Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration

Author(s): Tianxu Zhang, Yang Gao, Weitong Cui, Yanjing Li, Dexuan Xiao and Ronghui Zhou*

Volume 16, Issue 1, 2021

Published on: 21 May, 2020

Page: [36 - 47] Pages: 12

DOI: 10.2174/1574888X15666200521083834

Price: $65

conference banner
Abstract

With the rapid development of nanotechnology, various nanomaterials have been applied to bone repair and regeneration. Due to the unique chemical, physical and mechanical properties, nanomaterials could promote stem cells osteogenic differentiation, which has great potentials in bone tissue engineering and exploiting nanomaterials-based bone regeneration strategies. In this review, we summarized current nanomaterials with osteo-induction ability, which could be potentially applied to bone tissue engineering. Meanwhile, the unique properties of these nanomaterials and their effects on stem cell osteogenic differentiation are also discussed. Furthermore, possible signaling pathways involved in the nanomaterials- induced cell osteogenic differentiation are also highlighted in this review.

Keywords: Nanomaterials, stem cells, osteogenic differentiation, bone regeneration, oste-induction, nanotechnology.

[1]
Yi H, Ur Rehman F, Zhao C, Liu B, He N. Recent advances in nano scaffolds for bone repair. Bone Res 2016; 4: 16050.
[http://dx.doi.org/10.1038/boneres.2016.50] [PMID: 28018707]
[2]
Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res 2015; 3: 15029.
[http://dx.doi.org/10.1038/boneres.2015.29] [PMID: 26558141]
[3]
Wang Q, Yan J, Yang J, Li B. Nanomaterials promise better bone repair. Mater Today 2016; 19(8): 451-63.
[http://dx.doi.org/10.1016/j.mattod.2015.12.003]
[4]
Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv 2013; 31(5): 654-68.
[http://dx.doi.org/10.1016/j.biotechadv.2012.08.001] [PMID: 22902273]
[5]
Shibuya N, Jupiter DC. Bone graft substitute: Allograft and xenograft. Clin Podiatr Med Surg 2015; 32(1): 21-34.
[http://dx.doi.org/10.1016/j.cpm.2014.09.011] [PMID: 25440415]
[6]
Pulavendran S, Thiyagarajan GJB, Engineering B. Three-dimensional scaffold containing EGF incorporated biodegradable polymeric nanoparticles for stem cell based tissue engineering applications 2011; 16(2): 393-9.
[http://dx.doi.org/10.1007/s12257-009-3155-4]
[7]
Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005; 26(6): 599-609.
[http://dx.doi.org/10.1016/j.biomaterials.2004.03.005] [PMID: 15282138]
[8]
Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003; 5(1): 32-45.
[http://dx.doi.org/10.1186/ar614] [PMID: 12716446]
[9]
Rosset P, Deschaseaux F, Layrolle P. Cell therapy for bone repair. Orthop Traumatol Surg Res 2014; 100(1)(Suppl.): S107-12.
[http://dx.doi.org/10.1016/j.otsr.2013.11.010] [PMID: 24411717]
[10]
Kon E, Filardo G, Roffi A, et al. Bone regeneration with mesenchymal stem cells. Clin Cases Miner Bone Metab 2012; 9(1): 24-7.
[PMID: 22783331]
[11]
Tian T, Guo B, Liao J, Zhang T, Ma Q, Zhang Q, et al. Characterization, specific demand and application of nanomaterials in bone regeneration. J Nanosci Nanotechnol 2016; 16(9): 9381-92.
[http://dx.doi.org/10.1166/jnn.2016.12681]
[12]
Li S, Tian T, Zhang T, Cai X, Lin Y. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater Today 2019; 24: 57-68.
[http://dx.doi.org/10.1016/j.mattod.2018.08.002]
[13]
Zhao D, Liu M, Li Q, et al. Tetrahedral DNA nanostructure promotes endothelial cell proliferation, migration, and angiogenesis via notch signaling pathway. ACS Appl Mater Interfaces 2018; 10(44): 37911-8.
[http://dx.doi.org/10.1021/acsami.8b16518] [PMID: 30335942]
[14]
Mashinchian O, Turner LA, Dalby MJ, et al. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 2015; 10(5): 829-47.
[http://dx.doi.org/10.2217/nnm.14.225] [PMID: 25816883]
[15]
Ma W, Xie X, Shao X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif 2018; 51(6)e12503
[http://dx.doi.org/10.1111/cpr.12503] [PMID: 30091500]
[16]
Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 2011; 5(6): 4670-8.
[http://dx.doi.org/10.1021/nn200500h] [PMID: 21528849]
[17]
Lock J, Liu H. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. Int J Nanomedicine 2011; 6: 2769-77.
[PMID: 22114505]
[18]
McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 2013; 101(2): 387-97.
[http://dx.doi.org/10.1002/jbm.b.32823] [PMID: 23281143]
[19]
Seyedjafari E, Soleimani M, Ghaemi N, Sarbolouki MN. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J Mater Sci Mater Med 2011; 22(1): 165-74.
[http://dx.doi.org/10.1007/s10856-010-4174-6] [PMID: 21069560]
[20]
Gage FH. Neuronal stem cells: Their characterization and utilization. Neurobiol Aging 1994; 15(Suppl. 2): S191.
[http://dx.doi.org/10.1016/0197-4580(94)90203-8] [PMID: 7700451]
[21]
Dravida S, Gaddipati S, Griffith M, et al. A biomimetic scaffold for culturing limbal stem cells: A promising alternative for clinical transplantation. J Tissue Eng Regen Med 2008; 2(5): 263-71.
[http://dx.doi.org/10.1002/term.91] [PMID: 18512269]
[22]
Debnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 2018; 562(7725): 133-9.
[http://dx.doi.org/10.1038/s41586-018-0554-8] [PMID: 30250253]
[23]
Buckwalter JA, Mankin HJ. Articular cartilage: Tissue design and chondrocyte-matrix interactions. Instr Course Lect 1998; 47: 477-86.
[PMID: 9571449]
[24]
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res 2015; 3: 15005.
[http://dx.doi.org/10.1038/boneres.2015.5] [PMID: 26273537]
[25]
Smith MA, Nunomura A, Takeda A, Perry G. Corrections and clarifications: Multilineage potential of adult human mesenchymal stem cells. Science 1999; 285(5428): 665.
[PMID: 10454920]
[26]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7(2): 211-28.
[http://dx.doi.org/10.1089/107632701300062859] [PMID: 11304456]
[27]
De Bari C, Dell’Accio F, Vanlauwe J, et al. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 2006; 54(4): 1209-21.
[http://dx.doi.org/10.1002/art.21753] [PMID: 16575900]
[28]
Yen BL, Huang HI, Chien CC, et al. Isolation of multipotent cells from human term placenta. Stem Cells 2005; 23(1): 3-9.
[http://dx.doi.org/10.1634/stemcells.2004-0098] [PMID: 15625118]
[29]
Martins A, Alves da Silva ML, Faria S, Marques AP, Reis RL, Neves NM. The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis. Macromol Biosci 2011; 11(7): 978-87.
[http://dx.doi.org/10.1002/mabi.201100012] [PMID: 21485007]
[30]
Klyushnenkova E, Mosca JD, Zernetkina V, et al. T cell responses to allogeneic human mesenchymal stem cells: Immunogenicity, tolerance, and suppression. J Biomed Sci 2005; 12(1): 47-57.
[http://dx.doi.org/10.1007/s11373-004-8183-7] [PMID: 15864738]
[31]
Zhao K, Li D, CiShi Ma X, Kang H, Wang X, et al. Biodegradable Polymeric Nanoparticles as the Delivery Carrier for Drug. Curr Drug Deliv 2016; (4): 494-9.
[32]
Upadhyaya L, Singh J, Agarwal V, Tewari RP. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Rel 2014; 186: 54-87.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.043]
[33]
Chen X, Gu S, Chen B-F, et al. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 2015; 53: 239-50.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.071] [PMID: 25890723]
[34]
Wu G, Feng C, Hui G, et al. Improving the osteogenesis of rat mesenchymal stem cells by chitosan-based-microRNA nanoparticles. Carbohydr Polym 2016; 138: 49-58.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.044] [PMID: 26794737]
[35]
Ji J, Tong X, Huang X, et al. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Biomed Mater 2015; 10(4): 045005
[http://dx.doi.org/10.1088/1748-6041/10/4/045005] [PMID: 26154827]
[36]
Yi C, Liu D, Fong CC, Zhang J, Yang M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 2010; 4(11): 6439-48.
[http://dx.doi.org/10.1021/nn101373r] [PMID: 21028783]
[37]
Ko WK, Heo DN, Moon HJ, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci 2015; 438: 68-76.
[http://dx.doi.org/10.1016/j.jcis.2014.08.058] [PMID: 25454427]
[38]
Yao Y, Shi X, Chen F. The effect of gold nanoparticles on the proliferation and differentiation of murine osteoblast: A study of MC3T3-E1 cells in vitro. J Nanosci Nanotechnol 2014; 14(7): 4851-7.
[http://dx.doi.org/10.1166/jnn.2014.8717] [PMID: 24757953]
[39]
Li JJ, Kawazoe N, Chen G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials 2015; 54: 226-36.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.001] [PMID: 25858865]
[40]
Li J, Li JJ, Zhang J, Wang X, Kawazoe N, Chen G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale 2016; 8(15): 7992-8007.
[http://dx.doi.org/10.1039/C5NR08808A] [PMID: 27010117]
[41]
Zhang R, Lee P, Lui VC, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine (Lond) 2015; 11(8): 1949-59.
[http://dx.doi.org/10.1016/j.nano.2015.07.016] [PMID: 26282383]
[42]
Qin H, Zhu C, An Z, et al. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomedicine 2014; 9: 2469-78.
[http://dx.doi.org/10.2147/IJN.S59753] [PMID: 24899804]
[43]
Liu X, He W, Fang Z, Kienzle A, Feng Q. Influence of silver nanoparticles on osteogenic differentiation of human mesenchymal stem cells. J Biomed Nanotechnol 2014; 10(7): 1277-85.
[http://dx.doi.org/10.1166/jbn.2014.1824] [PMID: 24804548]
[44]
Sengstock C, Diendorf J, Epple M, Schildhauer TA, Köller M. Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J Nanotechnol 2014; 5: 2058-69.
[http://dx.doi.org/10.3762/bjnano.5.214] [PMID: 25551033]
[45]
Lv L, Liu Y, Zhang P, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 2015; 39: 193-205.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.002] [PMID: 25468371]
[46]
Wang Q, Chen B, Cao M, et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials 2016; 86: 11-20.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.004] [PMID: 26874888]
[47]
Gu M, Liu Y, Chen T, et al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Eng Part B Rev 2014; 20(5): 477-91.
[http://dx.doi.org/10.1089/ten.teb.2013.0638] [PMID: 24447041]
[48]
Yang Y, Asiri AM, Tang Z, Du D, Lin Y. Graphene based materials for biomedical applications. Mater Today 2013; 16(10): 365-73.
[http://dx.doi.org/10.1016/j.mattod.2013.09.004]
[49]
Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev 2017; 46(15): 4400-16.
[http://dx.doi.org/10.1039/C7CS00363C] [PMID: 28722038]
[50]
Luo Y, Shen H, Fang Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 2015; 7(11): 6331-9.
[http://dx.doi.org/10.1021/acsami.5b00862] [PMID: 25741576]
[51]
Elkhenany H, Bourdo S, Hecht S, et al. Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration. Nanomedicine (Lond) 2017; 13(7): 2117-26.
[http://dx.doi.org/10.1016/j.nano.2017.05.009] [PMID: 28579435]
[52]
Kang ES, Song I, Kim DS, et al. Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 169: 20-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.053] [PMID: 29747027]
[53]
Akhavan O, Ghaderi E, Shahsavar M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 2013; 59: 200-11.
[http://dx.doi.org/10.1016/j.carbon.2013.03.010]
[54]
Crowder SW, Prasai D, Rath R, et al. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 2013; 5(10): 4171-6.
[http://dx.doi.org/10.1039/c3nr00803g] [PMID: 23592029]
[55]
Carlisle EM. Silicon: A possible factor in bone calcification. Science 1970; 167(3916): 279-80.
[http://dx.doi.org/10.1126/science.167.3916.279] [PMID: 5410261]
[56]
Li X, Liu H, Niu X, et al. Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. J Biomed Mater Res B Appl Biomater 2011; 97(1): 10-9.
[http://dx.doi.org/10.1002/jbm.b.31773] [PMID: 21290570]
[57]
Yang X, Li Y, Liu X, et al. The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells. Biomed Mater 2016; 12(1): 015001
[http://dx.doi.org/10.1088/1748-605X/12/1/015001] [PMID: 27910816]
[58]
Christel A, Neumann A, Kasper C, Behrens P. BMP2-loaded nanoporous silica nanoparticles promote osteogenic differentiation of human mesenchymal stem cells. Tissue Eng 2013; 3(46): 24222.
[59]
Zhou X, Feng W, Qiu K, et al. BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Appl Mater Interfaces 2015; 7(29): 15777-89.
[http://dx.doi.org/10.1021/acsami.5b02636] [PMID: 26133753]
[60]
Yang X, Li Y, Liu X, Zhang R, Feng Q. In Vitro uptake of hydroxyapatite nanoparticles and their effect on osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int 2018; 2018: 2036176
[http://dx.doi.org/10.1155/2018/2036176] [PMID: 30018644]
[61]
Montesi M, Panseri S, Iafisco M, Adamiano A, Tampieri A. Effect of hydroxyapatite nanocrystals functionalized with lactoferrin in osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2015; 103(1): 224-34.
[http://dx.doi.org/10.1002/jbm.a.35170] [PMID: 24639083]
[62]
Ma W, Xie X, Shao X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Proliferation 2018.p. e12503
[63]
Shao XR, Lin SY, Peng Q, et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Nanomedicine (Lond) 2017; 13(5): 1809-19.
[http://dx.doi.org/10.1016/j.nano.2017.02.011] [PMID: 28259801]
[64]
Zhou M, Liu N-X, Shi S-R, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine (Lond) 2018; 14(4): 1227-36.
[http://dx.doi.org/10.1016/j.nano.2018.02.004] [PMID: 29458214]
[65]
Oh JY, Kim YS, Jung Y, Yang SJ, Park CR. Preparation and Exceptional Mechanical Properties of Bone-Mimicking Size-Tuned Graphene Oxide@Carbon Nanotube Hybrid Paper. ACS Nano 2016; 10(2): 2184-92.
[http://dx.doi.org/10.1021/acsnano.5b06719] [PMID: 26795353]
[66]
Yang JY, Ting YC, Lai JY, Liu HL, Fang HW, Tsai WB. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. J Biomed Mater Res A 2009; 90(3): 629-40.
[http://dx.doi.org/10.1002/jbm.a.32130] [PMID: 18563818]
[67]
Mieszawska AJ, Kaplan DL. Smart biomaterials - regulating cell behavior through signaling molecules. BMC Biol 2010; 8: 59.
[http://dx.doi.org/10.1186/1741-7007-8-59] [PMID: 20529238]
[68]
Li Y, Liu C. Nanomaterial-based bone regeneration. Nanoscale 2017; 9(15): 4862-74.
[http://dx.doi.org/10.1039/C7NR00835J] [PMID: 28358401]
[69]
Nair AK, Gautieri A, Chang SW, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 2013; 4: 1724.
[http://dx.doi.org/10.1038/ncomms2720] [PMID: 23591891]
[70]
Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater 2015; 14(1): 23-36.
[http://dx.doi.org/10.1038/nmat4089] [PMID: 25344782]
[71]
Ritchie RO. The conflicts between strength and toughness. Nat Mater 2011; 10(11): 817-22.
[http://dx.doi.org/10.1038/nmat3115] [PMID: 22020005]
[72]
Tavassoli H, Javadpour J, Taheri M, et al. Incorporation of Nano-Alumina Improves Mechanical Properties and Osteogenesis of Hydroxyapatite Bioceramics. ACS Biomater Sci Eng 2018; 4: 1324-36.
[73]
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 2013; 19(6): 485-502.
[http://dx.doi.org/10.1089/ten.teb.2012.0437] [PMID: 23672709]
[74]
Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010; 31(3): 461-6.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.063] [PMID: 19819008]
[75]
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26(27): 5474-91.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.002] [PMID: 15860204]
[76]
Lee MH, Goralczyk AG, Kriszt R, et al. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs. Sci Rep 2016; 6: 21173.
[http://dx.doi.org/10.1038/srep21173] [PMID: 26883894]
[77]
Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 2012; 24(5): 645-51.
[http://dx.doi.org/10.1016/j.ceb.2012.07.001] [PMID: 22898530]
[78]
Le X, Poinern GE, Ali N, Berry CM, Fawcett D. Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. Int J Biomater 2013; 2013: 782549
[http://dx.doi.org/10.1155/2013/782549] [PMID: 23533416]
[79]
Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev 2012; 112(8): 4507-40.
[http://dx.doi.org/10.1021/cr3000169] [PMID: 22621236]
[80]
Huang B, Yuan Y, Li T, et al. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface. Sci Rep 2016; 6: 24323.
[http://dx.doi.org/10.1038/srep24323] [PMID: 27075233]
[81]
Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000; 51(3): 475-83.
[http://dx.doi.org/10.1002/1097-4636(20000905)51:3<475::AID-JBM23>3.0.CO;2-9] [PMID: 10880091]
[82]
Patra A, Ding T, Engudar G, et al. Component-specific analysis of plasma protein corona formation on gold nanoparticles using multiplexed surface plasmon resonance small. Weinheim an der Bergstrasse Germany 2016; 12(9): 1174-82.
[http://dx.doi.org/10.1002/smll.201501603]
[83]
Ahmed M, Ffrench-Constant C. Extracellular matrix regulation of stem cell behavior. Curr Stem Cell Rep 2016; 2(3): 197-206.
[http://dx.doi.org/10.1007/s40778-016-0056-2] [PMID: 27547708]
[84]
Tatullo M, Marrelli M, Falisi G, et al. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review. Int J Immunopathol Pharmacol 2016; 29(1): 3-8.
[http://dx.doi.org/10.1177/0394632015617951] [PMID: 26612837]
[85]
Shah DA, Kwon SJ, Bale SS, Banerjee A, Dordick JS, Kane RS. Regulation of stem cell signaling by nanoparticle-mediated intracellular protein delivery. Biomaterials 2011; 32(12): 3210-9.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.077] [PMID: 21296414]
[86]
Maupin KA, Droscha CJ, Williams BO. A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/β-catenin signaling in humans and mice. Bone Res 2013; 1(1): 27-71.
[http://dx.doi.org/10.4248/BR201301004] [PMID: 26273492]
[87]
Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 2007; 19(4): 659-71.
[http://dx.doi.org/10.1016/j.cellsig.2006.11.001] [PMID: 17188462]
[88]
Huang H, He X. Wnt/beta-catenin signaling: New (and old) players and new insights. Curr Opin Cell Biol 2008; 20(2): 119-25.
[http://dx.doi.org/10.1016/j.ceb.2008.01.009] [PMID: 18339531]
[89]
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17(1): 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[90]
Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10(7): 468-77.
[http://dx.doi.org/10.1038/nrm2717] [PMID: 19536106]
[91]
Etheridge SL, Spencer GJ, Heath DJ, Genever PG. Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 2004; 22(5): 849-60.
[http://dx.doi.org/10.1634/stemcells.22-5-849] [PMID: 15342948]
[92]
Kim W, Kim M, Jho EH. Wnt/β-catenin signalling: From plasma membrane to nucleus. Biochem J 2013; 450(1): 9-21.
[http://dx.doi.org/10.1042/BJ20121284] [PMID: 23343194]
[93]
Xavier CP, Melikova M, Chuman Y, Üren A, Baljinnyam B, Rubin JS. Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/β-catenin signaling. Cell Signal 2014; 26(1): 94-101.
[http://dx.doi.org/10.1016/j.cellsig.2013.09.016] [PMID: 24080158]
[94]
D’Alimonte I, Lannutti A, Pipino C, et al. Wnt signaling behaves as a “master regulator” in the osteogenic and adipogenic commitment of human amniotic fluid mesenchymal stem cells. Stem Cell Rev Rep 2013; 9(5): 642-54.
[http://dx.doi.org/10.1007/s12015-013-9436-5] [PMID: 23605563]
[95]
Gaur T, Lengner CJ, Hovhannisyan H, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 2005; 280(39): 33132-40.
[http://dx.doi.org/10.1074/jbc.M500608200] [PMID: 16043491]
[96]
Komori T. Signaling networks in RUNX2-dependent bone development. J Cell Biochem 2011; 112(3): 750-5.
[http://dx.doi.org/10.1002/jcb.22994] [PMID: 21328448]
[97]
Laudes M. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. J Mol Endocrinol 2011; 46(2): R65-72.
[PMID: 21247979]
[98]
Cawthorn WP, Bree AJ, Yao Y, et al. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 2012; 50(2): 477-89.
[http://dx.doi.org/10.1016/j.bone.2011.08.010] [PMID: 21872687]
[99]
Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. Semin Cell Dev Biol 2012; 23(4): 450-7.
[http://dx.doi.org/10.1016/j.semcdb.2012.01.010] [PMID: 22306179]
[100]
Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 2012; 13(9): 654-66.
[http://dx.doi.org/10.1038/nrg3272] [PMID: 22868267]
[101]
Campbell DP, Chrysostomou E, Doetzlhofer A. Canonical Notch signaling plays an instructive role in auditory supporting cell development. Sci Rep 2016; 6: 19484.
[http://dx.doi.org/10.1038/srep19484] [PMID: 26786414]
[102]
Tao J, Chen S, Lee B. Alteration of Notch signaling in skeletal development and disease. Ann N Y Acad Sci 2010; 1192: 257-68.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05307.x] [PMID: 20392245]
[103]
Liao J, Wei Q, Zou Y, et al. Notch signaling augments BMP9-induced bone formation by promoting the osteogenesis-angiogenesis coupling process in mesenchymal stem cells (MSCs). Cell Physiol Biochem 2017; 41(5): 1905-23.
[104]
Li Y, Li SQ, Gao YM, Li J, Zhang B. Crucial role of Notch signaling in osteogenic differentiation of periodontal ligament stem cells in osteoporotic rats. Cell Biol Int 2014; 38(6): 729-36.
[http://dx.doi.org/10.1002/cbin.10257] [PMID: 24677709]
[105]
Cao J, Wei Y, Lian J, et al. Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int J Mol Med 2017; 40(2): 378-88.
[http://dx.doi.org/10.3892/ijmm.2017.3037] [PMID: 28656211]
[106]
Su X, Wei Y, Cao J, et al. CCN3 and DLL1 co-regulate osteogenic differentiation of mouse embryonic fibroblasts in a Hey1-dependent manner. Cell Death Dis 2018; 9(12): 1188.
[http://dx.doi.org/10.1038/s41419-018-1234-1] [PMID: 30538222]
[107]
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4: 40.
[http://dx.doi.org/10.3389/fcell.2016.00040] [PMID: 27200351]
[108]
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298(5600): 1911-2.
[http://dx.doi.org/10.1126/science.1072682] [PMID: 12471242]
[109]
Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J 2010; 429(3): 403-17.
[http://dx.doi.org/10.1042/BJ20100323] [PMID: 20626350]
[110]
Wang L, Li JY, Zhang XZ, et al. Involvement of p38MAPK/NF-κB signaling pathways in osteoblasts differentiation in response to mechanical stretch. Ann Biomed Eng 2012; 40(9): 1884-94.
[http://dx.doi.org/10.1007/s10439-012-0548-x] [PMID: 22441665]
[111]
Yanagisawa M, Suzuki N, Mitsui N, Koyama Y, Otsuka K, Shimizu N. Effects of compressive force on the differentiation of pluripotent mesenchymal cells. Life Sci 2007; 81(5): 405-12.
[http://dx.doi.org/10.1016/j.lfs.2007.06.004] [PMID: 17644142]
[112]
Tang M, Peng Z, Mai Z, et al. Fluid shear stress stimulates osteogenic differentiation of human periodontal ligament cells via the extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling pathways. J Periodontol 2014; 85(12): 1806-13.
[http://dx.doi.org/10.1902/jop.2014.140244] [PMID: 25186781]
[113]
Niu C, Yuan K, Ma R, et al. Gold nanoparticles promote osteogenic differentiation of human periodontal ligament stem cells via the p38 MAPK signaling pathway. Mol Med Rep 2017; 16(4): 4879-86.
[http://dx.doi.org/10.3892/mmr.2017.7170] [PMID: 28791361]
[114]
Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT. nteractions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 2012; 27(3): 538-1.
[115]
Greenblatt MB, Shim JH, Zou W, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 2010; 120(7): 2457-73.
[http://dx.doi.org/10.1172/JCI42285] [PMID: 20551513]
[116]
Artigas N, Ureña C, Rodríguez-Carballo E, Rosa JL, Ventura F. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J Biol Chem 2014; 289(39): 27105-17.
[http://dx.doi.org/10.1074/jbc.M114.576793] [PMID: 25122769]
[117]
Yang G, Yuan G, Li X, Liu P, Chen Z, Fan M. BMP-2 induction of Dlx3 expression is mediated by p38/Smad5 signaling pathway in osteoblastic MC3T3-E1 cells. J Cell Physiol 2014; 229(7): 943-54.
[http://dx.doi.org/10.1002/jcp.24525] [PMID: 24647893]
[118]
Ortuño MJ, Susperregui AR, Artigas N, Rosa JL, Ventura F. Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions. Bone 2013; 52(2): 548-56.
[http://dx.doi.org/10.1016/j.bone.2012.11.007] [PMID: 23159876]
[119]
Wu YF, Matsuo N, Sumiyoshi H, Yoshioka H. Sp7/Osterix is involved in the up-regulation of the mouse pro-alpha1(V) collagen gene (Col5a1) in osteoblastic cells. Matrix Biol 2010; 29(8): 701-6.
[120]
Liu TM, Lee EH. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev 2013; 19(3): 254-63.
[http://dx.doi.org/10.1089/ten.teb.2012.0527] [PMID: 23150948]
[121]
Matsushita T, Chan YY, Kawanami A, Balmes G, Landreth GE, Murakami S. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol 2009; 29(21): 5843-57.
[http://dx.doi.org/10.1128/MCB.01549-08] [PMID: 19737917]
[122]
Chen Z, Yue SX, Zhou G, Greenfield EM, Murakami S. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation. J Bone Miner Res 2015; 30(5): 765-4.
[http://dx.doi.org/10.1002/jbmr.2409]
[123]
Ge C, Cawthorn WP, Li Y, Zhao G, Macdougald OA, Franceschi RT. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP Kinase Phosphorylation of Runx2 and PPARγ transcription factors. J Cell Physiol 2016; 231(3): 587-96.
[http://dx.doi.org/10.1002/jcp.25102] [PMID: 26206105]
[124]
Ge C, Xiao G, Jiang D, et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem 2009; 284(47): 32533-43.
[http://dx.doi.org/10.1074/jbc.M109.040980] [PMID: 19801668]
[125]
Hah Y-S, Kang H-G, Cho H-Y, et al. JNK signaling plays an important role in the effects of TNF-α and IL-1β on in vitro osteoblastic differentiation of cultured human periosteal-derived cells. Mol Biol Rep 2013; 40(8): 4869-81.
[http://dx.doi.org/10.1007/s11033-013-2586-3]
[126]
Huang YF, Lin JJ, Lin CH, Su Y, Hung SC. c-Jun N-terminal kinase 1 negatively regulates osteoblastic differentiation induced by BMP2 via phosphorylation of Runx2 at Ser104. J Bone Miner Res 2012; 27(5): 1093-5.
[127]
Zeng S, Chen J, Shen H. Controlling of bone morphogenetic protein signaling. Cell Signal 2010; 22(6): 888-93.
[http://dx.doi.org/10.1016/j.cellsig.2009.12.007] [PMID: 20060893]
[128]
Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: A critical review. Cell Signal 2011; 23(4): 609-20.
[http://dx.doi.org/10.1016/j.cellsig.2010.10.003] [PMID: 20959140]
[129]
Chen F, Bi D, Cheng C, Ma S, Liu Y, Cheng K. Bone morphogenetic protein 7 enhances the osteogenic differentiation of human dermal-derived CD105+ fibroblast cells through the Smad and MAPK pathways. Int J Mol Med 2019; 43(1): 37-46.
[PMID: 30365093]
[130]
Dorman LJ, Tucci M, Benghuzzi H. In vitro effects of bmp-2, bmp-7, and bmp-13 on proliferation and differentation of mouse mesenchymal stem cells. Biomed Sci Instrum 2012; 48: 81-7.
[PMID: 22846268]
[131]
Kim HY, Park SY, Choung SY. Enhancing effects of myricetin on the osteogenic differentiation of human periodontal ligament stem cells via BMP-2/Smad and ERK/JNK/p38 mitogen-activated protein kinase signaling pathway. Eur J Pharmacol 2018; 834: 84-91.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.012] [PMID: 30012495]
[132]
Chen F, Bi D, Cao G, et al. Bone morphogenetic protein 7-transduced human dermal-derived fibroblast cells differentiate into osteoblasts and form bone in vivo. Connect Tissue Res 2018; 59(3): 223-32.
[PMID: 28696808]
[133]
Myllylä RM, Haapasaari KM, Lehenkari P, Tuukkanen J. Bone morphogenetic proteins 4 and 2/7 induce osteogenic differentiation of mouse skin derived fibroblast and dermal papilla cells. Cell Tissue Res 2014; 355(2): 463-70.
[http://dx.doi.org/10.1007/s00441-013-1745-0] [PMID: 24253465]
[134]
Liu D-D, Ge K, Jin Y, et al. Terbium promotes adhesion and osteogenic differentiation of mesenchymal stem cells via activation of the Smad-dependent TGF-β/BMP signaling pathway 2014; 19(6): 879-91.
[135]
Liu DD, Zhang JC, Zhang Q, Wang SX, Yang MS. TGF-β/BMP signaling pathway is involved in cerium-promoted osteogenic differentiation of mesenchymal stem cells. J Cell Biochem 2013; 114(5): 1105-14.
[http://dx.doi.org/10.1002/jcb.24451] [PMID: 23150386]
[136]
Chen C, Uludağ H, Wang Z, Jiang H. Noggin suppression decreases BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells in vitro. J Cell Biochem 2012; 113(12): 3672-80.
[http://dx.doi.org/10.1002/jcb.24240] [PMID: 22740073]
[137]
James AW, Pang S, Askarinam A, et al. Additive effects of sonic hedgehog and Nell-1 signaling in osteogenic versus adipogenic differentiation of human adipose-derived stromal cells. Stem Cells Dev 2012; 21(12): 2170-8.
[http://dx.doi.org/10.1089/scd.2011.0461] [PMID: 22264144]
[138]
Lee S, Wang C, Pan HC, et al. Combining smoothened agonist and nel-like protein-1 enhances bone healing. Plast Reconstr Surg 2017; 139(6): 1385-96.
[http://dx.doi.org/10.1097/PRS.0000000000003367] [PMID: 28198775]
[139]
Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 2012; 18(7): 1095-101.
[http://dx.doi.org/10.1038/nm.2793] [PMID: 22729283]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy