Generic placeholder image

Current Molecular Pharmacology


ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Determining the Relative Gene Expression Level of Hypoxia Related Genes in Different Cancer Cell Lines

Author(s): Laila Baqlouq*, Malek Zihlif*, Hana Hammad and Tuqa M. Abu Thaib

Volume 14, Issue 1, 2021

Published on: 21 May, 2020

Page: [52 - 59] Pages: 8

DOI: 10.2174/1874467213666200521081653

Price: $65


Objective: This study aims to identify the changes in the expression of hypoxia-inducible genes in seven different cancer cell lines that vary in their oxygen levels in an attempt to identify hypoxia biomarkers that can be targeted in therapy. Profiling of hypoxia inducible-gene expression of these different cancer cell lines can be used as baseline data for further studies.

Methods: Human cancer cell lines obtained from the American Type Culture Collection were used; MCF7 breast cancer cells, PANC-1 pancreatic cancer cells, PC-3 prostate cancer cells, SHSY5Y neuroblastoma brain cancer cells, A549 lung cancer cells, and HEPG2 hepatocellular carcinoma. In addition, we used the MCF10A non-tumorigenic human breast epithelial cell line as a normal cell line. The differences in gene expression were examined using real-time PCR array (PAHS- 032Z, Human Hypoxia Signaling Pathway PCR Array) and analyzed using the ΔΔCt method.

Results: Almost all hypoxia-inducible genes showed a PO2-dependent up- and down-regulated expression. Noticeable gene expression differences were identified. The most important changes occurred in the HIF1α and NF-KB signaling pathways targeted genes and in central carbon metabolism pathway genes such as HKs, PFKL, and solute transporters.

Conclusion: This study identified possible hypoxia biomarkers genes such as NF-KB, HIF1α, HK, PFKL, and PIM1 that were expressed in all hypoxic cells. Pleiotropic pathways that play a role in inducing hypoxia directly, such as HIF1 α and NF-kB pathways, were upregulated. In addition, genes expressed only in the severe hypoxic liver and pancreatic cells indicate that severe and intermediate hypoxic cancer cells vary in their gene expression. Gene expression differences between cancer and normal cells showed the shift in gene expression profile to survive and proliferate under hypoxia.

Keywords: Hypoxia, microenvironment, NF-KB, HIF1, cancer cell lines, gene expression.

Graphical Abstract
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[] [PMID: 10647931]
Chi, J-T.; Wang, Z.; Nuyten, D.S.A.; Rodriguez, E.H.; Schaner, M.E.; Salim, A.; Wang, Y.; Kristensen, G.B.; Helland, A.; Børresen-Dale, A-L.; Giaccia, A.; Longaker, M.T.; Hastie, T.; Yang, G.P.; van de Vijver, M.J.; Brown, P.O. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med., 2006, 3(3), e47-e47.
[] [PMID: 16417408]
McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol., 2014, 87(1035)20130676
[] [PMID: 24588669]
Chen, D.; Li, M.; Luo, J.; Gu, W. Direct interactions between HIF-1 α and Mdm2 modulate p53 function. J. Biol. Chem., 2003, 278(16), 13595-13598.
[] [PMID: 12606552]
Erler, J.T.; Bennewith, K.L.; Nicolau, M.; Dornhöfer, N.; Kong, C.; Le, Q-T.; Chi, J-T.A.; Jeffrey, S.S.; Giaccia, A.J. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006, 440(7088), 1222-1226.
[] [PMID: 16642001]
Kim, Y.; Lin, Q.; Glazer, P.M.; Yun, Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr. Mol. Med., 2009, 9(4), 425-434.
[] [PMID: 19519400]
Payne, S.L.; Fogelgren, B.; Hess, A.R.; Seftor, E.A.; Wiley, E.L.; Fong, S.F.; Csiszar, K.; Hendrix, M.J.; Kirschmann, D.A. Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res., 2005, 65(24), 11429-11436.
[] [PMID: 16357151]
Antonio, M.J.; Le, A. Different Tumor Microenvironments Lead to Different Metabolic Phenotypes.The Heterogeneity of Cancer Metabolism; Springer, 2018, pp. 119-129.
Vaupel, P.; Harrison, L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist, 2004, 9(Suppl. 5), 4-9.
[] [PMID: 15591417]
Bando, H.; Toi, M.; Kitada, K.; Koike, M. Genes commonly upregulated by hypoxia in human breast cancer cells MCF-7 and MDA-MB-231. Biomed. Pharmacother., 2003, 57(8), 333-340.
[] [PMID: 14568227]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[] [PMID: 19131956]
Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. cell, 2011, 144(5), 646-674..
Roberts, D.J.; Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ., 2015, 22(2), 248-257.
[] [PMID: 25323588]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[] [PMID: 28382138]
Mulukutla, B.C.; Yongky, A.; Daoutidis, P.; Hu, W-S. Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One, 2014, 9(6)e98756
[] [PMID: 24911170]
Yang, J.; Li, J.; Le, Y.; Zhou, C.; Zhang, S.; Gong, Z. PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer. Am. J. Cancer Res., 2016, 6(2), 473-485.
[PMID: 27186417]
Biswas, D.K.; Dai, S-C.; Cruz, A.; Weiser, B.; Graner, E.; Pardee, A.B. The nuclear factor kappa B (NF-kappa B): a potential therapeutic target for estrogen receptor negative breast cancers. Proc. Natl. Acad. Sci. USA, 2001, 98(18), 10386-10391.
[] [PMID: 11517301]
Van Laere, S.J.; Van der Auwera, I.; Van den Eynden, G.G.; Elst, H.J.; Weyler, J.; Harris, A.L.; van Dam, P.; Van Marck, E.A.; Vermeulen, P.B.; Dirix, L.Y. Nuclear factor-kappaB signature of inflammatory breast cancer by cDNA microarray validated by quantitative real-time reverse transcription-PCR, immunohistochemistry, and nuclear factor-kappaB DNA-binding. Clin. Cancer Res., 2006, 12(11 Pt 1), 3249-3256.
[] [PMID: 16740744]
Zhang, P.; Wei, Q.; Li, X.; Wang, K.; Zeng, H.; Bu, H.; Li, H. A functional insertion/deletion polymorphism in the promoter region of the NFKB1 gene increases susceptibility for prostate cancer. Cancer Genet. Cytogenet., 2009, 191(2), 73-77.
[] [PMID: 19446741]
Xiong, S.; Wang, R.; Chen, Q.; Luo, J.; Wang, J.; Zhao, Z.; Li, Y.; Wang, Y.; Wang, X.; Cheng, B. Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am. J. Cancer Res., 2018, 8(2), 302-316.
[PMID: 29511600]
Jiang, Y.; Zhu, Y.; Wang, X.; Gong, J.; Hu, C.; Guo, B.; Zhu, B.; Li, Y. Temporal regulation of HIF-1 and NF-κB in hypoxic hepatocarcinoma cells. Oncotarget, 2015, 6(11), 9409-9419.
[] [PMID: 25823824]
Zhou, Y.; Chu, X.; Deng, F.; Tong, L.; Tong, G.; Yi, Y.; Liu, J.; Tang, J.; Tang, Y.; Xia, Y.; Dai, Y. The adenosine A2b receptor promotes tumor progression of bladder urothelial carcinoma by enhancing MAPK signaling pathway. Oncotarget, 2017, 8(30), 48755-48768.
[] [PMID: 28548944]
Ryzhov, S.; Novitskiy, S.V.; Zaynagetdinov, R.; Goldstein, A.E.; Carbone, D.P.; Biaggioni, I.; Dikov, M.M.; Feoktistov, I. Host A(2B) adenosine receptors promote carcinoma growth. Neoplasia, 2008, 10(9), 987-995.
[] [PMID: 18714400]
Jung, H.; Kim, J.S.; Kim, W.K.; Oh, K.J.; Kim, J.M.; Lee, H.J.; Han, B.S.; Kim, D.S.; Seo, Y-S.; Lee, S.C.; Park, S.G.; Bae, K.H. Intracellular annexin A2 regulates NF-κB signaling by binding to the p50 subunit: implications for gemcitabine resistance in pancreatic cancer. Cell Death Dis., 2015, 6(1), e1606-e1606.
[] [PMID: 25611381]
Lokman, N.A.; Ween, M.P.; Oehler, M.K.; Ricciardelli, C. The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron., 2011, 4(2), 199-208.
[] [PMID: 21909879]
Wise, R.; Duhachek-Muggy, S.; Qi, Y.; Zolkiewski, M.; Zolkiewska, A. Protein disulfide isomerases in the endoplasmic reticulum promote anchorage-independent growth of breast cancer cells. Breast Cancer Res. Treat., 2016, 157(2), 241-252.
[] [PMID: 27161215]
Xia, W.; Zhuang, J.; Wang, G.; Ni, J.; Wang, J.; Ye, Y. P4HB promotes HCC tumorigenesis through downregulation of GRP78 and subsequent upregulation of epithelial-to-mesenchymal transition. Oncotarget, 2017, 8(5), 8512-8521.
[] [PMID: 28052026]
Merkel, A.L.; Meggers, E.; Ocker, M. PIM1 kinase as a target for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(4), 425-436.
[] [PMID: 22385334]
Nihira, K.; Ando, Y.; Yamaguchi, T.; Kagami, Y.; Miki, Y.; Yoshida, K. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Cell Death Differ., 2010, 17(4), 689-698.
[] [PMID: 19911008]
Zhu, N.; Ramirez, L.M.; Lee, R.L.; Magnuson, N.S.; Bishop, G.A.; Gold, M.R. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-κ B pathway. J. Immunol., 2002, 168(2), 744-754.
[] [PMID: 11777968]
Sofer, A.; Lei, K.; Johannessen, C.M.; Ellisen, L.W. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol. Cell. Biol., 2005, 25(14), 5834-5845.
[] [PMID: 15988001]
Wang, C-Y.; Chen, C-L.; Tseng, Y-L.; Fang, Y-T.; Lin, Y-S.; Su, W-C.; Chen, C-C.; Chang, K-C.; Wang, Y-C.; Lin, C-F. Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J. Biol. Chem., 2012, 287(39), 32512-32524.
[] [PMID: 22859294]
Whatcott, C.J.; Posner, R.G.; Von Hoff, D.D.; Han, H. Desmoplasia and chemoresistance in pancreatic cancer.Pancreatic Cancer and Tumor Microenvironment; Transworld Research Network, 2012.
Abasolo, I.; Montuenga, L.M.; Calvo, A. Adrenomedullin prevents apoptosis in prostate cancer cells. Regul. Pept., 2006, 133(1-3), 115-122.
[] [PMID: 16297990]
Li, H.; Ge, C.; Zhao, F.; Yan, M.; Hu, C.; Jia, D.; Tian, H.; Zhu, M.; Chen, T.; Jiang, G.; Xie, H.; Cui, Y.; Gu, J.; Tu, H.; He, X.; Yao, M.; Liu, Y.; Li, J. Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin β1 signaling in human hepatocellular carcinoma. Hepatology, 2011, 54(3), 910-919.
[] [PMID: 21674552]
Kirby, M.K.; Ramaker, R.C.; Gertz, J.; Davis, N.S.; Johnston, B.E.; Oliver, P.G.; Sexton, K.C.; Greeno, E.W.; Christein, J.D.; Heslin, M.J.; Posey, J.A.; Grizzle, W.E.; Vickers, S.M.; Buchsbaum, D.J.; Cooper, S.J.; Myers, R.M. RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and reveals a role for ANGPTL4. Mol. Oncol., 2016, 10(8), 1169-1182.
[] [PMID: 27282075]
Hwang-Verslues, W.W.; Sladek, F.M. Nuclear receptor hepatocyte nuclear factor 4α1 competes with oncoprotein c-Myc for control of the p21/WAF1 promoter. Mol. Endocrinol., 2008, 22(1), 78-90.
[] [PMID: 17885207]
Lazarevich, N.L.; Shavochkina, D.A.; Fleishman, D.I.; Kustova, I.F.; Morozova, O.V.; Chuchuev, E.S.; Patyutko, Y.I. Deregulation of hepatocyte nuclear factor 4 (HNF4)as a marker of epithelial tumors progression. Exp. Oncol., 2010, 32(3), 167-171.
[PMID: 21403612]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy