Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Mechanism of Shuang-Huang-Lian Oral Liquid for Treatment of Mycoplasmal Pneumonia in Children on Network Pharmacology

Author(s): Ling Shi, Qi-Guo Wu, Ju-Cheng Zhang, Guang-Ming Yang, Wei Liu and Ze-Feng Wang*

Volume 23, Issue 9, 2020

Page: [955 - 971] Pages: 17

DOI: 10.2174/1386207323666200514073428

Price: $65

conference banner
Abstract

Background and Objective: Mycoplasmal pneumonia (MP) can lead to inflammation, multiple system immune damage, and mixed infection in children. The pathogenesis is still unclear. Shuang-Huang-Lian (SHL) oral liquid can treat acute upper respiratory tract infection, acute bronchitis and light pneumonia. However, our current understanding of the molecular mechanisms supporting its clinical application still lags behind due to the lack of researches. It is difficult to understand the overall sensitization mechanism of SHL oral liquid. The purpose is to explain the mechanism of action of drugs in this study, which is useful to ensure the safety of medication for children.

Methods: The therapeutic mechanism of SHL oral liquid was investigated by a system pharmacology approach integrating drug-likeness evaluation, oral bioavailability prediction, ADMET, protein-protein interaction worknet, Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes database pathway performance, C-T-P network construction and molecular docking.

Results: A total of 18 active ingredients contained in SHL oral liquid and 53 major proteins were screened out as effective players in the treatment of M. pneumoniae disease through some related pathways and molecular docking. The majority of targets, hubs and pathways were highly related to anti-mycoplasma therapy, immunity and inflammation process.

Conclusion: This study shows that the anti-bacterial effect of SHL oral liquid has multicomponent, multi-target and multi-pathway phenomena. The proposed approach may provide a feasible tool to clarify the mechanism of traditional Chinese medicines and further develop their therapeutic potentials.

Keywords: Shuang-Huang-Lian oral liquid, Mycoplasmal pneumonia (MP), network pharmacology, mechanism, gene ontology, anti-mycoplasma therapy.

[1]
Guo, D.X.; Hu, W.J.; Wei, R.; Wang, H.; Xu, B.P.; Zhou, W.; Ma, S.J.; Huang, H.; Qin, X.G.; Jiang, Y.; Dong, X.P.; Fu, X.Y.; Shi, D.W.; Wang, L.Y.; Shen, A.D.; Xin, D.L. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: A multicenter study. Bosn. J. Basic Med. Sci., 2019, 19(3), 288-296.
[http://dx.doi.org/10.17305/bjbms.2019.4053] [PMID: 30878034]
[2]
Xu, X.F.; Wu, L.; Sheng, Y.J.; Liu, J.L.; Xu, Z.F.; Kong, W.X.; Tang, L.F.; Chen, Z.M. Airway microbiota in children with bronchial mucus plugs caused by Mycoplasma pneumoniae pneumonia. Respir. Med., 2020, 120105902
[http://dx.doi.org/10.1016/j.rmed.2020.105902]
[3]
Lu, C.Y.; Yen, T.Y.; Chang, L.Y.; Liau, Y.J.; Liu, H.H.; Huang, L.M. Multiple-locus variable-number tandem-repeat analysis (MLVA) of macrolide-susceptible and -resistant Mycoplasma pneumoniae in children in Taiwan. J. Formos. Med. Assoc., 2020, S0929-S6646.
[http://dx.doi.org/10.1016/j.jfma.2019.12.008] [PMID: 31924377]
[4]
Yang, T.I.; Chang, T.H.; Lu, C.Y.; Chen, J.M.; Lee, P.I.; Huang, L.M.; Chang, L.Y. Mycoplasma pneumoniae in pediatric patients: Do macrolide-resistance and/or delayed treatment matter? J. Microbiol. Immunol. Infect., 2019, 52(2), 329-335.
[http://dx.doi.org/10.1016/j.jmii.2018.09.009] [PMID: 30341022]
[5]
Kawai, Y.; Miyashita, N.; Kubo, M.; Akaike, H.; Kato, A.; Nishizawa, Y.; Saito, A.; Kondo, E.; Teranishi, H.; Wakabayashi, T.; Ogita, S.; Tanaka, T.; Kawasaki, K.; Nakano, T.; Terada, K.; Ouchi, K. Nationwide surveillance of macrolide-resistant Mycoplasma pneumoniae infection in pediatric patients. Antimicrob. Agents Chemother., 2013, 57(8), 4046-4049.
[http://dx.doi.org/10.1128/AAC.00663-13] [PMID: 23716043]
[6]
Liu, X.; Jiang, Y.; Chen, X.; Li, J.; Shi, D.; Xin, D. Drug resistance mechanisms of Mycoplasma pneumoniae to macrolide antibiotics. BioMed Res. Int., 2014, 2014, 320801.
[PMID: 24592385]
[7]
Zhang, F.X.; Xie, Z.N.; Tang, X.Y.; Li, C.; Li, M.; Yao, Z.H.; Dai, Y.; Yao, X.S. A combination of representative compounds, metabolism platform and diagnostic extraction strategy for characterization of metabolites of Shuang-Huang-Lian oral liquid in vivo by ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2018, 155, 216-234.
[http://dx.doi.org/10.1016/j.jpba.2018.03.066] [PMID: 29655093]
[8]
Zhou, W.; Di, L.Q.; Shan, J.J.; Bi, X.L.; Chen, L.T.; Wang, L.C. Intestinal absorption of forsythoside A in different compositions of Shuang-Huang-Lian. Fitoterapia, 2011, 82(3), 375-382.
[http://dx.doi.org/10.1016/j.fitote.2010.11.012] [PMID: 21075181]
[9]
Yang, Y.; Deng, J. Internal standard mass spectrum fingerprint: a novel strategy for rapid assessing the quality of Shuang-Huang-Lian oral liquid using wooden-tip electrospray ionization mass spectrometry. Anal. Chim. Acta, 2014, 837, 83-92.
[http://dx.doi.org/10.1016/j.aca.2014.06.005] [PMID: 25000861]
[10]
Ma, Y.C.; Wang, X.Q.; Hou, F.; Ma, J.; Luo, M.; Chen, A.; Jin, P.; Lu, S.; Xu, I. Rapid resolution liquid chromatography (RRLC) analysis and studies on the stability of Shuang-Huang-Lian preparations. J. Pharm. Biomed. Anal., 2011, 54(2), 265-272.
[http://dx.doi.org/10.1016/j.jpba.2010.08.019] [PMID: 20855176]
[11]
Zhang, T.B.; Yue, R.Q.; Xu, J.; Ho, H.M.; Ma, D.L.; Leung, C.H.; Chau, S.L.; Zhao, Z.Z.; Chen, H.B.; Han, Q.B. Comprehensive quantitative analysis of Shuang-Huang-Lian oral liquid using UHPLC-Q-TOF-MS and HPLC-ELSD. J. Pharm. Biomed. Anal., 2015, 102, 1-8.
[http://dx.doi.org/10.1016/j.jpba.2014.08.025] [PMID: 25222137]
[12]
Chen, L.; Hakamata, H.; Kusu, F.; Wang, Z.; Gao, H.; Kotani, A. Simultaneous determination of various bioactive redox components in Shuang-Huang-Lian preparations using a novel three-channel isocratic elution liquid chromatography with electrochemical detection system. J. Pharm. Biomed. Anal., 2014, 95, 93-101.
[http://dx.doi.org/10.1016/j.jpba.2014.02.015] [PMID: 24657677]
[13]
Sun, W.; Chen, Y.; Li, H.; Liu, H.; Li, J.; Chen, J.; Feng, D. Material basis and molecular mechanisms of Dachengqi decoction in the treatment of acute pancreatitis based on network pharmacology. Biomed. Pharmacother., 2020, 121, 109656.
[http://dx.doi.org/10.1016/j.biopha.2019.109656] [PMID: 31810129]
[14]
Li, C.C.; Liu, D.B.; Xiao, Y.K.; Liu, Z.X. Song, Li; Zhang, Z. P. Mesoporous Co3O4-rods-entangled carbonized polyaniline nanotubes as an efficient cathode material toward stable lithium–air batteries. ACS Appl. Energy Mater, 2019, 2, 2939-2947.
[15]
Yu, G.; Luo, Z.; Zhou, Y.; Zhang, L.; Wu, Y.; Ding, L.; Shi, Y. Uncovering the pharmacological mechanism of Carthamus tinctorius L. on cardiovascular disease by a systems pharmacology approach. Biomed. Pharmacother., 2019, 117, 109094.
[http://dx.doi.org/10.1016/j.biopha.2019.109094] [PMID: 31203131]
[16]
Hu, K.X.; Duan, X.; Han, L.Z.; Ju, H.Y.; Wang, B.; Tang, Z.S.; Song, X. Exploring pharmacological mechanisms of Xiang Ju tablets in the treatment of allergic rhinitis via a network pharmacology approach. Evid. Based Complement. Alternat. Med., 2019, 2019, 6272073.
[http://dx.doi.org/10.1155/2019/6272073] [PMID: 31611923]
[17]
Zhang, X.W.; Liu, W.; Jiang, H.L.; Mao, B. Dissection of pharmacological mechanism of Chinese Herbal Medicine Yihuo Huatan Formula on chronic obstructive pulmonary disease: a systems pharmacology-based study. Sci. Rep., 2019, 9(1), 13431.
[http://dx.doi.org/10.1038/s41598-019-50064-9] [PMID: 31530860]
[18]
Qu, Y.; Zhang, Z.; Lu, Y. Zheng; Wei, Y. Network pharmacology reveals the molecular mechanism of cuyuxunxi prescription in promoting wound healing in patients with anal fistula. Evid. Based Complement. Alternat. Med., 2019, 2019, 3865121.
[http://dx.doi.org/10.1155/2019/3865121] [PMID: 31636684]
[19]
Luo, Y.; Feng, Y.; Song, L.; He, G.Q.; Li, S.; Bai, S.S.; Huang, Y.J.; Li, S.Y.; Almutairi, M.M.; Shi, H.L.; Wang, Q.; Hong, M. A network pharmacology-based study on the anti-hepatoma effect of Radix Salviae Miltiorrhizae. Chin. Med., 2019, 14, 27.
[http://dx.doi.org/10.1186/s13020-019-0249-6] [PMID: 31406500]
[20]
Zhou, J.; Wang, Q.; Xiang, Z.; Tong, Q.; Pan, J.; Wan, L.; Chen, J. Network pharmacology analysis of traditional Chinese medicine formula Xiao Ke Yin Shui treating type 2 diabetes mellitus. Evid. Based Complement. Alternat. Med., 2019, 2019, 4202563.
[http://dx.doi.org/10.1155/2019/4202563] [PMID: 31583009]
[21]
Mehta, P.; Srivastava, S.; Sharma, M.; Singh, I.; Malik, R. Identification of chemically diverse GABAA agonists as potential anti-epileptic agents using structure-guided virtual screening, ADMET, quantum mechanics and clinical validation through off-target analysis. Int. J. Biol. Macromol., 2018, 119, 1113-1128.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.032] [PMID: 30098361]
[22]
Li, S.; Qian, Y.; Xie, R.; Li, Y.; Jia, Z.; Zhang, Z.; Huang, R.; Tuo, L.; Quan, Y.; Yu, Z.; Liu, J.; Xiang, M. Exploring the protective effect of ShengMai-Yin and Ganmaidazao decoction combination against type 2 diabetes mellitus with nonalcoholic fatty liver disease by network pharmacology and validation in KKAy mice. J. Ethnopharmacol., 2019, 242, 112029.
[http://dx.doi.org/10.1016/j.jep.2019.112029] [PMID: 31216433]
[23]
Yao, Z.J.; Dong, J.; Che, Y.J.; Zhu, M.F.; Wen, M.; Wang, N.N.; Wang, S.; Lu, A.P.; Cao, D.S. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des., 2016, 30(5), 413-424.
[http://dx.doi.org/10.1007/s10822-016-9915-2] [PMID: 27167132]
[24]
Wang, N.; Zhu, F.; Shen, M.; Qiu, L.; Tang, M.; Xia, H.; Chen, L.; Yuan, Y.; Ma, S.; Chen, K. Network pharmacology-based analysis on bioactive anti-diabetic compounds in Potentilla discolor bunge. J. Ethnopharmacol., 2019, 241, 111905.
[http://dx.doi.org/10.1016/j.jep.2019.111905] [PMID: 31022565]
[25]
Li, X.; Mazaleuskaya, L.L.; Ballantyne, L.L.; Meng, H.; FitzGerald, G.A.; Funk, C.D. Genomic and lipidomic analyses differentiate the compensatory roles of two COX isoforms during systemic inflammation in mice. J. Lipid Res., 2018, 59(1), 102-112.
[http://dx.doi.org/10.1194/jlr.M080028] [PMID: 29180443]
[26]
Gilibert, S.; Galle-Treger, L.; Moreau, M.; Saint-Charles, F.; Costa, S.; Ballaire, R.; Couvert, P.; Carrié, A.; Lesnik, P.; Huby, T. Adrenocortical scavenger receptor class B type I deficiency exacerbates endotoxic shock and precipitates sepsis-induced mortality in mice. J. Immunol., 2014, 193(2), 817-826.
[http://dx.doi.org/10.4049/jimmunol.1303164] [PMID: 24935924]
[27]
Zhang, Y.Q.; Guo, Q.Y.; Li, Q.Y.; Ren, W.Q.; Tang, S.H.; Wang, S.S.; Liang, R.X.; Li, D.F.; Zhang, Y.; Xu, H.Y.; Yang, H.J. Main active constituent identification in Guanxinjing capsule, a traditional Chinese medicine, for the treatment of coronary heart disease complicated with depression. Acta Pharmacol. Sin., 2018, 39(6), 975-987.
[http://dx.doi.org/10.1038/aps.2017.117] [PMID: 28858293]
[28]
Mao, X.; Xu, H.; Li, S.; Su, J.; Li, W.; Guo, Q.; Wang, P.; Guo, R.; Xiao, X.; Zhang, Y.; Yang, H. Exploring pharmacological mechanisms of Xueshuan-Xinmai-Ning tablets acting on coronary heart disease based on drug target-disease gene interaction network. Phytomedicine, 2019, 54, 159-168.
[http://dx.doi.org/10.1016/j.phymed.2018.09.018] [PMID: 30668365]
[29]
Zeng, Q.; Li, L.; Siu, W.; Jin, Y.; Cao, M.; Li, W.; Chen, J.; Cong, W.; Ma, M.; Chen, K.; Wu, Z. A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease. Biomed. Pharmacother., 2019, 120, 109370.
[http://dx.doi.org/10.1016/j.biopha.2019.109370] [PMID: 31563815]
[30]
Bu, D.; Su, Z.; Zou, J.; Meng, M.; Wang, C. Study of the mechanism underlying therapeutic effect of Compound Longmaining on myocardial infarction using a network pharmacology-based approach. Biomed. Pharmacother., 2019, 118, 109234.
[http://dx.doi.org/10.1016/j.biopha.2019.109234] [PMID: 31377468]
[31]
Brummer, S.B. The use of large anodic galvanostatic transients to evaluate the maximum adsorption on platinum from formic acid solutions. J. Phys. Chem., 1965, 69, 562-571.
[http://dx.doi.org/10.1021/j100886a034]
[32]
Malik, R.; Bunkar, D.; Choudhary, B.S.; Srivastava, S.; Mehta, P.; Sharma, M. High throughput virtual screening and in silico ADMET analysis for rapid and efficient identification of potential PAP248-286 aggregation inhibitors as anti-HIV agents. J. Mol. Struct., 2016, 1122, 239-246.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.086]
[33]
El Khoury, L.; Santos-Martins, D.; Sasmal, S.; Eberhardt, J.; Bianco, G.; Ambrosio, F.A.; Solis-Vasquez, L.; Koch, A.; Forli, S.; Mobley, D.L. Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4. J. Comput. Aided Mol. Des., 2019, 33(12), 1011-1020.
[http://dx.doi.org/10.1007/s10822-019-00240-w] [PMID: 31691919]
[34]
Shu, Z.; He, W.; Shahen, M.; Guo, Z.; Shu, J.; Wu, T.; Bian, X.; Shar, A.H.; Farag, M.R.; Alagawany, M.; Liu, C. Clarifying of the potential mechanism of Sinisan formula for treatment of chronic hepatitis by systems pharmacology method. Biomed. Pharmacother., 2018, 100, 532-550.
[http://dx.doi.org/10.1016/j.biopha.2018.02.047] [PMID: 29482047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy