General Research Article

超声靶向微泡破坏转染TGF- shRNA,在体内外抑制大鼠跟腱损伤早期黏附修复

卷 20, 期 1, 2020

页: [71 - 81] 页: 11

弟呕挨: 10.2174/1566523220666200516165828

价格: $65

Open Access Journals Promotions 2
摘要

背景:肌腱损伤是一种主要的骨科疾病。超声靶向微泡破坏(UTMD)是一种很有前途的基因转染方法,可用于肌腱损伤的治疗 目的:利用UTMD体外研究最佳转化生长因子(TGF- macrophach)短发夹RNA (shRNA)序列和转染条件,并在体内鉴定其对大鼠跟腱损伤早期黏附修复的抑制能力。 方法:选择最佳序列,荧光显微镜下分析,体外实时定量逆转录聚合酶链反应。将40只跟腱损伤大鼠在体内分为5组:(1)对照组,(2)质粒组,(3)质粒+超声组,(4)质粒+微泡组,(5)质粒+微泡+超声组,治疗14天后安乐死。通过黏附评分和病理检查评估TGF-表达。 结果:体外给药的最佳条件为输出强度为1W/cm2,占空比为30%,照射时间为60 s (P <0.05)。5组质粒转染效率高于其他组(P <0.05)。5组黏附指数评分最低,TGF-表达最少(P <0.05)。与其他组相比,第5组的炎症反应较轻。 结论:UTMD传递TGF- shRNA是治疗体内肌腱损伤的一种有效方法。

关键词: 超声靶向微泡破环

« Previous
图形摘要
[1]
Andarawis-Puri N, Flatow EL. Promoting effective tendon healing and remodeling. J Orthop Res 2018; 36(12): 3115-24.
[http://dx.doi.org/10.1002/jor.24133] [PMID: 30175859]
[2]
Chen Q, Lu H, Yang H. Chitosan inhibits fibroblasts growth in Achilles tendon via TGF-β1/Smad3 pathway by miR-29b. Int J Clin Exp Pathol 2014; 7(12): 8462-70.
[PMID: 25674210]
[3]
Legrand A, Kaufman Y, Long C, Fox PM. Molecular biology of flexor tendon healing in relation to reduction of tendon adhesions. J Hand Surg Am 2017; 42(9): 722-6.
[http://dx.doi.org/10.1016/j.jhsa.2017.06.013] [PMID: 28709791]
[4]
Frank C, Woo SL, Amiel D, Harwood F, Gomez M, Akeson W. Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am J Sports Med 1983; 11(6): 379-89.
[http://dx.doi.org/10.1177/036354658301100602] [PMID: 6650715]
[5]
Nakamura N, Hart DA, Boorman RS, et al. Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J Orthop Res 2000; 18(4): 517-23.
[http://dx.doi.org/10.1002/jor.1100180402] [PMID: 11052486]
[6]
Tang Y, Leng Q, Xiang X, Zhang L, Yang Y, Qiu L. Use of ultrasound-targeted microbubble destruction to transfect IGF-1 cDNA to enhance the regeneration of rat wounded Achilles tendon in vivo. Gene Ther 2015; 22(8): 610-8.
[http://dx.doi.org/10.1038/gt.2015.32] [PMID: 25840275]
[7]
Lipman K, Wang C, Ting K, Soo C, Zheng Z. Tendinopathy: injury, repair, and current exploration. Drug Des Devel Ther 2018; 12: 591-603.
[http://dx.doi.org/10.2147/DDDT.S154660] [PMID: 29593382]
[8]
Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today 2013; 99(3): 203-22.
[http://dx.doi.org/10.1002/bdrc.21041] [PMID: 24078497]
[9]
Hartman ZC, Appledorn DM, Amalfitano A. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 2008; 132(1-2): 1-14.
[http://dx.doi.org/10.1016/j.virusres.2007.10.005] [PMID: 18036698]
[10]
Xu J, Wang Y, Li Z, Wang Q, Zhou X, Wu W. Ultrasound-Targeted Microbubble Destruction (UTMD) combined with liposome increases the effectiveness of suppressing proliferation, migration, invasion, and Epithelial- Mesenchymal Transition (EMT) via Targeting Metadherin (MTDH) by ShRNA. Med Sci Monit 2019; 25: 2640-8.
[http://dx.doi.org/10.12659/MSM.912955] [PMID: 30969950]
[11]
Li JM, Zhao MX, Su H, et al. Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials 2011; 32(31): 7978-87.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.011] [PMID: 21784514]
[12]
Wan C, Li F, Li H. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep 2015; 12(4): 4803-14.
[http://dx.doi.org/10.3892/mmr.2015.4054] [PMID: 26151686]
[13]
Wang G, Zhuo Z, Xia H, et al. Investigation into the impact of diagnostic ultrasound with microbubbles on the capillary permeability of rat hepatomas. Ultrasound Med Biol 2013; 39(4): 628-37.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.11.004] [PMID: 23415284]
[14]
Qiu L, Zhang L, Wang L, et al. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo. Gene Ther 2012; 19(7): 703-10.
[http://dx.doi.org/10.1038/gt.2011.165] [PMID: 22033463]
[15]
Andarawis-Puri N, Flatow EL, Soslowsky LJ. Tendon basic science: Development, repair, regeneration, and healing. J Orthop Res 2015; 33(6): 780-4.
[http://dx.doi.org/10.1002/jor.22869] [PMID: 25764524]
[16]
Thomopoulos S, Parks WC, Rifkin DB, Derwin KA. Mechanisms of tendon injury and repair. J Orthop Res 2015; 33(6): 832-9.
[http://dx.doi.org/10.1002/jor.22806] [PMID: 25641114]
[17]
Kim HM, Galatz LM, Das R, Havlioglu N, Rothermich SY, Thomopoulos S. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res 2011; 52(2): 87-98.
[http://dx.doi.org/10.3109/03008207.2010.483026] [PMID: 20615095]
[18]
Chan KM, Fu SC, Wong YP, Hui WC, Cheuk YC, Wong MWN. Expression of transforming growth factor beta isoforms and their roles in tendon healing. Wound Repair Regen 2008; 16(3): 399-407.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00379.x] [PMID: 18471258]
[19]
Tsai WC, Pang JHS, Hsu CC, Chu NK, Lin MS, Hu CF. Ultrasound stimulation of types I and III collagen expression of tendon cell and upregulation of transforming growth factor beta. J Orthop Res 2006; 24(6): 1310-6.
[http://dx.doi.org/10.1002/jor.20130] [PMID: 16705693]
[20]
Fathi E, Farahzadi R. Zinc sulphate mediates the stimulation of cell proliferation of rat adipose tissue-derived mesenchymal stem cells under high intensity of EMF exposure. Biol Trace Elem Res 2018; 184(2): 529-35.
[http://dx.doi.org/10.1007/s12011-017-1199-4] [PMID: 29189996]
[21]
Ruan H, Liu S, Li F, Li X, Fan C. prevention of tendon adhesions by ERK2 small interfering RNAs. Int J Mol Sci 2013; 14(2): 4361-71.
[http://dx.doi.org/10.3390/ijms14024361] [PMID: 23429276]
[22]
Zhou Y, Zhang L, Zhao W, Wu Y, Zhu C, Yang Y. Nanoparticle-mediated delivery of TGF-β1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials 2013; 34(33): 8269-78.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.072] [PMID: 23924908]
[23]
Chen ZY, Lin Y, Yang F, Jiang L, Ge Sp. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles. Cardiovasc Ultrasound 2013; 11: 11.
[http://dx.doi.org/10.1186/1476-7120-11-11] [PMID: 23594865]
[24]
Su Q, Li L, Liu Y, Zhou Y, Wang J, Wen W. Ultrasound-targeted microbubble destruction-mediated microRNA-21 transfection regulated PDCD4/NF-κB/TNF-α pathway to prevent coronary microembolization-induced cardiac dysfunction. Gene Ther 2015; 22(12): 1000-6.
[http://dx.doi.org/10.1038/gt.2015.59] [PMID: 26079407]
[25]
Zhang N, Yan F, Liang X, et al. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics 2018; 8(8): 2264-77.
[http://dx.doi.org/10.7150/thno.23734] [PMID: 29721078]
[26]
Zhang Y, Ye C, Xu Y, et al. Ultrasound-mediated microbubble destruction increases renal interstitial capillary permeability in early diabetic nephropathy rats. Ultrasound Med Biol 2014; 40(6): 1273-81.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2013.12.006] [PMID: 24613211]
[27]
Saito M, Mazda O, Takahashi KA, et al. Sonoporation mediated transduction of pDNA/siRNA into joint synovium in vivo. J Orthop Res 2007; 25(10): 1308-16.
[http://dx.doi.org/10.1002/jor.20392] [PMID: 17549706]
[28]
da Cunha A, Parizotto NA, Vidal BdeC. The effect of therapeutic ultrasound on repair of the achilles tendon (tendo calcaneus) of the rat. Ultrasound Med Biol 2001; 27(12): 1691-6.
[http://dx.doi.org/10.1016/S0301-5629(01)00477-X] [PMID: 11839414]
[29]
Yeung CK, Guo X, Ng YF. Pulsed ultrasound treatment accelerates the repair of Achilles tendon rupture in rats. J Orthop Res 2006; 24(2): 193-201.
[http://dx.doi.org/10.1002/jor.20020] [PMID: 16435348]
[30]
Maeda T, Sakabe T, Sunaga A, et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr Biol 2011; 21(11): 933-41.
[http://dx.doi.org/10.1016/j.cub.2011.04.007] [PMID: 21600772]
[31]
Xia C, Yang XY, Wang Y, Tian S. Inhibition effect of mannose-6-phosphate on expression of transforming growth factor Beta receptor in flexor tendon cells. Orthopedics 2011; 34(1): 21.
[http://dx.doi.org/10.3928/01477447-20101123-09] [PMID: 21210624]
[32]
Wu YF, Mao WF, Zhou YL, Wang XT, Liu PY, Tang JB. Adeno-associated virus-2-mediated TGF-β1 microRNA transfection inhibits adhesion formation after digital flexor tendon injury. Gene Ther 2016; 23(2): 167-75.
[http://dx.doi.org/10.1038/gt.2015.97] [PMID: 26381218]
[33]
Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: repair and regeneration. Annu Rev Biomed Eng 2012; 14: 47-71.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150122] [PMID: 22809137]
[34]
Müller SA, Todorov A, Heisterbach PE, Martin I, Majewski M. Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surg Sports Traumatol Arthrosc 2015; 23(7): 2097-105.
[http://dx.doi.org/10.1007/s00167-013-2680-z] [PMID: 24057354]
[35]
Jiang C, Shao L, Wang Q, Dong Y. Repetitive mechanical stretching modulates transforming growth factor-β induced collagen synthesis and apoptosis in human patellar tendon fibroblasts. Biochem Cell Biol 2012; 90(5): 667-74.
[http://dx.doi.org/10.1139/o2012-024] [PMID: 22788736]
[36]
Branford OA, Klass BR, Grobbelaar AO, Rolfe KJ. The growth factors involved in flexor tendon repair and adhesion formation. J Hand Surg Eur Vol 2014; 39(1): 60-70.
[http://dx.doi.org/10.1177/1753193413509231] [PMID: 24162452]
[37]
Billy E, Brondani V, Zhang H, Müller U, Filipowicz W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci USA 2001; 98(25): 14428-33.
[http://dx.doi.org/10.1073/pnas.261562698] [PMID: 11724966]
[38]
Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33(3): 401-6.
[http://dx.doi.org/10.1038/ng1117] [PMID: 12590264]
[39]
Lu P, Zhang GR, Cai YZ, et al. Lentiviral-encoded shRNA silencing of proteoglycan decorin enhances tendon repair and regeneration within a rat model. Cell Transplant 2013; 22(9): 1507-17.
[http://dx.doi.org/10.3727/096368912X661292] [PMID: 23295185]
[40]
Klein MB, Yalamanchi N, Pham H, Longaker MT, Chang J. Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. J Hand Surg Am 2002; 27(4): 615-20.
[http://dx.doi.org/10.1053/jhsu.2002.34004] [PMID: 12132085]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy