance liquid chromatography. J. Chromatogr. A, 2018, 1532, 89-97.
[http://dx.doi.org/10.1016/j.chroma.2017.11.049] [PMID: 29191406]
[34]
Chennuru, L.N.; Choppari, T.; Nandula, R.P.; Zhang, T.; Franco, P. Direct separation of pregabalin enantiomers using a zwitterionic chiral selector by high performance liquid chromatography coupled to mass spectrometry and ultraviolet detection. Molecules, 2016, 21(11), 1578.
[http://dx.doi.org/10.3390/molecules21111578] [PMID: 27869770]
[35]
Salapaka, A.; Bonige, K.B.; Korupolu, R.B. T, C.R.; K, C.R.; N, S.; Sharma, H.K.; Ray, U.K. A new stability indicating reverse phase high performance liquid chromatography method for the determination of enantiomeric purity of a DPP-4 inhibitor drug linagliptin. Electrophoresis, 2019, 40(7), 1066-1073.
[http://dx.doi.org/10.1002/elps.201800502] [PMID: 30632171]
[36]
Kant, R.; Bodla, R.B.; Bhutani, R.; Kapoor, G. Enantioselective Box Behenken Optimized HPLC-DAD method for the simultaneous estimation of alogliptin enantiomorphs in pharmaceutical formulations and their pharmacokinetic study in rat plasma. Adv. Pharm. Bull., 2019, 9(1), 147-158.
[http://dx.doi.org/10.15171/apb.2019.018] [PMID: 31011569]
[37]
Zhou, J.; Tang, J.; Tang, W. Functional Cyclodextrin-Clicked Chiral Stationary Phases for Versatile Enantioseparations by HPLC. Chiral Separations; Springer, 2019, pp. 147-157.
[http://dx.doi.org/10.1007/978-1-4939-9438-0_8]
[38]
Morante-Zarcero, S.; Sierra, I. Comparative HPLC methods for β-blockers separation using different types of chiral stationary phases in normal phase and polar organic phase elution modes. Analysis of propranolol enantiomers in natural waters. J. Pharm. Biomed. Anal., 2012, 62, 33-41.
[http://dx.doi.org/10.1016/j.jpba.2011.12.029] [PMID: 22264847]
[39]
Anerao, A.; Dighe, V.; John, S.; Pradhan, N. Enantioseparation of Tedizolid phosphate by RP-HPLC, using-Cyclodextrin as a chiral mobile phase additive. J. Appl. Pharmaceut. Sci., 2017, 7(10), 030- 036..
[40]
Chmielewska, A.; Konieczna, L.; Bączek, T. A novel two-step liquid-liquid extraction procedure combined with stationary phase immobilized human serum albumin for the chiral separation of cetirizine enantiomers along with M and P parabens. Molecules, 2016, 21(12), 1654.
[http://dx.doi.org/10.3390/molecules21121654] [PMID: 27941625]
[41]
Rebizi, M.N.; Sekkoum, K.; Belboukhari, N.; Cheriti, A.; Aboul-Enein, H.Y. Chiral separation and determination of enantiomeric purity of the pharmaceutical formulation of cefadroxil using coated and immobilized amylose-derived and cellulose-derived chiral stationary phases. J. Egypt. Pharm. J., 2016, 15(2), 88.
[http://dx.doi.org/10.4103/1687-4315.190399]
[42]
Ju, W.; Peng, K.; Yang, S.; Sun, H.; Sampson, M.; Wang, M.Z. A chiral HPLC-MS/MS method for simultaneous quantification of warfarin enantiomers and its major hydroxylation metabolites of CYP2C9 and CYP3A4 in human plasma. Austin J. Anal. Pharm. Chem., 2014, 1(2), 1010.
[PMID: 26161443]
[43]
Schmidt, S.K.; Höfner, G.; Wanner, K.T. Determination of enantiomeric excess of nipecotic acid as 1-(7-nitrobenzo[c][1,2,5] oxadiazol-4-yl) derivatives. Chirality, 2017, 29(1), 48-56.
[http://dx.doi.org/10.1002/chir.22670] [PMID: 28019695]
[44]
Gu, Z.Y.; Yan, X.P. Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew. Chem. Int. Ed. Engl., 2010, 49(8), 1477-1480.
[http://dx.doi.org/10.1002/anie.200906560] [PMID: 20091724]
[45]
Liu, H.; Xie, S.M.; Ai, P.; Zhang, J.H.; Zhang, M.; Yuan, L.M. Metal-Organic Framework Co (d‐Cam) 1/2 (bdc) 1/2 (tmdpy) for improved enantioseparations on a chiral cyclodextrin stationary phase in gas chromatography. ChemPlusChem, 2014, 79(8), 1103-1108.
[http://dx.doi.org/10.1002/cplu.201402067]
[46]
Xie, S-M.; Fu, N.; Li, L.; Yuan, B-Y.; Zhang, J-H.; Li, Y-X.; Yuan, L-M. Homochiral metal-organic cage for gas chromatographic separations. Anal. Chem., 2018, 90(15), 9182-9188.
[http://dx.doi.org/10.1021/acs.analchem.8b01670] [PMID: 29989398]
[47]
Xie, S-M.; Chen, X-X.; Zhang, J-H.; Yuan, L-M. Gas chromatographic separation of enantiomers on novel chiral stationary phases. Trends Analyt. Chem., 2020, 2020115808
[http://dx.doi.org/10.1016/j.trac.2020.115808]
[48]
Zhang, Y.; Breitbach, Z.S.; Wang, C.; Armstrong, D.W. The use of cyclofructans as novel chiral selectors for gas chromatography. Analyst (Lond.), 2010, 135(5), 1076-1083.
[http://dx.doi.org/10.1039/b925945g] [PMID: 20419259]
[49]
Castillo, J.; Vlugt, T.; Dubbeldam, D.; Hamad, S.; Calero, S. Performance of chiral zeolites for enantiomeric separation revealed by molecular simulation. J. Phys. Chem. C, 2010, 114(50), 22207-22213.
[http://dx.doi.org/10.1021/jp1079394]
[50]
Ji, J.; Wu, W.; Liang, W.; Cheng, G.; Matsushita, R.; Yan, Z.; Wei, X.; Rao, M.; Yuan, D-Q.; Fukuhara, G.; Mori, T.; Inoue, Y.; Yang, C. An ultimate stereocontrol in supramolecular photochirogenesis: Photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers. J. Am. Chem. Soc., 2019, 141(23), 9225-9238.
[http://dx.doi.org/10.1021/jacs.9b01993] [PMID: 31117644]
[51]
Yi, J.; Liang, W.; Wei, X.; Yao, J.; Yan, Z.; Su, D.; Zhong, Z.; Gao, G.; Wu, W.; Yang, C. Switched enantioselectivity by solvent components and temperature in photocyclodimerization of 2-anthracenecarboxylate with 6A, 6X-diguanidio− γ-cyclodextrins. Chin. Chem. Lett., 2018, 29(1), 87-90.
[http://dx.doi.org/10.1016/j.cclet.2017.05.004]
[52]
Lai, H.; Zhao, T.; Deng, Y.; Fan, C.; Wu, W.; Yang, C. Assembly-enhanced triplet-triplet annihilation upconversion in the aggregation formed by Schiff-base Pt (II) complex grafting-permethyl-β-CD and 9, 10-diphenylanthracence dimer. Chin. Chem. Lett., 2019, 30(11), 1979-1983.
[http://dx.doi.org/10.1016/j.cclet.2019.09.009]
[53]
Weiß, J.A.; Kadkhodaei, K.; Schmid, M.G. Indirect chiral separation of 8 novel amphetamine derivatives as potential new psychoactive compounds by GC-MS and HPLC. Sci. Justice, 2017, 57(1), 6-12.
[http://dx.doi.org/10.1016/j.scijus.2016.08.007] [PMID: 28063587]
[54]
Alremeithi, R.H.; Meetani, M.A.; Khalil, S.A. A validated gas chromatography mass spectrometry method for simultaneous determination of cathinone related drug enantiomers in urine and plasma. J. RSC Adv., 2016, 6(84), 80576-80584.
[http://dx.doi.org/10.1039/C6RA10583A]
[55]
Ho, T-J.; Hung, C-C.; Shih, T-L.; Yiin, L-M.; Chen, H-P. Investigation of borneols sold in Taiwan by chiral gas chromatography J. Food, 2018, 26(1), 348-352.
[56]
Langen, J.; Fischer, U.; Cavalar, M.; Coetzee, C.; Wegmann-Herr, P.; Schmarr, H-G. Enantiodifferentiation of 1,2-propanediol in various wines as phenylboronate ester with multidimensional gas chromatography-mass spectrometry. Anal. Bioanal. Chem., 2016, 408(10), 2425-2439.
[http://dx.doi.org/10.1007/s00216-016-9379-1] [PMID: 26897381]
[57]
Menestrina, F.; Ronco, N.R.; Castells, C.B. Enantioselective gas chromatography with functionalized cyclodextrins as chiral selectors. Fundamentals of the measurement of absolute association constants using capillary columns. J. Chromatogr. A, 2016, 1467, 482-489.
[http://dx.doi.org/10.1016/j.chroma.2016.06.071] [PMID: 27397924]
[58]
Salisbury, J.J.; Li, M.; Boyd, A. Validation of an enantioselective analysis for (l)-pidolic acid by chiral gas chromatography with derivatization. J. Pharm. Biomed. Anal., 2016, 120, 79-83.
[http://dx.doi.org/10.1016/j.jpba.2015.11.036] [PMID: 26710173]
[59]
Yang, X.; Imasaka, T.; Li, A.; Imasaka, T. Determination of hexachlorocyclohexane by gas chromatography combined with femtosecond laser ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2016, 27(12), 1999-2005.
[http://dx.doi.org/10.1007/s13361-016-1497-7] [PMID: 27677976]
[60]
Zhu, Y.; Shao, C-Y.; Lv, H-P.; Zhang, Y.; Dai, W-D.; Guo, L.; Tan, J-F.; Peng, Q-H.; Lin, Z. Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis). J. Chromatogr. A, 2017, 1490, 177-190.
[http://dx.doi.org/10.1016/j.chroma.2017.02.013] [PMID: 28216091]
[61]
Vyviurska, O.; Zvrškovcová, H.; Špánik, I. Distribution of enantiomers of volatile organic compounds in selected fruit distillates. Chirality, 2017, 29(1), 14-18.
[http://dx.doi.org/10.1002/chir.22669] [PMID: 28009446]
[62]
Uwimana, E.; Maiers, A.; Li, X.; Lehmler, H-J. Microsomal metabolism of prochiral polychlorinated biphenyls results in the enantioselective formation of chiral metabolites. Environ. Sci. Technol., 2017, 51(3), 1820-1829.
[http://dx.doi.org/10.1021/acs.est.6b05387] [PMID: 28038482]
[63]
Li, X.; Parkin, S.R.; Lehmler, H-J. Absolute configuration of 2,2′,3,3′,6-pentachlorinatedbiphenyl (PCB 84) atropisomers. Environ. Sci. Pollut. Res. Int., 2018, 25(17), 16402-16410.
[http://dx.doi.org/10.1007/s11356-017-9259-z] [PMID: 28537024]
[64]
Kumar, C.V.; Vasa, P.K.; Kumar, Y.R.; Aparna, P.; Pratyusha, P. Enantiomeric Separation of S-Epichlorohydrin and R-Epichlorohydrin by Capillary Gas Chromatography with FID Detector. J. Am. J. Anal. Chem., 2016, 7(11), 772.
[http://dx.doi.org/10.4236/ajac.2016.711069]
[65]
Shi, X.; Liu, F.; Mao, J. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases. Anal. Chim. Acta, 2016, 912, 156-162.
[http://dx.doi.org/10.1016/j.aca.2016.01.037] [PMID: 26920785]
[66]
Gonçalves, R.; Ribeiro, C.; Cravo, S.; Cunha, S.C.; Pereira, J.A.; Fernandes, J.; Afonso, C.; Tiritan, M.E. Multi-residue method for enantioseparation of psychoactive substances and beta blockers by gas chromatography-mass spectrometry. J. Chromatogr. B, 2019, 2019121731
[67]
Hitchcock, M.L.; Marginean, I. Enantiomeric identification of pregabalin by GC-MS via methylation and S-TPC chiral derivatization. J. Forensic Sci., 2019, 64(2), 406-412.
[http://dx.doi.org/10.1111/1556-4029.13888] [PMID: 30080926]
[68]
Mohr, S.; Weiß, J.A.; Spreitz, J.; Schmid, M.G. Chiral separation of new cathinone- and amphetamine-related designer drugs by gas chromatography-mass spectrometry using trifluoroacetyl-l-prolyl chloride as chiral derivatization reagent. J. Chromatogr. A, 2012, 1269, 352-359.
[http://dx.doi.org/10.1016/j.chroma.2012.09.079] [PMID: 23058937]
[69]
Castrignanò, E.; Kannan, A.M.; Feil, E.J.; Kasprzyk-Hordern, B. Enantioselective fractionation of fluoroquinolones in the aqueous environment using chiral liquid chromatography coupled with tandem mass spectrometry. Chemosphere, 2018, 206, 376-386.
[http://dx.doi.org/10.1016/j.chemosphere.2018.05.005] [PMID: 29754062]
[70]
Zhu, B.; Li, S.; Zhou, L.; Li, Q.; Guo, X. Simultaneous enantioselective determination of seven psychoactive drugs enantiomers in multi-specie animal tissues with chiral liquid chromatography coupled with tandem mass spectrometry. Food Chem., 2019, 300125241
[http://dx.doi.org/10.1016/j.foodchem.2019.125241] [PMID: 31352289]
[71]
Ward, L.F.; Enders, J.R.; Bell, D.S.; Cramer, H.M.; Wallace, F.N.; McIntire, G.L. Improved chiral separation of methamphetamine enantiomers using CSP-LC-MS-MS. J. J. Anal. Toxicol., 2016, 40(4), 255-263.
[http://dx.doi.org/10.1093/jat/bkw005] [PMID: 26869715]
[72]
Gumustas, M.; Ozkan, S.A.; Chankvetadze, B. Analytical and preparative scale separation of enantiomers of chiral drugs by chromatography and related methods. J. Curr. Med. Chem., 2018, 25(33), 4152-4188.
[http://dx.doi.org/10.2174/0929867325666180129094955] [PMID: 29376488]
[73]
Zehani, Y.; Lemaire, L.; Millet, R.; Lipka, E. Small scale separation of isoxazole structurally related analogues by chiral supercritical fluid chromatography. J. Chromatogr. A, 2017, 1505, 106-113.
[http://dx.doi.org/10.1016/j.chroma.2017.05.028] [PMID: 28527527]
[74]
Tan, Q.; Fan, J.; Gao, R.; He, R.; Wang, T.; Zhang, Y.; Zhang, W. Stereoselective quantification of triticonazole in vegetables by supercritical fluid chromatography. Talanta, 2017, 164, 362-367.
[http://dx.doi.org/10.1016/j.talanta.2016.08.077] [PMID: 28107942]
[75]
Su, C.; Yang, H.; Meng, X.; Fawcett, J.P.; Cao, J.; Yang, Y.; Gu, J. Determination of rabeprazole enantiomers in dog plasma by supercritical fluid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. J. Sep. Sci., 2017, 40(4), 1010-1016.
[http://dx.doi.org/10.1002/jssc.201601232] [PMID: 27991740]
[76]
Cheng, Y.; Zheng, Y.; Dong, F.; Li, J.; Zhang, Y.; Sun, S.; Li, N.; Cui, X.; Wang, Y.; Pan, X.; Zhang, W. Stereoselective analysis and dissipation of propiconazole in wheat, grapes, and soil by supercritical fluid chromatography-tandem mass spectrometry. J. Agric. Food Chem., 2017, 65(1), 234-243.
[http://dx.doi.org/10.1021/acs.jafc.6b04623] [PMID: 27983813]
[77]
Yang, Z.; Xu, X.; Sun, L.; Zhao, X.; Wang, H.; Fawcett, J.P.; Yang, Y.; Gu, J. Development and validation of an enantioselective SFC-MS/MS method for simultaneous separation and quantification of oxcarbazepine and its chiral metabolites in beagle dog plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1020, 36-42.
[http://dx.doi.org/10.1016/j.jchromb.2016.03.013] [PMID: 27003707]
[78]
Wu, D-R.; Yip, S.H.; Li, P.; Sun, D.; Kempson, J.; Mathur, A. Additive free preparative chiral SFC separations of 2,2-dimethyl-3-aryl-propanoic acids. J. Pharm. Biomed. Anal., 2016, 131, 54-63.
[http://dx.doi.org/10.1016/j.jpba.2016.08.009] [PMID: 27522108]
[79]
Storch, J.; Kalíková, K.; Tesařová, E.; Maier, V.; Vacek, J. Development of separation methods for the chiral resolution of hexahelicenes. J. Chromatogr. A, 2016, 1476, 130-134.
[http://dx.doi.org/10.1016/j.chroma.2016.10.083] [PMID: 27884429]
[80]
Rossi, D.; Marra, A.; Rui, M.; Brambilla, S.; Juza, M.; Collina, S. “Fit-for-purpose” development of analytical and (semi)preparative enantioselective high performance liquid and supercritical fluid chromatography for the access to a novel σ1 receptor agonist. J. Pharm. Biomed. Anal., 2016, 118, 363-369.
[http://dx.doi.org/10.1016/j.jpba.2015.10.047] [PMID: 26600118]
[81]
Pan, X.; Dong, F.; Xu, J.; Liu, X.; Chen, Z.; Zheng, Y. Stereoselective analysis of novel chiral fungicide pyrisoxazole in cucumber, tomato and soil under different application methods with supercritical fluid chromatography/tandem mass spectrometry. J. Hazard. Mater., 2016, 311, 115-124.
[http://dx.doi.org/10.1016/j.jhazmat.2016.03.005] [PMID: 26970041]
[82]
Nie, L.; Dai, Z.; Ma, S. Improved chiral separation of (R, S)-goitrin by SFC: an application in traditional Chinese medicine. J. Anal. Methods Chem., 2016, 20165782942
[http://dx.doi.org/10.1155/2016/5782942] [PMID: 27022502]
[83]
Li, L. Direct enantiomer determination of methorphan by HPLC-MS and SFC-MS. %. J Forensic Chem., 2016, 2, 82-85.
[http://dx.doi.org/10.1016/j.forc.2016.10.004]
[84]
Zhu, B.; Xu, S.; Guo, X.; Wei, L.; Yu, J.; Wang, T. Use of various β-cyclodextrin derivatives as chiral selectors for the enantiomeric separation of ofloxacin and its five related substances by capillary electrophoresis. J. Sep. Sci., 2017, 40(8), 1784-1795.
[http://dx.doi.org/10.1002/jssc.201601403] [PMID: 28168817]
[85]
Xu, Y.; Hong, T.; Chen, X.; Ji, Y. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin. Electrophoresis, 2017, 38(9-10), 1366-1373.
[http://dx.doi.org/10.1002/elps.201600375] [PMID: 28229517]
[86]
Silva, M.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Marina, M.L.; Sierra, I. Preconcentration of β-blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE. Electrophoresis, 2017, 38(15), 1905-1912.
[http://dx.doi.org/10.1002/elps.201600510] [PMID: 28369986]
[87]
Nováková, Z.; Pejchal, V.; Fischer, J.; Česla, P. Chiral separation of benzothiazole derivatives of amino acids using capillary zone electrophoresis. J. Sep. Sci., 2017, 40(3), 798-803.
[http://dx.doi.org/10.1002/jssc.201600689] [PMID: 27888567]
[88]
Meng, R.; Kang, J. Determination of the stereoisomeric impurities of sitafloxacin by capillary electrophoresis with dual chiral additives. J. Chromatogr. A, 2017, 1506, 120-127.
[http://dx.doi.org/10.1016/j.chroma.2017.05.010] [PMID: 28551019]
[89]
Liu, Y.; Wang, X. Enantioseparation of ofloxacin and its four related substances with ligand exchange-micellar electrokinetic chromatography using copper(II)-L-isoleucine complex as chiral selector. Chirality, 2017, 29(8), 422-429.
[http://dx.doi.org/10.1002/chir.22705] [PMID: 28560736]
[90]
Hamidi, S.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Jouyban, A. Chiral separation of methadone in exhaled breath condensate using capillary electrophoresis. J Anal. Methods, 2017, 9(15), 2342-2350.
[http://dx.doi.org/10.1039/C7AY00110J]
[91]
Cârcu-Dobrin, M.; Budău, M.; Hancu, G.; Gagyi, L.; Rusu, A.; Kelemen, H. Enantioselective analysis of fluoxetine in pharmaceutical formulations by capillary zone electrophoresis. Saudi Pharm. J., 2017, 25(3), 397-403.
[http://dx.doi.org/10.1016/j.jsps.2016.09.007] [PMID: 28344495]
[92]
Yang, S.; Zhang, J.; Li, F.; Hu, X.; Cao, Q. Separation and determination of optical isomers of phenylephrine by chiral ligand exchange capillary elcctrophoresis coupling with the promoting effect of ionic liquid. Se Pu, 2016, 34(1), 103-107.
[http://dx.doi.org/10.3724/SP.J.1123.2015.10013] [PMID: 27319173]
[93]
Wang, Y.; Zhang, S.; Breitbach, Z.S.; Petersen, H.; Ellegaard, P.; Armstrong, D.W. Enantioseparation of citalopram analogues with sulfated β-cyclodextrin by capillary electrophoresis. Electrophoresis, 2016, 37(5-6), 841-848.
[http://dx.doi.org/10.1002/elps.201500541] [PMID: 26757348]
[94]
Theurillat, R.; Sandbaumhüter, F.A.; Bettschart-Wolfensberger, R.; Thormann, W. Microassay for ketamine and metabolites in plasma and serum based on enantioselective capillary electrophoresis with highly sulfated γ-cyclodextrin and electrokinetic analyte injection. Electrophoresis, 2016, 37(9), 1129-1138.
[http://dx.doi.org/10.1002/elps.201500468] [PMID: 26626946]
[95]
Szabó, Z-I.; Tóth, G.; Völgyi, G.; Komjáti, B.; Hancu, G.; Szente, L.; Sohajda, T.; Béni, S.; Muntean, D-L.; Noszál, B. Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling. J. Pharm. Biomed. Anal., 2016, 117, 398-404.
[http://dx.doi.org/10.1016/j.jpba.2015.09.022] [PMID: 26440287]
[96]
Szabó, Z.I.; Szőcs, L.; Muntean, D.L.; Noszá, L.B.; Tóth, G. Chiral separation of uncharged pomalidomide enantiomers using carboxymethyl‐β‐cyclodextrin: A validated capillary electrophoretic method. Chirality, 2016, 28(3), 199-203.
[http://dx.doi.org/10.1002/chir.22563] [PMID: 26708721]
[97]
Michalska, K.; Gruba, E.; Cielecka-Piontek, J.; Bednarek, E. Chiral separation of tedizolid using charge single isomer derivatives of cyclodextrins by capillary electrokinetic chromatography. J. Pharm. Biomed. Anal., 2016, 120, 402-412.
[http://dx.doi.org/10.1016/j.jpba.2015.11.022] [PMID: 26724911]
[98]
Nowak, P.M.; Woźniakiewicz, M.; Kościelniak, P. Cyclodextrin-assisted enantioseparation of warfarin and 10-hydroxywarfarin by capillary electrophoresis studied from the analytical and thermodynamic points of view. J. Pharm. Biomed. Anal., 2016, 126, 60-65.
[http://dx.doi.org/10.1016/j.jpba.2016.04.025] [PMID: 27160739]
[99]
Krait, S.; Douša, M.; Scriba, G.K. Quality by design-guided development of a capillary electrophoresis method for the chiral purity determination of ambrisentan. J. Chromatographia, 2016, 79(19-20), 1343-1350.
[http://dx.doi.org/10.1007/s10337-016-3137-6]
[100]
Riesová, M. Geryk, R.; Kalíková, K.; Šlechtová, T.; Voborná, M.; Martínková, M.; Bydžovská, A.; Tesařová, E., Direct CE and HPLC methods for enantioseparation of tryptophan and its unnatural derivatives. J. Sep. Purif. Technol., 2016, 158, 24-30.
[http://dx.doi.org/10.1016/j.seppur.2015.12.012]
[101]
Řezanka, P.; Řezanková, K.; Sedláčková, H.; Mašek, J.; Rokosová, L.; Bláhová, M.; Řezanka, M.; Jindřich, J.; Sýkora, D.; Král, V. Influence of substituent position and cavity size of the regioisomers of monocarboxymethyl-α-, β-, and γ-cyclodextrins on the apparent stability constants of their complexes with both enantiomers of Tröger’s base. J. Sep. Sci., 2016, 39(5), 980-985.
[http://dx.doi.org/10.1002/jssc.201500845] [PMID: 26695522]
[102]
Porpiglia, N.; Musile, G.; Bortolotti, F.; De Palo, E.F.; Tagliaro, F. Chiral separation and determination of ketamine and norketamine in hair by capillary electrophoresis. Forensic Sci. Int., 2016, 266, 304-310.
[http://dx.doi.org/10.1016/j.forsciint.2016.06.017] [PMID: 27348468]
[103]
Bawazeer, S.S.; Abdel-Megied, A.M.; Bebawy, L.I. Enantiospecific HPLC and CE methods for separation and determination of S-Darifenacin in pharmaceutical formulations. J. Chromatographia, 2016, 79(21-22), 1533-1542.
[http://dx.doi.org/10.1007/s10337-016-3171-4]
[104]
Ginterová, P.; Znaleziona, J.; Knob, R.; Douša, M.; Petr, J.; Ševčík, J. Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis. J. Chem. Papers, 2016, 70(8), 1024-1030.
[http://dx.doi.org/10.1515/chempap-2016-0047]
[105]
Hancu, G.; Hilochie, A.; Vlad, A-R.; Cârje, A.; Tero-Vescan, A. Enantiomeric separation of sibutramine by capillary zone electrophoresis. J. Brazil. Chem. Soc., 2016, 27(6), 1116-1120.
[106]
Pasquini, B.; Melani, F.; Caprini, C.; Del Bubba, M.; Pinzauti, S.; Orlandini, S.; Furlanetto, S. Combined approach using capillary electrophoresis, NMR and molecular modeling for ambrisentan related substances analysis: Investigation of intermolecular affinities, complexation and separation mechanism. J. Pharm. Biomed. Anal., 2017, 144, 220-229.
[http://dx.doi.org/10.1016/j.jpba.2017.01.038] [PMID: 28131522]
[107]
Baciu, T.; Borrull, F.; Calull, M.; Aguilar, C. Enantioselective determination of cathinone derivatives in human hair by capillary electrophoresis combined in-line with solid-phase extraction. Electrophoresis, 2016, 37(17-18), 2352-2362.
[http://dx.doi.org/10.1002/elps.201600149] [PMID: 27465234]
[108]
Chung, H.K.; Truong, Q-K.; Mai, X-L.; Choi, Y.; Kang, J-S.; Mar, W.; Kim, K.H. Determination of S-(-)-lansoprazole in dexlansoprazole preparation by capillary zone electrophoresis. Arch. Pharm. Res., 2017, 40(8), 962-971.
[http://dx.doi.org/10.1007/s12272-017-0936-8] [PMID: 28766240]
[109]
Menéndez-López, N.; Valimaña-Traverso, J.; Castro-Puyana, M.; Salgado, A.; García, M.Á.; Marina, M.L. Enantiomeric separation of the antiuremic drug colchicine by electrokinetic chromatography. Method development and quantitative analysis. J. Pharm. Biomed. Anal., 2017, 138, 189-196.
[http://dx.doi.org/10.1016/j.jpba.2017.02.001] [PMID: 28219795]
[110]
Szabó, Z.I.; Gál, R.; Szőcs, L.; Ludmerczki, R.; Muntean, D.L.; Noszál, B.; Tóth, G. Validated capillary electrophoretic method for the enantiomeric quality control of R-praziquantel. Electrophoresis, 2017, 38(15), 1886-1894.
[http://dx.doi.org/10.1002/elps.201600492] [PMID: 28221678]
[111]
Dai, L.; Wu, W.; Liang, W.; Chen, W.; Yu, X.; Ji, J.; Xiao, C.; Yang, C. Enhanced chiral recognition by γ-cyclodextrin-cucurbit[6]uril-cowheeled [4]pseudorotaxanes. Chem. Commun. (Camb.), 2018, 54(21), 2643-2646.
[http://dx.doi.org/10.1039/C8CC00840J] [PMID: 29469921]
[112]
Ji, J.; Li, Y.; Xiao, C.; Cheng, G.; Luo, K.; Gong, Q.; Zhou, D.; Chruma, J.J.; Wu, W.; Yang, C. Supramolecular enantiomeric and structural differentiation of amino acid derivatives with achiral pillar[5]arene homologs. Chem. Commun. (Camb.), 2020, 56(1), 161-164.
[http://dx.doi.org/10.1039/C9CC08541F] [PMID: 31799971]
[113]
Ozcelik, A.; Pereira-Cameselle, R.; Poklar Ulrih, N.; Petrovic, A.G.; Alonso-Gómez, J.L. Chiroptical sensing: A conceptual introduction. Sensors (Basel), 2020, 20(4), 974.
[http://dx.doi.org/10.3390/s20040974] [PMID: 32059394]
[114]
Reddy, I.K.; Mehvar, R. Chirality in drug design and development; CRC Press, 2004.
[http://dx.doi.org/10.1201/9780203021811]
[115]
Aboul-Enein, H.Y.; Ali, I. Chiral separations by liquid chromatography and related technologies; CRC Press, 2003, Vol. 90, .
[http://dx.doi.org/10.1201/9780203911112]
[116]
Gumustas, M.; Ozkan, S.A.; Chankvetadze, B. Analytical and preparative scale separation of enantiomers of chiral drugs by chromatography and related methods. Curr. Med. Chem., 2018, 25(33), 4152-4188.
[http://dx.doi.org/10.2174/0929867325666180129094955] [PMID: 29376488]
[117]
Gumustas, M.; Ozkan, S.A.; Chankvetadze, B. Separation and elution order of the enantiomers of some β-agonists using polysaccharide-based chiral columns and normal phase eluents by high-performance liquid chromatography. J. Chromatogr. A, 2016, 1467, 297-305.
[http://dx.doi.org/10.1016/j.chroma.2016.08.011] [PMID: 27522152]
[118]
Srinivas, N.R.; Shyu, W.C.; Barbhaiya, R.H. Gas chromatographic determination of enantiomers as diastereomers following pre-column derivatization and applications to pharmacokinetic studies: A review. Biomed. Chromatogr., 1995, 9(1), 1-9.
[http://dx.doi.org/10.1002/bmc.1130090102] [PMID: 7734927]
[119]
Speybrouck, D.; Lipka, E. Preparative supercritical fluid chromatography: A powerful tool for chiral separations. J. Chromatogr. A, 2016, 1467, 33-55.
[http://dx.doi.org/10.1016/j.chroma.2016.07.050] [PMID: 27524302]
[120]
Ha, P.T.T.; Hoogmartens, J.; Van Schepdael, A. Recent advances in pharmaceutical applications of chiral capillary electrophoresis. J. Pharm. Biomed. Anal., 2006, 41(1), 1-11.
[http://dx.doi.org/10.1016/j.jpba.2006.01.035] [PMID: 16516428]
[121]
Okamoto, Y.; Ikai, T. Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev., 2008, 37(12), 2593-2608.
[http://dx.doi.org/10.1039/b808881k] [PMID: 19020674]
[122]
Ahuja, S. A strategy for developing HPLC methods for chiral drugs. LC GC N. Am., 2007, 25(11), 1112.
[123]
Welch, C.J.; Sajonz, P.; Spencer, G.; Leonard, W.; Henderson, D.; Schafer, W.; Bernardoni, F. Microscale HPLC predicts preparative performance at millionfold scale. Org. Process Res. Dev., 2008, 12(4), 674-677.
[http://dx.doi.org/10.1021/op800107u]
[124]
Supelco, T.C.T. Chiral chromatography.Available from:, https://www.sigmaaldrich.com/analytical-chromatography/chiral-chromatography.html
[125]
Hamende, M. 10 Case study in production-scale multicolumn continuous chromatography; Preparative Enantioselective Chromatography, 2008, p. 253.
[126]
Ludemann-Ho, J.H.W. Methods for the separation of modafinil, 2005.Available from:. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006030278
[127]
Sepehrifar, R.; Boysen, R.I.; Danylec, B.; Yang, Y.; Saito, K.; Hearn, M.T. Design, synthesis and application of a new class of stimuli-responsive separation materials. Anal. Chim. Acta, 2017, 963, 153-163.
[http://dx.doi.org/10.1016/j.aca.2017.01.061] [PMID: 28335969]
[128]
Shimomura, K.; Ikai, T.; Kanoh, S.; Yashima, E.; Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem., 2014, 6(5), 429-434.
[http://dx.doi.org/10.1038/nchem.1916] [PMID: 24755595]
[129]
D’Orazio, G.; Rocco, A.; Fanali, S. Fast-liquid chromatography using columns of different internal diameters packed with sub-2 μm silica particles. J. Chromatogr. A, 2012, 1228, 213-220.
[http://dx.doi.org/10.1016/j.chroma.2011.05.053] [PMID: 21665212]
[130]
D’Orazio, G. Chiral analysis by nano-liquid chromatography. Trends Analyt. Chem., 2020, 2020115832
[http://dx.doi.org/10.1016/j.trac.2020.115832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy